
A Structure of Restricted Boltzmann Machine for
Modeling System Dynamics

Guillaume Padiolleau∗†‡§, Olivier Bach∗, Alain Hugget∗, Denis Penninckx∗ and Frédéric Alexandre†‡§
∗CEA-CESTA, Le Barp, France

Email: guillaume.padiolleau@cea.fr
†INRIA Bordeaux Sud-Ouest, Talence, France

‡LaBRI, Université de Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France
§IMN, Université de Bordeaux, CNRS, UMR5293, Bordeaux, France

Abstract—This paper presents a new approach for learning
transition function in state representation learning (SRL) for
control. While state-of-the-art methods use different deterministic
neural networks to learn forward and inverse state transition
functions independently with auto-supervised learning, we in-
troduce a bidirectional stochastic model to learn both transition
functions. We aim at using the uncertainty of the model on its pre-
dictions as an intrinsic motivation for exploration to enhance the
representation learning. More, using the same model to learn both
transition functions allows sharing the parameters, which can
reduce their number and should increase the embedding quality
of the representation. We use a factored restricted Boltzmann
machine (fRBM) based model, enhanced with dedicated struc-
ture for learning system dynamics and transitions with shared
parameters. The presented work focuses on building the structure
of the bidirectional transition model for unsupervised learning.
Our fRBM structure is directly inspired from physics interactions
between inputs and outputs in reinforcement learning framework.
We compare different training algorithms for learning the model
that must be able to predict observable random variables to
be used in SRL framework. Our structure is not restricted to
any type of observable, nevertheless in this paper we focus on
learning dynamics from the OpenAI Gym environment Swinging
Pendulum. We show that the proposed structure is able to learn
bidirectional transition function and performs well in prediction
task.

Index Terms—Factored Restricted Boltzmann Machine, Unsu-
pervised Deep Learning, State Representation Learning

I. INTRODUCTION

One of the overarching goals of reinforcement learning is to
find efficient policies in problems with high dimensional data.
This challenge heavily relies on finding a low dimensional,
meaningful and topologically coherent space for representing
sensory data often called state space [1]. This can be hand
crafted by experts but it is highly desirable to learn it from
data. In this case, learning is driven by finding causal structure
in sensory data. Optimizing causal relationship associating
state and action with the corresponding next state leads to
a latent space achieving better control on the environment. In
this framework state space is seen as a middle ground between
encoding observations and encoding dynamics w.r.t. actions.

At first glance only minimization of next state prediction
error from current state and action seems necessary. But
few works [2], [3], [4] show that retrieving action from

current state and next state is recommended to achieve better
performance. Yet to the best of our knowledge only feed
forward neural networks are used to fit system dynamics.
Hence inference on next state and action leads to duplicate
networks and thus to extend the number of parameters.

Moreover, feed forward neural networks feature another
drawback. Even if we can access prediction errors there is no
way for finding uncertainty on prediction. However uncertainty
can be a key factor for driving exploration with intrinsic
motivation [5], providing information on novelty before real
exploration i.e. before comparison with real state.

To override these problems we propose to use stochastic
energy-based neural networks to fit system dynamics. An
energy-based network is an implicit network that builds re-
lationship between different flows of input. Thus allowing to
infer on different ”inputs” with the same set of parameters. On
its side a stochastic network enables estimation of uncertainty
through sampling. From that perspective Restricted Boltzmann
Machine [6], [7] is a natural candidate to fit system dynamics.

In this paper we will focus on a network structure that
links action and observations (before and after the action). We
will not take into account coding and decoding parts which
are necessary for state representation learning, leaving that
for future work. Indeed, we are interested in dealing with
the burden of trade-off between expressiveness and simplic-
ity. Consequently, network structure was designed to mimic
physical relationships without loss of generality, leading to a
network with stable behavior which manages to fit complex
transformations.

