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Abstract—Latent fingerprints are the kind left on objects after
direct contact with a person’s finger, often unwittingly at crime
scenes. Most current techniques for extracting these types of
fingerprint are invasive and involve contaminating the fingerprint
with chemicals which often renders the fingerprint unusable
for further forensic testing. We propose a novel and robust
method for extracting latent fingerprints from surfaces without
the addition of contaminants or chemicals to the evidence. We
show our technique works on notoriously difficult to image
surfaces, using off-the-shelf cameras and statistical analysis.
In particular, we extract images of latent fingerprints from
surfaces which are transparent, curved and specular such as glass
lightbulbs and jars, which are challenging due to the curvature
of the surface. Our method produces results comparable to more
invasive methods and leaves the fingerprint sample unaffected for
further forensic analysis. Our technique uses machine learning
to identify partial fingerprints between successive images and
mosaics them.

Index Terms—Contactless fingerprint extraction, neural net-
work

I. INTRODUCTION

IT has been standard practice to use fingerprints as evidence
for decades in criminal convictions and information secu-

rity. There are three types of fingerprint used in biometrics:
latent, patent and plastic [1]. Latent fingerprints are almost
invisible, formed by a dielectric residue left behind from
the fingerprint ridges containing water with various salts and
organic compounds [2]. Extracting latent prints is further
complicated since they may be found on complex curved
surfaces. Patent fingerprints are easily visible to the naked eye
and are formed when the finger is coated in ink or another
similar substance then pressed onto a surface. Plastic prints
are three dimensional impressions formed when the finger is
pressed into a malleable surface such as wax, paint or soap.
In this paper we will be dealing with latent prints.

In spite of latent fingerprint extraction being a long estab-
lished process, invasive techniques are vulnerable to improper
collection methods which may cause a loss of information.
Latent prints are often enhanced physically for photographs
by adding a material which involves ‘dusting’ the scene in
the expectation that the powder will become fixed to the
residue left behind, and hence become much more visible in
any further imaging. This type of chemical processing may
degrade or contaminate the evidence, preventing additional
forensic testing [3]. Our method is simple, fast and requires
only an off-the-shelf camera and remote flash. Fingerprints are

comprised of ridges which may terminate or form bifurcations
as well as a variety of other distinctive features formed in the
foetus from the fifth month of pregnancy [4]. These features
are known as minutiae and usually appear in the fingerprint in
unique combinations resulting in one persons fingerprint being
clearly discernible from another. Latent fingerprint features
are more difficult to match than those of patent fingerprints,
and are more susceptible to scrutiny in courtroom arguments
[4]. This is due to the non-ideal surfaces (often curved
and specular) where latent prints are often found. Specular
reflections only reflect along a given direction and a diffuse
reflection which will reflect roughly the same intensity in all
directions. Specular surfaces complicate imaging forensically
because their reflectance is highly direction dependent. For our
problem this means the lighting direction has to be just right
in order to interact with the specular surface and obtain any
meaningful photographic data. Our technique aims to assist in
developing a simple and standard non-invasive novel pipeline
to extract fingerprints in these circumstances so they may
become a less vulnerable form of forensic evidence. Given
the scale of fingerprint ridges and the fact that the quality of
images impact the effectiveness of fingerprint feature point
extraction [5], we work with high resolution input images in
order to preserve the finer details.

A. Latent fingerprints and surface curvature

The local shape of a point on a surface is determined
by the two principal curvatures (eigenvalues of the shape
operator at this point), κ1 and κ2. One principal curvature
defines the rate of maximum bending and its corresponding
tangential direction on the surface, while the other defines
the rate and corresponding tangential direction of minimum
bending. We will not focus too much on the mathematics of
these principal curvatures, but it is important to acknowledge
their significance and effects on imaging different surfaces.
Two useful quantities we consider are Gaussian and mean
curvatures, G and M . As one would expect, the curvature
(Gaussian and mean) of a planar surface is zero. However, the
mean curvature of a cylindrical surface is greater than zero,
while the Gaussian curvature is still zero. This is because the
Gaussian curvature of a surface is multiplicative (as shown in
(1) and mean curvature is additive (as shown in (2)).

