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Abstract—EEG oscillatory correlates of expert meditators have
been studied in the time-frequency domain. Machine Learning
techniques are required to expand the understanding of oscil-
latory signatures. In this work, we propose a methodological
pipeline to develop machine learning models for the classification
between expert and nonexpert meditative state. We carried out
this study utilizing the online repository consisting of EEG
dataset of 24 meditators that categorized as 12 experts and
12 nonexperts meditators. The pipeline consists of four stages
that include feature engineering, machine learning classifiers,
feature selection, and visualization. We decomposed signals using
five wavelet families consisting of Haar, Biorthogonal(1.3-6.8),
Daubechies( orders 2-10), Coiflet(orders 1-5), and Symlet(2-8),
followed by feature extraction using relative entropy and power.
We classified the meditative state between expert and non-expert
meditators employing twelve classifiers to build machine learning
models. Wavelet coefficients d8 shows the maximum classification
accuracy in all the wavelet families. Wavelet orders Bior3.5 and
Coif3 produce the maximum classification performance with the
detail coefficient d8 using relative power. We have successfully
classified the meditative state between expert and non-expert
with 100% accuracy using d5,d6,d7,d8,a8 coefficients. Multi-
Layer Perceptron and Quadratic Discriminant Analysis attain the
highest accuracy. We have figured out the most discriminating
channels during classification and reported 20 channels involving
frontal, central and parietal regions. We plot the high dimensional
structure of data by utilizing two feature reduction techniques
PCA and t-SNE.

Index Terms—Meditation, Wavelet Decomposition, Feature
Extraction, Classifiers, Machine Learning, Data Visualization

I. INTRODUCTION

Over the past three decades, there has been considerable
research examining structural, functional, and oscillatory cor-
relates of meditation. Contemplative studies have produced a
significant body of knowledge on the positive effects of medi-
tation in enhancing various cognitive skills [1]–[3]. According
to a research article [4], four hundred peer-reviewed scientific
articles on meditation existed in 1990, and during 2018, a
total count was more than four thousand papers. Progress
in this field has been mostly because of two major reasons
due to advancements in neuroimaging methods and due to
incorporating meditation into therapeutic protocols in several
medical practices [1], [5].

The important application of meditation is to reduce the
episodes of mind wandering. Meditation practice enhances the

major components of attention that involve the faster switch-
ing of attentional resources between tasks, robust cognitive
flexibility, increased ability to sustain attention, awareness of
automatic responding [6]. Attention is an essential component
that is crucial for all aspects of higher-level processes and real-
world activities [7]. The unprecedented advancement of digital
technology and systems have made digital content and devices
accessible more easily [8]. Younger generations have increased
the usage of information technology and multitasking in
their routine lives that promote numerous challenges to their
attention [7].

Technological effects on the mental health of younger gen-
erations demand rigorous and rapid development in the field
of digital healthcare [8]. It is needed to advance mental health
monitoring tools to keep up with the pace of development in
digital technology. Now, ease of availability of mobile EEG
bands may help us to monitor the mental state activity quickly.
Machine learning has been employed in various domains. We
here propose to extract the features to classify the expert
and nonexpert meditators. That will boost our understanding
and contribute to our existing knowledge. This can be further
deployed to understand the neural electrical activity of naive
practitioners.

EEG has been a pivotal non-invasive technique in neuro-
scientific study meditation. This has been widely employed
to examine the neural oscillatory changes during meditation.
A majority of research papers on EEG studies conclude
cognitive aspects and lack exploration insights to provide a
concrete methodology to analyze signals and develop clas-
sifying models of meditation [9], [10]. EEG Pipeline such
as PREP discusses the early stage processing and this paper
describes pipeline which is majorly focused to build machine
learning models using wavelet features [13]. The sole purpose
of processing and analyzing electrical neural signals is to
extract features and revealing the hidden patterns. Signals
are decomposed to determine the features that are defined
by linear expansion coefficients and the most popular linear
expansion technique in the literature is Fourier transform [11].
Applying Fourier transform over the EEG signal doesn’t yield
the best result because of frequent characteristics of signals
that are characterized by non-stationary time behavior. Wavelet
transform has been an effective time-frequency analysis tool
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Fig. 1. A methodological Pipeline describes four stages that include feature engineering, machine learning classifiers, feature selection, visualization

for analyzing transient signals. In meditation studies, wavelet
families have not been experimented to extract features for
developing machine learning models of meditative state [12],
[14], [15]. The research presented in the paper discusses the
feature extraction using five wavelet families and build 12
classifiers models to classify the meditative state between
expert and nonexpert meditators. This paper reports the most
discriminating wavelet coefficient, top 20 channels and the
best performing classifier.