In section II we expose technical bases on Restricted
Boltzmann Machine (RBM), its learning algorithms and its
conditional version. Section III focuses on higher order Re-
stricted Boltzmann Machine which extends RBM relationship
beyond 2 ways. This is of particular interest for us as we need
a three-way relation between action and states/observations
(previous and next ones). Section IV shows related works in
the fields of state representation learning and of dynamical
system modeling with RBM. Then, section V describes our
model and presents results obtained on processing observations
from a swinging pendulum.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. RESTRICTED BOLTZMANN MACHINES, EXTENSIONS,
AND CONTRASTIVE DIVERGENCE

We begin by providing background knowledge used in
this paper. Firstly, Restricted Boltzmann Machines (RBMs)
are introduced and detailed. Secondly, maximum likelihood
practical methods for training RBMs are presented.

A. Restricted Boltzmann Machines

A RBM is an undirected graphical model based on energy
that defines a joint probability distribution over an input layer
of observed variables v, called visible, and a layer of latent
variables h, called hidden. These layers are composed of
stochastic units that can be binary (i.e. Bernoulli) or real-
valued (i.e. Gaussian). This paper considers only Gaussian
visible layers and Bernoulli hidden layers since our application
requires real-valued visible vectors. The joint probability over
v and h is defined by:

p(v,h) = exp(−E(v,h))/Z (1)

where Z is the partition function and E is the energy function
defined by:

E(v,h) =

Nv∑
i

(vi − bvi)2

2σ2
i

−
Nh∑
j

hjb
h
j −

Nv,Nh∑
i,j

vi
σi
hjwij (2)

where Nv and Nh are the number of units in the visible and
hidden layers, respectively; bvi and bhj are biases of the ith
visible unit and the jth hidden unit, respectively; wij is the
weight of the connection, from matrix W, between the ith
visible unit and the jth hidden unit, and σi, from the diagonal
matrix Σ, represents standard deviation of the ith visible unit.
A straightforward way to obtain p(v) is to marginalize out h
from (1):

p(v) = exp(−F (v))/Z (3)

where F (v) is the free energy, such that:

F (v) =− log
∑
h

exp(−E(v,h))

=

Nv∑
i

(vi − bi)2

2σ2
i

−
Nh∑
j

log(1 + exp(bhj + vTΣ−1W·j))

(4)
RBMs are typically trained using a gradient ascent of the

log-likelihood llh(θ) for given training vector v. By using (3)
to get the log-likelihood and differentiating with respect to
parameter θ, the gradient is:

−∂llh(θ)

∂θ
=
∂F (v)

∂θ
−
∑
u

∂F (u)

∂θ
p(u) (5)

The first term of (5) is called the positive gradient. It can be
computed exactly, given an input vector v, by differentiating
(4). This term raises the probability of data by minimizing
the model energy. The second term of (5) is called the
negative gradient, and is the expectation over p(v), the model
distribution. It is intractable, but Markov chain Monte Carlo

methods can draw samples from the model distribution to
estimate this gradient. As a matter of fact, units in RBM layers
are conditionally independent, thus conditionals factorize and
give a simple way to compute activation probabilities of the
entire layer as:

p(h|v) =

Nh∏
j

p(hj |v) =

Nh∏
j

σ̄(bhj + vΣ−1W·j) (6)

p(v|h) =

Nv∏
i

p(vi|h) =

Nv∏
i

N (vi; b
v
i + hWT

·iσi, σ
2
i) (7)

where σ̄(·) is the sigmoidal function, and N (x;µ, σ2) is the
normal distribution on x with mean µ and standard deviation
σ. Then it is possible to perform an efficient Gibbs sampling
by iterating over (6) and (7) and get model distribution samples
to approximate negative gradient.