G = κ1κ2 (1)
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M = (κ1 + κ2)/2 (2)

This means that if any of the principal curvatures, κ1 and κ2,
are equal to zero then so will the overall Gaussian curvature,
G. For this reason the mean curvature is more significant for
the purposes of extracting fingerprints. We examine the effects
of different principal curvatures and the proposed method’s
performance, and note how imaging becomes more difficult
as mean curvature increases. We extract prints from specular
planar surfaces (such as windows) as shown in Fig. 1, with
both principal curvatures κ1 = κ2 = 0, and hence a mean
curvature of zero. Imaging a flat specular surface where both
principal curvatures are zero is comparatively easier than when
one or both are non-zero (see results in Fig. 7c). We also
extract fingerprints from specular cylindrical surfaces (such
as glass jars) as shown in Fig. 1 with κ1 = 0 and κ2 > 0,
which results in positive mean curvature. Imaging cylindrical
surfaces where one principal curvature is non-zero proves
more difficult than a flat surface, but is possible to extract
fingerprints using the RELF method as shown in Fig .7f.
Our method also proves robust enough to work on specular
spherical surfaces (such as spherical bulbs) as shown in Fig.
1 with both principal curvatures κ1 and κ2 being positive.
Despite the surface being much more difficult to image since
both principal curvatures are non-zero, the RELF method is
still able to extract fingerprints as shown in Fig 7i and Fig.
8f. The mean curvature of a surface is indicative of the ease
at which we may extract fingerprints. The surfaces in these
examples are also specular, which poses different issues as
outlined in I.

B. Related work

There exist several methods using expensive optical equip-
ment for non-destructive extraction of latent fingerprints from
curved smooth surfaces that can yield impressive results.
Optical coherence tomography has been used to extract latent
fingerprints from complex surfaces [6]. The authors were able
to extract fingerprints from even poorly reflecting samples
where the latent print was unnoticeable under ordinary viewing
conditions, and they achieved this without any physically
invasive or chemically enhanced processing.

Another optical method utilises the fact that specularly re-
flected light from dielectrics is partially polarised at a specific
range of observing angles [3]. Despite producing effective
results, the techniques in [3], [6] and [7] are intended for
extracting fingerprints from flat surfaces. However, another
optical method has been developed specifically to image
curved surfaces [8]. As the authors state, the ability to obtain
a non-destructive reconstruction of a fingerprint (or portion of
it) in situ from a cylindrical or curved surface is important for
the purposes of identifying a person at a crime scene. This
non invasive method uses a diffractive optical element based
glossmeter (a device usually used to measure magazine print
gloss quality). The method utilises a motor-driven rotary table
to rotate the object being imaged. A laser beam is focused
onto the position of the latent fingerprint and colour-coded

Fig. 1: An outline of the different surface curvatures that the
RELF algorithm is equipped to process.

gloss map of the scanned region is obtained, with colour
being related to the strength of light reflection. The latent
fingerprint is shown in contrast to the background surface due
to a difference in reflectivity. The authors state their method
may be encounter issues due to colour affecting the image
contrast of the fingerprint [8]. It is worth noting that this
technique requires lots of equipment and a highly skilled user.

Researchers have used hyperspectral imaging (which con-
structs a three dimensional data cube consisting of two
dimensional images over numerous wavelengths) to obtain
fingerprint images. All channels are fused using histogram
of oriented gradient information to weigh each of these
channels [9]. These non invasive optical methods produce
interesting results, but they are often experimental proof-of-
concept setups and require a high level of knowledge and
skill to operate the equipment. Other invasive and potentially
deleterious methods besides dusting include using hardware
such as deformable membranes on glass plates and heating
glass plates to remove moisture [4]. Clearly, these methods are
very invasive which is undesirable in any forensic investigation
as they may risk destroying or contaminating the fingerprint
sample. Therefore there is clearly a need for a straightforward,
non-destructive approach which avoids having to compromise
precious forensic evidence. All of these described methods
rely on complicated, laboratory based equipment that requires
careful calibration. Our proposed method requires only the
operation of an off-the-shelf camera and a remote flash.

C. Concepts behind proposed method

It has been noted by forensic investigators for decades
that by varying the angle of a torch incident on a surface
potentially containing latent fingerprints, it is possible to locate
partial or full fingerprints [10]. Our method utilises this basic
principle: we illuminate the object suspected to contain a latent
fingerprint using multi-light imaging, a technique in which
the object is held stationary and a light source illuminates the
item from a different direction for each image. Reflectance
transformation imaging utilises multi-light imaging (using a
lighting dome to avoid the process of manually moving a flash
around) to compute surface normals and obtain topographical
information about the object being imaged [11]. Reflectance
transformation imaging is chiefly used in cultural heritage



Fig. 2: A flowchart of the RELF algorithm, which extracts
features from superpixels for classification then uses these
classifications to build a mosaic fingerprint image.

imaging since it is inexpensive and produces high resolution
surface topography using off-the-shelf cameras.