II. DATA DESCRIPTION

Data were obtained from the git hub public repository [16].
EEG signals were captured using 64 channels Biosemi EEG
system at the Meditation Research Institute(MRI) in Rishikesh,
India. Detailed data description and experimental paradigm are
mentioned in the paper [17] and accessed from there. Twenty-
four meditators from the Himalayan Yoga tradition considered
in this study, two groups were formed based on experience
and hours of daily practice. The expert group involves the
individuals who had practiced a minimum of 2 hours of daily
meditation for 1 year or longer, the non-expert group includes
those who were familiar with the meditation technique but
irregular in their practice. All the necessary written consent
and questionnaire were filled by participants and no report of
medications that may affect the concentration. All participants
were asked to meditate continuously and three questions were
presented at random intervals to check the depth of meditation,
mind wandering, and tiredness.

Data preprocessing was done using Matlab and EEGLAB
software [18], [19]. Makoto’s EEG pipeline was used in pre-
processing the data [20]. Data were sampled at 256 Hz. A
high pass filter was applied at 1 Hz, line noise frequencies
of 50,100,150,200,250 were removed using CleanLine, bad
channels were rejected using clean rawdata and signals were
corrected using Artifact Subspace Reconstruction. Spherical
interpolation was done on all the removed channels. After

this, average reference was applied on data. Adaptive Mixture
Independent component analysis was applied to reject the ar-
tifactual components. Twenty second-epochs were segmented
ranging from -20 seconds to -.05 seconds prior to the begin-
ning of the question Q1. Finally, for an expert group, there
were a total of 540 epochs(mean is 24.5, SD is 5.8) and 443
for a non-expert group(mean is 24.6, SD is 10.2 ).

III. PROPOSED METHODOLOGY

We propose a methodological pipeline that encompasses
four stages - feature engineering which includes wavelet de-
composition and feature extraction, learning classifiers, feature
selection, and visualization. In Fig 1, a pipeline is defined.

A. Feature engineering using five wavelets families

The Fourier transform applies over the whole time axis
which produces the frequency components of the signal but
lacks the temporal information when a particular frequency
occurs hence well suited for stationary signals. However, the
nature of the EEG signal is non-stationary, time localization
of the spectral components are required. Often time signals
carry spectral information at any instant can be of significant
interest, for such scenarios a transformation is needed to
obtain the time-frequency representation. Short-Time Fourier
Transform(STFT) works well to decompose the signals into
time-frequency representation at any given interval of time
but does not provide the capability to extract what spectral
components exist at any given time instant. Wavelet transform
(WT) was introduced to overcome the resolution problem
faced during STFT. STFT computes fixed resolution at all
times whereas WT generates variable resolution [21].

1) Wavelet Decomposition: The wavelet is smooth and
rapidly vanishing oscillating mathematical function with sig-
nificant emphasis on time and frequency localization. Dilations
and translations are the two key parameters to form a wavelet



Fig. 2. Wavelet examples : a) Haar b) db8 c) bior2 2 d) coif5 e) sym2

family [11] . The wavelet functions are generated using unique
admissible mother wavelet ψ(t).

Ψx,y(t) =
1√
|x|
ψ
( t− y

x

)
(1)

where t is the time and x,y ∈ R, x 6= 0, x,y are the
scaling(dilation) and translation variables. The scale variable
tunes the oscillatory frequency and length of the wavelet, the
translation variable determines its shifting position.

There are five wavelet families considered for feature ex-
traction with 8-levels of 1-D wavelet decomposition [22]:

1) Haar wavelet: This is the first and simplest orthogonal
wavelet. The Haar wavelet is discontinuous and similar
to a step function.

2) Daubechies: This is known as compactly supported
orthonormal wavelets, which allows the practical appli-
cation of discrete wavelets. There are 9 members of this
family used, db {2, 3, 4, 5, 6, 7, 8, 9, 10}.

3) Biorthogonal: This family of wavelets demonstrates
the property of the linear phase which further
advances to study signal and image reconstruction.
There are 14 types of biorthogonal wavelets applied,
bior {1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4,
5.5, 6.8}.

4) Coiflets: This family emphasizes to have scaling func-
tions with vanishing moments. The wavelet and scaling
functions have 2N and 2N-1 moments both equal to 0
and have a support of length 6N-1. Coiflets orders used:
coif {1, 2, 3, 4, 5}.

5) Symlets: This is the modification of the Daubechies fam-
ily and represents nearly symmetrical wavelets. Symlets
orders used: Sym {2, 3, 4, 5, 6, 7, 8}. Few wavelets are
shown as in Fig. 2.