B. Conditional Restricted Boltzmann Machines

First advance of RBMs with multiple visible layers is the
conditional RBM (cRBM) [8], [9] that has two visible layers,
one of which is used as a conditional layer and cannot be
inferred. A cRBM models the conditional distribution p(v|c)
where v is the visible vector modeled by the RBM, and c is
the conditioning vector used to dynamically bias the RBM.
The energy function is then defined as:

E(v,h|c) =

Nv∑
i

(vi − b̂vi)

2σ2
i

−
Nh∑
j

hj b̂
h
j −

Nv,Nh∑
i,j

vi
σi
hjw

vh
ij (8)

where b̂vi and b̂hj are the dynamic biases from c:

b̂vi = bvi +

Nc∑
k

ckw
cv
ki (9)

b̂hj = bhj +

Nc∑
k

ckw
ch
kj (10)

and Wvh, Wch, Wcv are the matrix of pairwise connections
between v and h, the transition matrix from c to h and the
transition matrix from c to v respectively.

C. Contrastive Divergence

[10] introduces the first practical method to approximate
the negative gradient of log-likelihood. The method proposes
to train RBMs by starting a Gibbs chain at visible vec-
tor of training data, and running it a few steps to get an
estimation of samples drawn from model distribution. This
method minimizes Contrastive Divergence (CD) which is a
different function from negative log-likelihood. Indeed, CD is
not minimizing any function, as shown in [11]. However it is
widely used for training RBMs or other energy-based models
since it produces good results in training.

D. Persistent Contrastive Divergence

The main issue of CD is the biased result of negative
gradient estimation it provides. The Persistence Contrastive
Divergence (PCD) method proposed in [12] aims at solving
this problem. In PCD, the positive gradient is the same as in
CD since it can be directly computed. But unlike CD, PCD
keeps a persistent chain to estimate negative gradient. Many
CD variants have been proposed to improve the negative gra-
dient estimation as in [13], but almost all based on persistent
chain [14], [15], [16].

However, PCD methods cannot be used for cRBMs. In
cRBMs, each conditioning vector c leads to a unique distribu-
tion p(v|c). Thus, it is impossible to use PCD-based methods
to estimate negative gradient in learning. As reported in [9],
sample from the model distribution p(v|c) will require to keep
a persistent chain for each conditioning vector. But stochastic
gradient descent requires mini-batches of training data to learn
efficiently, then when the model revisits conditioning case, it
has sufficiently changed for the persistent chain to be far from
the current model distribution.

III. HIGHER-ORDER BOLTZMANN MACHINES

This section presents higher-order Boltzmann machines that
are RBMs with a tensor of weights instead of a simple matrix
to model interactions between multiple visible layers. Using
multiple visible layers allows capturing joint or conditional
distributions over multiple observed data.

A. Factored Restricted Boltzmann Machines

While cRBMs can model conditional probability distribu-
tions p(v|c), it cannot model the inverse conditional p(c|v)
because of the dynamic biases that are not bidirectional. A
way to construct RBM models that are able to capture the
joint distribution p(x,y) over two visible layers x and y is to
use a gated RBM (gRBM) [17] defined by the energy function:

E(x,y,h) = −
Nx,Ny,Nh∑

i,j,k

wijkxiyjhk + bias terms (11)

assuming Σx and Σy to be identity matrices for clarity.
Here, W is the three-way interaction tensor that learns the
importance of correlations between x and y. This model
can capture the full joint distribution as it is tri-directional,
and inferring a layer is simpler since the input layer l must
receive −∇lE from the other layers, before applying the
activation function. However gRBMs are very costly as the
energy function is a sum over all layers. Time complexity for
inference is O(NxNyNh) and due to the three-way tensor it
is not memory efficient with large inputs.

Recent studies on higher-order RBMs [18], [19], [20], [21]
suggest that it is possible to use much less parameters by
factorizing the multi-way interaction tensor to obtain a factored

RBM (fRBM) and reduce the order of parameters to O(N2).
From (11), the new energy function becomes:

E(x,y,h) = −
Nf∑
f

xWxf
·f yWyf

·f hWhf
·f +bias terms (12)

where Nf is the number of factors used to factorize the
multiplicative tensor. As the factorization only applies to
interactions between layers, the bias terms remain unchanged.
As in gRBMs, inference on layer l is done by sending the
−∇lE to the activation function.