We borrow our imaging approach from reflectance trans-
formation imaging, but the similarities end here. We apply
machine learning to reveal the hidden latent fingerprints found
on objects. These methods have been used before to reveal
objects hidden to the human eye, and have been shown to
work much better than humans in the dark. Researchers used
deep neural networks to identify and improve salient features
of dimly lit images [12]. Our technique uses machine learning
to identify partial fingerprints between successive images and
mosaics them.

II. METHODS

The novel pipeline for the proposed RELF method is
outlined in Fig. 2. Our approach uses multi-light imaging and
an off-the-shelf digital camera to gather images as outlined in
II-A. Each of these images is then segmented into superpixels
(see Fig. 4) for analysis. We estimate the orientation and
frequency of the superpixels in II-C, allowing us to generate
a 2D sinusoidal filter from which we can obtain a cross-
correlation to see how closely the fingerprint ridges match
the peaks and troughs of a sinusoidal function of the same
frequency. We extract more features from the superpixel in
II-E, reducing the dimensionality of the data thereby allowing
us to categorise the superpixel into a binary classification
(1 = fingerprint or 0 = nofingerprint). We will now
discuss these steps in more detail.

A. Data acquisition using multi-light imaging

Latent fingerprints viewed under illumination on curved
surfaces are only partially visible from any one lighting angle.
They also vary in brightness relative to their proximity to the
specular reflection on the curved surface. This means we only
see small regions of the fingerprint at best in each image. This
can be seen in Fig. 3 where the specular reflection is saturated,
but the surrounding region contains an eligible portion of the
fingerprint. Using the multi-light image collection technique
we illuminate the curved glass object to build up, piece by
piece, the overall fingerprint image. For each image stack we
obtain around 80 images, with the location of the specular
reflection being different on the surface because the light
changes direction on the lighting dome. At the apex of the
multi-light imaging dome an off-the-shelf camera captures an
image for each unique lighting direction. Using a lighting

Fig. 3: A light-bulb exhibiting a specular reflection which
is saturated and noisy but reveals neighbouring portions of
legible fingerprint.

dome is not mandatory but does save time, and we will show
RELF performs well on hand-lit image stacks as well as dome-
lit image stacks. We will now discuss the proposed algorithm
for extracting fingerprints from the image set.

B. Superpixel segmentation

Having obtained the image data, we break down each image
into sets of segments called superpixels that collectively cover
the entire image. Each individual superpixel in the image
contains pixels with similar features such as colour, texture
and brightness [13]. Superpixels can be generated by two main
categories of algorithms: graph based and gradient ascent [14].
We opt to use a gradient ascent based method known as simple
linear iterative clustering (SLIC), which efficiently generates
superpixels using k-means clustering [15]. Often specular
reflection pixels are grouped together by the SLIC superpixels
algorithm due to their similar (saturated and noisy) intensity,
we use this to determine whether or not the superpixel requires
further processing in the RELF framework. In these instances
the entire superpixel is whited out, and yields little to no
information. SLIC is straightforward and memory efficient,
allows control over the number of superpixels and adheres
well to boundaries [14]. We use default parameters for SLIC
as follows: compactness is 10, the method is SLIC0 as
opposed to SLIC so we can adaptively refine compactness
after the first iteration and our number of iterations used in
the clustering phase of the algorithm is 10.

On a curved and specular surface the intensity of the finger-
print varies drastically with distance to the specular highlight.
We use histogram equalisation to even out these disparities.
This method is particularly effective for areas with lower local
contrast (and further away from the specular reflection) to gain
a higher contrast. This increases the clarity of any potential
fingerprint ridges and allows us to determine whether any
useful portions of the fingerprint are present. Examples of
superpixels containing fingerprint data can be seen in Fig.
4. The unprocessed superpixels are shown in (a) - (d) and
the corresponding superpixels having undergone histogram
equalisation are shown in (e) - (h), where the ridges of the
fingerprint portions are much clearer. Now we have increased



(a) Before HE. (b) Before HE. (c) Before HE. (d) Before HE.