2) Feature Extraction: Wavelet families decompose the
signals to obtain the detail(d) and approximation vectors(a). In
Fig. 3, a signal is decomposed into 8 levels of decomposition.
The detail coefficients are used to extract features using
Entropy [23] and Power.

Fig. 3. A signal is decomposed into 8 levels using wavelet decomposition.

1) Relative Entropy: Three steps were executed to compute
the relative entropy of detail coefficients that we used as
a feature vector.

a) Shannon Entropy was computed using the below
equation:

ENP (i, c) = −
N∑
j=1

d2ijLog(d2ij) (2)

ENP gets the entropy value for each channel, where
i represents decomposition level from 5 to 8, c is
the channel ranges from 1 to 64 and j is the number
of the coefficients of detail or approximation.

b) Total Entropy was computed using

TOT ENP (c) =

8∑
i=5

ENP (i, c) (3)

c) Finally, Relative entropy was determined using (2)
& (3).

RLTV ENP (c) =
ENP (i, c)

TOT ENP (i, c)
(4)

2) Relative Power: Similarly as above, three steps were
applied to compute relative power. Power was computed
using the below equation.

POW (i, c) =

N∑
j=1

d2ij
length(dij)

(5)

B. Learning Classifiers

After feature extraction, machine learning training was done
in python using scikit learn package.

1) Model Development : There are 12 machine learning
classifiers employed to develop the best performing
model [24]. The table I lists the classifiers with some of
their configurations, which may be tuned on the basis
of data.



TABLE I
MACHINE LEARNING CLASSIFIERS

Classifier Parameters
K-Nearest Neighbour(KNN) leaf Size =30, neighbours =2

SVM kernel = (linear,rbf)
Gaussian Process(GP) optmzer= fmin l bfgs b,kernel = rbf

Decision Tree(DT) criterion=’gini’
Random Forest(RF) n estimators=15

Multi Layer Perceptron(MLP) hiddenlayer=[500,400,300,200,100]
AdaBoost algorithm=SAMME.R

Gaussian Naive bayes(GNB) smoothing=1e-09
Quadratic Discriminant Analysis(QDA) threshold Rank Estimation = 0.0001

Logistic Regression(LR) penalty = ’L2’
Linear Discriminant Analysis(LDA) threshold Rank Estimation = 0.0001

Ridge threshold Rank Estimation = 0.0001

2) K-Fold Cross Validation: This method is the statistical
practice to divide the data into k small sets to validate the
accuracy of the model. The original sample is partitioned
into K subsets, one subset is used for validation and K-1
subsets are used for training. Each subset will get one
chance to become the validation set. Hence there are K
times training and testing involved. We applied 10 Fold
Cross-Validation and reported the average accuracy.

C. Feature Selection Technique (FS)

Feature extraction was done on the time series and extracted
features further refined using the feature selection methods.
There are two major feature selection methods employed as
follows -

1) Recursive Feature Elimination(RFE) - This algorithm
ranks the features by associating the weights with fea-
tures and prune the features as per the weights. It forms
the smaller set after each iteration and terminates until
the given (k) number of features is achieved [24].

2) Sequential Forward Feature Selection(SFFS) - A greedy
search technique to reduce the dimensions of the feature
vector from a d space to k space [25]. The concept
behind this technique, let’s suppose there is a bucket
which initially contains zero feature, input vector is
provided with n features, the algorithm will iterate till
the bucket contains the specified no of features. At the
first iteration, every feature individually is used for clas-
sification and a feature with the maximum classification
performance would be selected in the bucket. In the next
iteration, the selected feature present in the bucket will
be used as prior and the remaining n-1 will pair up
and select the next best performer in the bucket, and
similarly iteration continues till the specified number of
features selected.
Base classifiers used for RFE and SFFS are Logistic
Regression, Linear SVM.

D. Visualization

There is always a challenge to visualize the structure of the
high dimensional dataset and mostly the dataset contains a
large no of features and practically impossible to visualize it,

so the dimensions of the dataset will be reduced to the lower
dimensions from n variables to 3 or 2 variables while mini-
mizing the information loss [26]. To reduce the dimensions,
there are two techniques employed as follows -

1) Principal Component Analysis : It is one of the oldest
and widely used dimensionality reduction techniques.
It transforms the correlated to the new uncorrelated
variables that successively maximize variance. To create
new uncorrelated variables, the principal components,
reduces to finding the eigenvalues/eigenvectors of the
covariance matrix [27].

2) t-Distributed Stochastic Neighbouring Entities (t-SNE)
: This is notably significant for high-dimensional data
that present on various different, but related, low-
dimensional manifolds, such as images of objects from
multiple classes viewed from multiple viewpoints. It em-
ploys a Student-t distribution to compute the similarity
between two points in the low-dimensional space [28].