B. Training fRBMs

Since fRBMs have multiple visible layers, the CD method
must be extended to estimate the negative gradient w.r.t. the
model distribution p(x,y). Two main strategies exist to draw
samples from the model distribution using Gibbs sampling.
The main issue is that p(x,y|h) is intractable, thus the Gibbs
sampler needs to estimate model samples using p(x|y,h),
p(y|x,h), p(h|x,y).

1) Alternating CD: The first way consists in estimating
p(x,y|h) by an alternating Gibbs sampling step: randomly
sample a new visible vector from p(x|y,h) or p(y|x,h),
sample from p(h|x,y), sample the other visible vector with
previous samples, and then re-sample h from the two sampled
visible vectors. This method requires to run only one chain
to estimate the model distribution, making it computationally
efficient. Because this algorithm alternates between sampling
x and y in a single Gibbs step, we denote it as aCD for
alternating CD.

2) Cyclic CD: The second way, introduced in [22] for
gRBMs, consists in running one Gibbs chain for each visible
layer. The algorithm makes a cycle over visible layers to sam-
ple only from conditionals, then we denote it as cCD for cyclic
CD. [22] suggests that cCD has better performance than aCD
for gRBMs, thus probably for fRBMs. A variant of cCD was
introduced in [20] (denoted SMcCD for Sequential Markov
chain CD), where positive h are computed by setting to zero
the visible layer sampled in negative phase of estimation, to
perform better in prediction.

IV. RELATED WORK

State Representation Learning (SRL) for control shows good
results in learning meaningful representations that help strate-
gies learning in reinforcement context [1]. Given observable
vector ot, the representation model φ must learn a meaningful
representation st. For that purpose, it has to learn a causal
structure by finding out a transformation over time. From the
encoding point of view, the use of a Variational Auto-Encoder
(VAE) [23], [24] can lead to an uncertainty in the state space.
[23] uses a pre-trained VAE with frozen variance in the dynam-
ics learning phase, but the mixture density network combined
with a Recurrent Neural Network (RNN) is able to give an
uncertainty on prediction. [24] uses a simple linear model to
modify mean and variance of encoder and decoder, leading
to the same capacity for modeling uncertainty of prediction.

However, both models use feed forward network tuned to
match only future observations. [2], [3] and [4] use forward
and inverse models to obtain better results on representation
space. Nevertheless, they are deterministic models that cannot
predict uncertainty.

From RBM point of view, [19] and [20] are interested
in learning transformations between temporal observations.
Both of them focus on skeleton movement conditioned on
activity label. Their studies show that fRBMs can learn multi-
directional transition models, i.e. we can use a unique model
to replace forward transition and inverse transition models.
And since fRBMs are stochastic neural networks, they are less
sensitive to representation noise during learning or inference
phases. This paper does not deal with the final SRL system,
but on the construction of a fRBM architecture for the bidirec-
tional transition model. In the next section, we will see how
our model differs from those proposed in [19] and [20].

The fRBM architecture proposed in [19] for transition
learning uses three different three-way factors with one being
totally conditional (i.e. hidden layer is not an input of this
factor). This model can be hard to train due to the competition
between all factors, and then needs different learning rates for
each factored sub-model. The architecture proposed in [20]
bypasses this issue by using one four-way factor between
the four layers. But these two architectures are conditioning
p(st+1|s<t+1, l) where label l remains constant for all time
steps, i.e. the model learns different modes of time series. Our
problem is different since time series are trajectories where
the next state st+1 depends on at and st which are changing
at each time step.