(e) After HE. (f) After HE. (g) After HE. (h) After HE.

Fig. 4: Various input superpixels before and after histogram
equalisation (HE) to enhance contrast (a) - (d) the input su-
perpixels containing fingerprint. (e) - (h) the same superpixels
after undergoing histogram equalisation.

the clarity of potential fingerprint containing superpixels, we
will look at methods for orientation and frequency estimation.

In order to determine whether or not a given superpixel
contains a fingerprint portion, we measure several numerical
features of the superpixel to build a one dimensional feature
vector. We measure fourteen distinct features of the superpixel,
and then train a neural network to learn which combination of
these features represents a fingerprint. Two of these numerical
features, the cross correlation with a 2D sinusoidal filter and
the number of fingerprint ridges present in a superpixel, can
only be extracted once the Fourier transform is computed.
For this reason we will now outline the 2D Fourier analysis
performed on each superpixel.

C. Orientation and frequency estimation

We obtain our first two numerical features, the cross
correlation and the number of fingerprint ridges present by
performing a two-dimensional fast Fourier transform, enabling
us to estimate the dominant spatial frequency in the superpixel.
We perform Fourier analysis separately on each superpixel,
extracting these two features independently for each one
(fingerprint ridge frequency is is not assumed as constant due
to curved surface). We are then able to measure the orientation
of this dominant frequency relative to the horizontal, and
calculate the cross-correlation of the superpixel with a filter
generated using the underlying predominant spatial frequency
of the superpixel. This cross-correlation is our first numerical
feature to be input into our machine learning algorithm
as outlined in II-E. If a given superpixel indeed contains
fingerprint ridges, it will exhibit a high cross correlation with
a sinusoid filter of the same frequency as shown in Fig. 5.

We take into consideration that the cross-correlation of
a sinusoidal filter with a fingerprint portion may encounter
issues due to the fact that the curvature of fingerprint ridges
increase towards the centre of the fingerprint [16]. In these
central fingerprint sections with high ridge curvature, the
assumption of a dominant ridge direction and parallel ridges
is not valid since the curvature is too great. This means, in

(a) Portion of fingerprint. (b) Fingerprint in frequency domain.

(c) Synthetic 2D sinusoidal pattern. (d) 2D sinusoidal in frequency do-
main.

Fig. 5: (a) Sample of exemplar fingerprint portion (b) The
resulting frequency domain image computed from the Fourier
transform of the fingerprint portion. (c) A 2D sinusoidal filter.
(d) The resulting frequency domain image after a Fourier
transform on the sinusoidal filter.

central fingerprint regions, the correlation could indicate a low
similarity with the sinusoidal filter. However, the effects of
this issue were found to be minimal if the number superpixels
used is sufficiently high. This is because if we increase the
number of superpixels (and hence decrease their size) the
central regions appear to be approximately less curved.

Indeed, most of the superpixels containing fingerprint ridges
(see Fig. 5a) were found to be sufficiently parallel that they
closely match the sinusoidal filter (see Fig. 5c). These simi-
larities are also visible in the corresponding frequency spectra
of the fingerprint (see Fig. 5b) and sinusoid (see Fig. 5d). As
well as the spatial frequency of a fingerprint varying naturally,
the spatial frequency of latent prints present an additional
issue as they may vary due to the curvature of the surface
they are present on (since the surface’s distance from the
camera varies). Thus, we adaptively analyse local regions of
the fingerprint using superpixel segmentation, estimating the
local frequency separately in each superpixel. We estimate the
number of fingerprint ridges present by aligning the ridges
vertically using the orientation information computed from
the Fourier transform, then we mean down the columns and
compute the number of peaks.

D. Gray-level co-occurrence matrix (GLCM)

We also compute the gray-level co-occurrence matrix
(GLCM) for each superpixel, which is a histogram of co-



(a) Example of superpixel
with meandering perimeter
due to fingerprint.

(b) Perimeter and convex hull
shown by solid blue and
dashed red lines respectively.

Fig. 6: Fingerprint ridges present in a superpixel result in
a meandering superpixel perimeter, which is larger than the
superpixel convex hull. (a) Shows an example of a superpixel
with fingerprint ridges (b) Shows the perimeter is larger than
the convex hull due to the fingerprint ridges.

occurring grayscale values at a given offset across an image
[17]. We compute the GLCM for each superpixel to quanti-
tatively analyse their texture, allowing us to extract numeric
GLCM features such as contrast which measures the intensity
contrast between a pixel and its neighbour over the superpixel.
The GLCM correlation measures how correlated a pixel is to
its neighbour over the whole superpixel. The GLCM energy
yields the sum of squared elements in the GLCM, and we
also measure homogeneity which is the closeness of elements
in the GLCM to the GLCM diagonal (a texture is considered
coarse if most entries in the GLCM are situated down the main
diagonal). The features we extract from the GLCM are used in
II-E so the machine learning algorithm may learn information
from them.

We will now discuss processing the superpixel to obtain
more features and build feature vector for input into a neural
network.

E. Constructing a feature vector to represent a superpixel

We obtain fourteen numerical features from the superpixel
to build a one dimensional feature vector. We may use this
14x1 feature vector to represent the entire superpixel, meaning
we only use 14 elements to learn from instead of the 40, 000
elements (pixels) a typical superpixel may consist of (given a
24 MP input image and 400 superpixels). We use these feature
vectors to train a neural network so that the network may
learn information from these metrics and which combination
of these metrics represent a fingerprint superpixel and which
combinations do not.

1) Cross correlation of superpixel with filter: As described
in II-C, we obtain the cross correlation of the superpixel
against a 2D sinusoidal filter.

2) Number of ridges present in superpixel: As described in
II-C, we estimate the number of fingerprint ridges present in
a given superpixel.

3) Ratio of non-zero to zero value pixels in superpixel: We
compute the ratio of non-zero value to zero value pixels (i.e.

the ratio of light to dark pixels). This feature indicates how
saturated the superpixel is and hence indicates the likelihood
that a fingerprint portion is present. The SLIC superpixels
algorithm groups together specular reflection pixels due to
their similar (saturated) intensities. In these instances often
the entire superpixel is whited out, yielding a ratio of non-
zero to zero value pixels of near 1, we can safely assume that
the superpixel contains little to no information. Conversely if
this ratio is near 0 we may assume that the superpixel is in
fact too dark to obtain information from.

4) Aspect ratio of superpixel dimensions: The aspect ratio
of the superpixels dimensions is computed as this can serve as
a useful indicator about the contents of the superpixel. This is
because the shape of specular reflections on curved surfaces
are often elongated and their dimensions are highly dissimilar.
We simply calculate the superpixel height and width then take
the smallest of these two dimensions and divide it by the
largest, meaning that the aspect ratio is rotation invariant.

5) Ratio of perimeter over area of superpixel: The ratio
of superpixel perimeter to area is also a helpful numerical
feature since it indicates how the superpixel has adhered to
object boundaries in the image, with largely empty superpixels
having smaller (more circular) perimeters and superpixels con-
taining fingerprint portions have a larger (more meandering)
perimeter as shown in Fig. 6b.

6) Ratio of convex hull over perimeter of superpixel: The
convex hull of a set of points on a plane is the smallest possible
convex polygon which contains all of the points in the set.
The convex hull may occasionally be equal to the perimeter
of the superpixel when there is less texture in the superpixel.
However, the perimeter is usually larger than the convex hull
in instances where the superpixel contains fingerprint portions
as is shown in Fig. 6b.

7) Variance in intensity across superpixel: We compute the
variance to measure how far the set of intensity values in the
superpixel deviate from their average value.

8) Median intensity value of superpixel: We compute the
median since outliers do not affect this feature as much as they
affect the mean, which is useful when comparing superpixels
that may contain a few bright specular pixels but are overall
darker.

9) Mode intensity value of superpixel: We compute the
modal value of the superpixel since it is also not as affected
by outliers as the mean, which is useful when a small number
of bright specular pixels occur in an overall dark superpixel.

10) Entropy of the superpixel: The entropy value tells
us the randomness of intensity in the distribution of the
superpixel. It also provides us measure of information content,
estimating the amount of information present in a superpixel.

11) Contrast (from GLCM): As described in II-D, we
obtain a contrast value from the gray-level co-occurrence
matrix (GLCM) which is a statistical method for examining
texture.

12) Correlation (from GLCM): The gray-level co-
occurrence matrix (GLCM) correlation measures how



correlated a pixel is to its neighbour over the whole
superpixel (see II-D).

13) Energy (from GLCM): The energy value of the gray-
level co-occurrence matrix (GLCM) yields the sum of squared
elements in the GLCM (see II-D).