V. OUR MODEL

A. Architecture

As our model will be used for SRL bidirectional transitions,
we want the hidden layer h to encode the transformation of
the current transition between current state st and next state
st+1 (corresponding to backward transition model), and to
encode the transformation implied by applying action at at
current state st. These two transformations need to be encoded
in h independently but in the same way. Thus we use one
factor for each transformation. However, using a scalar value
for at can be an issue for prediction: when action is zero
then the contribution from its factor to h is zero too due to
multiplicative interactions only. In prediction phase st+1 is
initialized to zero, thus all factors have zero contribution to
h. To avoid this situation, we enforce a dynamic bias from st
on h to always encode at least the current state. This results
in the final architecture in Fig. 1, where the arrow symbol-
izes directed connections (i.e. conditional connections), lines
symbolize bidirectional connections, and triangles symbolize
factors as three-way multiplicative interactions. Visible layers
are represented with squares and hidden layer with a circle.
Assuming for simplicity a unit standard deviation for at, st,

Fig. 1. Our architecture with visible layers (at,st,st+1) represented with
a square, and hidden layer h with a circle. Lines are for bidirectional
connections, arrows for directional connections, and triangles are factors
as three-way multiplicative connections. Hidden units must encode both
the transformation between current state st and next state st+1, and the
transformation implied by applying action at in current state st, depending
on current state.

and st+1, the energy function of this model is:

E(at, st+1,h|st) =
(at − ba)2

2
+

Ns∑
j

(st+1,j − bsj)2

2

−
Nf1∑
f1

atW
aF1

f1
· stWstF1

·f1 · hWhF1

·f1

−
Nf2∑
f2

st+1W
st+1F2

f2
· stWst,F2

·f2 · hWhF2

·f2

−
Nh∑
k

hk b̂
h
k

(13)
where ba and bs are biases of at and st+1 respectively;
W·F1 and W·F2 are the factorization weights w.r.t. first and
second factor respectively; the dynamic bias is defined by
b̂hk = bhk + stB·k; and · corresponds to element-wise matrix
multiplication.

Inference in this model is simple for at and st+1 since they
do not depend on each other directly, but more complex for h
which takes contributions from both factors:

p(h|at,st+1, st) = σ̄(atW
aF1 · stWstF1(WhF1)T

+ stW
stF2 · st+1W

st+1F2(WhF2)T + b̂h)
(14)

p(at|h, st) = N (at; b
a+

hWhF1 · stWsF1(WaF1)T , 1)
(15)

p(st+1|h, st) = N (st+1; bs+

hWhF2 · stWsF2(Wst+1F2)T ,1)
(16)

B. Training

Using equations (14), (15) and (16), we can perform Gibbs
sampling to approximate samples from model distribution.

Whatever the CD method used, the form of the free energy
gradients is the same. As examples, we give gradients w.r.t.
WaF1 , B and bs:

∆W aF1

1f1
∝〈at

Ns∑
j

st,jW
stF1

jf1

Nh∑
k

hkW
hF1

kf1
〉0

− 〈at
Ns∑
j

st,jW
stF1

jf1

Nh∑
k

hkW
hF1

kf1
〉k

(17)

∆Bik ∝ 〈st,ihk〉0 − 〈st,ihk〉k (18)
∆bsj ∝ 〈st+1,j〉0 − 〈st+1,j〉k (19)

where 〈·〉0 and 〈·〉k denote expectations under data distribution
and estimated model samples after k Gibbs sampling steps. In
general, the form of the CD w.r.t. θ is given by

∆θCDk
∝ 〈∂E(at, st+1,h|st; Θ)

∂θ
〉0−〈

∂E(at, st+1,h|st; Θ)

∂θ
〉k

(20)
To approximate the negative gradient of CD, we can use all

methods except persistent ones because of our conditioning.
Indeed since the two distributions p(at|st,h) and p(st+1|st,h)
are conditionally independent we can use classical CD by
alternating Gibbs sampling on h and both visible layers. Other
methods such as aCD, cCD or its variant SMcCCD have been
tested.

VI. EXPERIMENTS AND RESULTS

A. OpenAI Gym Environment

OpenAI Gym [25] is a toolkit for reinforcement learning
which provides multiple environments to interact with. Each
environment is designed to take an action in input and to return
an observation. We do not train any agent in our experiments.
Instead, provided environments help to collect data from
simulated physics. The environment used for our experiment
is Swinging Pendulum, which takes in input a scalar action
(torque applied on the pendulum) in [−2, 2] in arbitrary units
and returns an image of the pendulum as observable, also
including the action represented with a circular arrow. We
modified the environment to return an arrow reflecting the
radial speed of the pendulum as we do not want the image to
contain information about action.