14) Homogeneity (from GLCM): Homogeneity is a measure
of the closeness of elements in the gray-level co-occurrence
matrix (GLCM) to its diagonal (a texture is considered coarse
if most entries in the GLCM are situated down the main
diagonal). For more detail see II-D. We can now use this 14x1
feature vector to represent an entire superpixel.

F. Artificial neural network

We train a two-layer feed-forward artificial neural network
to learn from 251,154 superpixel feature vectors, of which
0.6% are classified as fingerprints. These superpixel feature
vectors are extracted from 13 different image stacks (with
each stack containing of the order of 80 images) of varying
surface specularity and colour. None of the image stacks used
to generate fingerprint images in III are used during training.
We use 70% (175,808) of these vectors to train the network
using Bayesian regularisation [18], [19] to update the weights
and biases according to Levenberg-Marquardt optimisation,
minimising squared errors and weights resulting in a network
with good generalisation (its ability to handle unseen data).
We use 15% (37,673) of the feature vectors for validation in
order to measure the generalisation of the network, and stop
training when generalisation ceases to improve. We also use
15% (37,673) for testing, allowing us to evaluate the network’s
performance independently of the training and validation data.
The feed-forward network uses a hyperbolic tangent sigmoid
transfer function in its hidden layer (which consists of 10
hidden neurons) and a linear transfer function in its output
layer. We train our neural network classifier on positive
fingerprint superpixels as well as marginal superpixels that
contain fingerprint portions that are less legible.

III. RESULTS

We demonstrate our RELF method on prints from five
objects of varying surface characteristics, showing that it is
capable of extracting fingerprints from planar, curved and
spherical specular surfaces. Our network produced a receiver
operating characteristic curve with an area under curve of
0.9557, showing that it distinguishes well between fingerprint
and non-fingerprint superpixels. Some of the results are hand-
lit and some are dome-lit, in order to show RELF performs
well with either. As noted in I-A, when the principal curvatures
κ1 and κ2 increase from zero on a planar surface, to one
becoming non-zero on a cylindrical surface until both are non-
zero on a spherical surface, the mean curvature also increases.
The mean curvature (the average of κ1 and κ2) of a surface
is indicative of the ease at which we may extract fingerprints.
We see this is true for the (hand-lit) window in Fig. 7(a)-(c),
where the quality and completeness of the latent fingerprint
is high. This is despite the window in question being chosen
because it was particularly unclean, allowing us to evaluate the

performance of RELF in a real world environment. We further
evaluate RELF on a (dome-lit) specular cylindrical glass jar
in Fig. 7(d)-(f). It is clear that the fingerprint is missing
some portions, yet overall we yield a high quality, mostly
complete latent print. This shows the robustness of RELF to
work on different surface curvatures. We then evaluate RELF’s
performance on a clear (dome-lit) specular spherical lightbulb,
as can be seen in Fig. 7(g)-(i). Since both principal curvatures
are now non-zero for this surface, each input image contains
only small portions of the fingerprint at best. This makes it
much more difficult for RELF to extract latent prints, but the
technique produces a mostly complete fingerprint nonetheless.
This surface is additionally difficult to extract fingerprints
as the curved and transparent lightbulb contains filament
elements which are visible and disruptive to the extraction
process. Despite this, RELF proves to be robust in outputting
fingerprints in these most undesirable of circumstances. We
also extract fingerprints from a (hand-lit) mug which has a
particularly challenging combination of properties: it is black
in colour, specular and curved. The fingerprint outputted from
RELF is shown in 8c, which shows the stark contrast between
the region of the unprocessed image in 8b. We show our novel
technique is also capable of extracting fingerprints from further
problematic surfaces such as the (dome-lit) white spherical
specular bulb in Fig. 8f.

A Metropolitan Police Service officer has confirmed that
the resulting fingerprint images are of a quality that would
enable them to be matched [20]. We also evaluated our results
using minutiae matching software developed by the National
Institute of Standards and Technology (NIST) and used by
the Federal Bureau of Investigation (FBI) [21]. The NIST
biometric image software (NBIS) clusters all linked pairs of
matched minutiae, and uses the length of the longest chain to
provide a score. A match score of greater than 40 is stated to
usually indicate a true match. The RELF output image from
the flat window (7c) scored 95, the cylindrical glass jar (7f)
scored 65, the spherical glass bulb (7i) scored 38 and the
curved black mug (8c) scored 36 and the white bulb (8f) scored
25. These scores are promising but show that the model could
perhaps be made more robust to different coloured surfaces
by adapting the method in future work.

IV. CONCLUSIONS AND FUTURE WORK

We have shown the effectiveness of the RELF technique
at non-invasively extracting fingerprints from different surface
curvatures, specularity and opacities without the need for
chemical processing which may degrade or contaminate the
evidence, preventing additional forensic testing. If a human be-
ing sat down and inspected all input images they could spot the
fingerprint portion - RELF simply performs this automatically,
and efficiently adds all fingerprint portions into one image
uncovering the true latent fingerprint. As mentioned in II-F,
we train our network on positive fingerprint superpixels as well
as marginal superpixels that contain fingerprint portions which
are less eligible. This produced a more complete fingerprint
than only training on positive superpixels since the positive



(a) Input image of (specular) flat surface. (b) Cropped region of (a). (c) RELF data overlayed on cropped region of (a).

(d) Input image of (specular) clyindrical surface. (e) Cropped region of (d). (f) RELF data overlayed on cropped region of (d).

(g) Input image of (specular) spherical surface. (h) Cropped region of (g). (i) RELF data overlayed on cropped region of (g).

Fig. 7: Fingerprints extracted using the RELF method on planar, cylindrical and spherical specular surfaces. It can be seen that
there are portions of the fingerprint missing, due to the mis-classification of a small number of superpixels for which lighting
may not have been adequate or the SLIC superpixels algorithm may have segmented a small number of unusually shaped
superpixels. In (a) we see the flat surface of a window looking out with some greenery in the background. (b) shows a cropped
region of (a) for comparison. (c) shows the cropped region in (b) with RELF data overlayed. In (d) we see the cylindrical
surface of a glass jar. (e) shows a cropped region of (d) for comparison. (f) shows the cropped region in (e) with RELF data
overlayed. In (g) we see the spherical surface of a glass lightbulb. (h) shows a cropped region of (g) for comparison. (i) shows
the cropped region in (h) with RELF data overlayed. (a),(d) and (g) have been brightened, for clarity.

superpixels are very bright and result in the network becoming
more dependant on simply how bright the superpixel is. We
also note that we have not performed feature selection to
identify features which contribute most to the prediction of
a fingerprint and on which surfaces, so there may be room
for optimisation to remove less relevant features to increase
accuracy. There is also room for adapting the model so the
method produces higher matching scores in minutiae matching
software [21] across different surfaces.

We also note that the effect outlined in II-C where the
curvature of fingerprint ridges increase towards the centre
of the fingerprint [16] has been largely negated by using a
sufficiently high number of superpixels. However, some very
small central fingerprint portions are in fact missing in some

of the final fingerprint images shown in 7i when both principal
curvatures are non-zero making the surface more difficult to
image.

As stated in I, multi-light imaging is stated to run into
difficulty when imaging specular surfaces. We show that multi-
light imaging is capable of extracting fingerprints from planar,
curved and spherical specular surfaces. Moreover, we show the
method is capable of extracting fingerprints from these difficult
specular surfaces when they are transparent and unclean (see
Fig. 7c), black (see Fig. 8c) and white (see Fig. 8f).

We present a method which is simple, fast and requires
only an off-the-shelf camera and remote flash. Our technique
is performed in real world environments with little or no
preparation such as the unclean window shown in Fig. 7c,



(a) Input image: black, specular, curved. (b) Cropped region of (a). (c) RELF data overlayed on cropped region of (a).

(d) Input image: white, specular, spherical (e) Cropped region of (a). (f) RELF data overlayed on cropped region of (a).

Fig. 8: Fingerprints extracted using the RELF method on a black curved specular surface (a mug) and white specular spherical
bulb. In (a) we see the specular curved black surface of a mug. (b) shows a cropped region of (a) for comparison. (c) shows
the cropped region in (b) with RELF data overlayed. In (d) we see the white spherical surface of a glass lightbulb. (b) shows
a cropped region of (d) for comparison. (f) shows the cropped region in (e) with RELF data overlayed.

opening up the technique to potentially be used in crime
scenes. We are undertaking a project with the Metropolitan
Police Service which will lead to further quantitative analysis
of our results and explore the method’s limits with different
surface types, as well as developing the mathematics behind
the fingerprint classification [20].
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