To build the dataset, we ran 300 trajectories with initial
angle state distributed from −π to π in order to ensure visiting
all angles. Actions are sampled from uniform distribution on
[−2, 2] with a trajectory length of 50 time steps to get most
of possible actions. The dimensionality of images is reduced
from 3x500x500 to 1x35x35, even if this remains a large
dimensionality, and we standardize image values.

B. Learning

The model and all different training algorithms based on
CD are implemented using Tensorflow [26] to run them on
GPUs. All trained models have the same number of hidden
units Nh = 100, and same number of factors NF1

= 150 and
NF2 = 250. For all experiments, we use a learning rate of
η = 10−4 to keep a bounded reconstruction error as explained

Fig. 2. SSE of reconstructions (dashed lines) and predictions (solid lines)
during training for SMcCD (black) and aCD (yellow) (CD and cCD curves
are almost superimposed to aCD curve). (Top) SSE for st+1. (Bottom) SSE
for at.

in [27] and [20]. The sparsity target for h is set to a mean
activation of 0.5, in order to revive hidden units that are never
active and suppress those that are always active [27], with
gain β = 10−2. We use a weight cost using L2-norm with
gain γ = 10−3 and weight normalization for factor weights
after each parameter update. But we do not use momentum
because it leads to instabilities from the very large gradients
it creates at the start of learning. An improvement could be a
momentum schedule starting from low to higher value. This
results in the following general update rule for parameter θ:

θ = θ + η(∆θCDk
− γ

2

∂‖θ‖22
∂θ

− β〈∂E(at, st+1, (h− 0.5 · 1)|st)
∂θ

〉0)

(21)

Note that for all biases there is no L2-norm derivative, and for
visible biases there is no sparsity constraint. During learning
we use k = 10 Gibbs sampling steps for all CD variants but
for the SMcCD which uses k = 1 because it is less stable
with high values of k. We set a non-learnable unit variance
for both at and st+1.

C. Results

To perform reconstruction and prediction tasks, we use the
method from [9]. To get good samples, we run k Gibbs
sampling steps, compute free energy for the k samples, and
take the sample which has the lowest free energy. During
learning we sample model distribution, but for prediction we
use meanfield inference (i.e. we use mean of probabilities).

Fig. 3. SSE of reconstructions (dashed lines) and predictions (solid lines)
during SMcCD training for 1 observed time step without gain on at (black),
5 observed time steps without gain on at (cyan) and 5 observed time steps
with a gain on at (red). (Top) SSE for st+1. (Bottom) SSE for at.

To follow convergence during learning, we use sum squared
error (SSE) for reconstructions and predictions on a test set
of trajectories. We choose SSE rather than mean squared error
to get a more accurate view of learning process. SSE is tested
after each epoch and averaged every 5 epochs. Fig. 2 shows
learning curves of the four tested CD methods. CD, aCD, and
cCD have similar behaviors: a good score of reconstruction
but bad prediction scores. Although models trained with these
methods are able to capture dependencies since they almost re-
construct perfect samples (even on denoising tasks that we do
not show here because it is not our purpose), they are unable to
predict st+1 or at. SMcCD has been designed to perform well
on prediction tasks and shows much better results. However,
all training algorithms give the same performance on scalar at
predictions.

As SMcCD is the best training method for prediction, we go
further with it and test it with different number of previously
observed steps tN for st and at, i.e. image st becomes a
vector of images st−tN+1:t and scalar at becomes vector
at−tN+1:t. We compare SSE on st+1 and at during training
for tN = {1, 3, 5}, and show results in fig. 3 for tN = 1 and
tN = 5 in black and cyan respectively. Note that for at−tN+1:t,
we actually clamp the whole vector except at, i.e. the last time
step we want to reconstruct or predict. Fig. 3 (Top) shows how
the number of observed time steps impacts prediction error
on st+1. As expected, with multiple observed time steps the
model reaches better prediction performance. But it does not
seem to affect prediction performance for at shown in fig. 3

TABLE I
SSE ON st+1 PREDICTION FOR DIFFERENT VALUES OF tN AND g

g = 1 g = 5 g = 10
tN = 1 637.80 635.33 599.51
tN = 3 434.84 476.12 417.89
tN = 5 368.34 390.95 354.88

TABLE II
SSE ON at PREDICTION FOR DIFFERENT VALUES OF tN AND g

g = 1 g = 5 g = 10
tN = 1 1.08 0.87 0.91
tN = 3 0.87 0.45 0.55
tN = 5 0.91 0.34 0.46

(Bottom, black & cyan). Nonetheless, during training, negative
gradient w.r.t. at is estimated by sample p(at|h, st) with unit
standard deviation. We can use a lower standard deviation to
get better performance, but this could cause gradient explosion
from multiplications by inverse standard deviation. A trick to
virtually reduce the model standard deviation is to apply a
gain g on the input vector. But it can lead to imbalanced
contributions between st and at if magnitudes are too different.
We trained model with SMcCD, tN = 1, 3, 5, and g = 1, 5, 10.
Table I shows SSE on st+1 predictions, and table II shows
SSE on at predictions at epoch 600. For tN = 1, it shows
that the value of the gain g does not have strong influence on
predictions capabilities for both at and st+1. But interestingly,
for higher values of tN , the gain has an influence on both
at and st+1 predictions. Table I shows that a higher gain
helps model to have better prediction performance on st+1.
However, table II shows that a medium gain gives better
prediction performances for at. As we are looking for good
performance on both predictions, we refer to model trained
with SMcCD, tN = 5 and g = 5 as best model. It has the
best performance on at predictions, though it has the worst
performance on st+1 predictions for tN = 5, levels of SSE
are flatter and choosing any g has less impact.

For comparison, we show in fig. 5 and fig. 4 at and st+1

predictions respectively. For both, we compare our best trained
model, model trained with tN = 1 and g = 1, and the ground
truth. Fig. 4 shows st+1 predictions for 20 time steps of our
best model (Top), the other model (Middle), and ground truth
(Bottom). We do not show predictions from the model trained
with other CD methods since our best model outperforms the
other on prediction quality. Fig. 5 shows at predictions of
our best model in red, from the other model in cyan, and
ground truth in black. The best model does not give always
a perfect prediction, but wrong values stay not too far from
ground truth, whereas the other model is not able to predict
any of the ground truth action values.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new fRBM architecture which is
able to learn a bidirectional transition model without any
supervision, with good results even with high dimensional
data. The two independent factors of this fRBM encode in

Fig. 4. Images of st+1 for 20 consecutive time steps of a trajectory. (Top) Meanfield predictions from best learned model with SMcCD, tN = 5 and g = 5.
(Middle) Meanfield predictions from model trained with SMcCD, tN = 1 and g = 1. (Bottom) Ground truth.

Fig. 5. Value of at for 50 consecutive time steps of a trajectory. Red dashed
line is meanfield prediction from best learned model with SMcCD, tN = 5
and g = 5. Cyan dashed line is meanfield prediction from model trained with
SMcCD, tN = 1 and g = 1. Black solid line is ground truth.

the same way a transition coming from different data views,
referring to forward and inverse transitions. Unlike previously
presented energy-based transition models based on fRBM [19],
[20], this architecture aims to provide a more natural modeling
of physics. In the context of SRL, this bidirectional model may
simplify the learning by replacing both forward and inverse
models used to constrain the representation. Our results focus
on a given environment, however the proposed fRBM structure
can apply more generally to any environment but only to
transition learning with system dynamics modeling.

In future research, we will work towards interfacing this
model with RBM-based auto-encoder to constrain the learning
of meaningful representation in a fully unsupervised fashion.
It will require modifying a part of SRL framework, since it
uses gradient back-propagation through all networks, to use it
with CD-like training algorithm.

REFERENCES

[1] T. Lesort, N. Dı́az-Rodrı́guez, J.-F. Goudou, and D. Filliat, “State
representation learning for control: An overview,” Neural Networks,
2018.

[2] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 16–17.

[3] W. Duan, “Learning state representations for robotic control. m,” Ph.D.
dissertation, Thesis, 2017.

[4] A. Zhang, H. Satija, and J. Pineau, “Decoupling dynamics and reward
for transfer learning,” arXiv preprint arXiv:1804.10689, 2018.

[5] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE transactions on
evolutionary computation, vol. 11, no. 2, pp. 265–286, 2007.

[6] P. Smolensky, “Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1. chapter information processing
in dynamical systems: Foundations of harmony theory,” MIT Press,
Cambridge, MA, USA, vol. 15, p. 18, 1986.

[7] Y. Freund and D. Haussler, “Unsupervised learning of distributions
on binary vectors using two layer networks,” in Advances in neural
information processing systems, 1992, pp. 912–919.

[8] G. W. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling human
motion using binary latent variables,” in Advances in neural information
processing systems, 2007, pp. 1345–1352.

[9] V. Mnih, H. Larochelle, and G. E. Hinton, “Conditional restricted
boltzmann machines for structured output prediction,” arXiv preprint
arXiv:1202.3748, 2012.

[10] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[11] I. Sutskever and T. Tieleman, “On the convergence properties of
contrastive divergence,” in Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 789–795.

[12] T. Tieleman, “Training restricted boltzmann machines using approxima-
tions to the likelihood gradient,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 1064–1071.

[13] E. Romero, F. Mazzanti, J. Delgado, and D. Buchaca, “Weighted
contrastive divergence,” Neural Networks, vol. 114, pp. 147–156, 2019.

[14] T. Tieleman and G. Hinton, “Using fast weights to improve persistent
contrastive divergence,” in Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, 2009, pp. 1033–1040.

[15] G. Desjardins, A. Courville, and Y. Bengio, “Adaptive parallel tempering
for stochastic maximum likelihood learning of rbms,” arXiv preprint
arXiv:1012.3476, 2010.

[16] R. Salakhutdinov, “Learning deep boltzmann machines using adaptive
mcmc,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10), 2010, pp. 943–950.

[17] R. Memisevic and G. Hinton, “Unsupervised learning of image trans-
formations,” in 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2007, pp. 1–8.

[18] R. Memisevic and G. E. Hinton, “Learning to represent spatial trans-
formations with factored higher-order boltzmann machines,” Neural
computation, vol. 22, no. 6, pp. 1473–1492, 2010.

[19] G. W. Taylor and G. E. Hinton, “Factored conditional restricted boltz-
mann machines for modeling motion style,” in Proceedings of the 26th
annual international conference on machine learning. ACM, 2009, pp.
1025–1032.

[20] D. C. Mocanu, H. B. Ammar, D. Lowet, K. Driessens, A. Liotta,
G. Weiss, and K. Tuyls, “Factored four way conditional restricted boltz-
mann machines for activity recognition,” Pattern Recognition Letters,
vol. 66, pp. 100–108, 2015.

[21] K. Li, J. Gao, S. Guo, N. Du, X. Li, and A. Zhang, “Lrbm: A restricted
boltzmann machine based approach for representation learning on linked
data,” in 2014 IEEE International Conference on Data Mining. IEEE,
2014, pp. 300–309.

[22] D. Luo, Y. Wang, X. Han, and X. Wu, “A cyclic contrastive divergence
learning algorithm for high-order rbms,” in 2014 13th International
Conference on Machine Learning and Applications. IEEE, 2014, pp.
80–86.

[23] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[24] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable
reinforcement learning with autoencoders for tactile and visual data,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 3928–3934.

[25] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[27] G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 599–619.