IV. RESULTS AND DISCUSSION

Meditation data consists of session 1 to at most 3 for each
subject, it depends on the practitioners who were willing and
able to sit comfortably for longer periods of time, samples
were preprocessed and extracted the 20 seconds epoch prior
to stimuli. Each epoch consists of 64 channels and 4992-
time points. There are a total of 943 epochs that comprise
of 540 and 443 from expert and non-expert. To obtain the
feature vector, first wavelet decomposition was performed and
secondly, entropy and power were computed. Every channel
represents one feature hence the feature matrix was of shape
943*64. We had successfully classified between mental states
of expert and non-expert meditators with 100% accuracy,
which indicates the characteristics of two classes and can be
visualized using a dimensionality reduction technique.

We applied 8 levels of decomposition of five wavelet fam-
ilies and performed feature extraction on one approximation
and four detail coefficients that include a8,d5,d6,d7,d8 and re-
maining d1 to d4 were considered as noise. There were a total
of 32 distinct feature matrix classified that include wavelet
functions from Haar, Daubechies, Biorthogonal, Coiflets, and
Symlet. We first classified the feature vectors consist of only
one detail or approximation coefficient. We had classified the

TABLE II
CLASSIFICATION ACCURACY: EXPERT AND NONEXPERT WITHOUT

FEATURE SELECTION(FS)

Feature Wavelet Coefficient Classifier Accuracy(%)
Power

Bior3.5 d8 MLP 82.96
Bior3.5 d8 QDA 82.82
Bior6.8 d8 MLP 82.05

Entropy
Coif5 d8 MLP 82.46
db2 d8 MLP 81.80

Bior3.5 d8 GP 81.69



Fig. 4. Top 20 Channels are shown that are found to be most discriminating
channels for classification.

Fig. 5. ROC curve depicts the performance of a MLP classifier using Bior3.5
and d8 coefficient on 10 Fold cross validation.

features obtained from relative power and achieved an accu-
racy of 82.96% using Multi Layer Perceptraon and 82.82% us-
ing the Quadratic Discriminant Analysis with wavelet Bior3.5
at decomposition level 8, top-performing mother wavelets with
classifier are shown in Table II.

We experimented to find out the significant channels in-
volved in classifying mental states of expert and non-expert
meditators. We applied recursive feature elimination (RFE)
and forward sequential feature selection(FSFS) techniques to
select the top 20 channels that improved the accuracy from
82.96% to 88.57% as shown in Table III. We tried 5 different

TABLE III
CLASSIFICATION ACCURACY: EXPERT AND NONEXPERT WITH FEATURE

SELECTION(FS)

Feature Wavelet Channels FS(RFE) Coefficient Classifier Accuracy(%)
Power

Coif3 20 SVM d8 GP 88.57
Coif5 35 LR d8 GP 87.33
Coif5 30 SVM d8 GP 87.32

Entropy
Bior3.7 35 SVM d8 GP 86.07
Bior3.7 30 SVM d8 GP 86.41
Bior3.5 30 SVM d8 MLP 85.86

Fig. 6. Detail coefficient d8 outperforms all other coefficients.

Fig. 7. Classification performance of wavelet coefficients using features
extracted from entropy and power.

values to figure out the top discriminating channels, five values
tested were [10,20,30,35,40] channels. Discriminating Regions
involved during the classification of two mental states were
frontal, central and parietal as shown in Fig 4.

Receiver Operating Characteristics (ROC) and Area Under
the Curve(AUC) have utilized to visualize the classification
model’s performance on 10 Fold cross-validation using coef-
ficient d8 as shown in Fig 5. Higher the AUC is better the
performance, we found mean AUC is 0.89. We have found
that there is a strong correlation between the decomposi-
tion level(DL) and the discriminating characteristics of EEG
signals, mostly all classifiers produced maximum accuracies
using d8. In Fig 6, we have shown wavelet Bior3.5 with all
classifiers at different levels.

Biorthogonal and Coiflets families have produced the high-
est discriminating characteristics. Without feature selection,
Bior3.5 has shown the maximum classification performance
with 82.96% accuracy and with feature selection, Coif5 has
produced the classification accuracy of 88.57%. Relative
power yields the maximum classification in both the cases.
Once we observed level d8 performs best, we further exam-
ined to concatenate levels using Sequential Forward Feature
Selection technique, here we mean decomposition level as a
feature. We initiated it with a selection of level 8 as it shows
the highest accuracy among all levels, and then iterated it with



Fig. 8. Expert(E) and NonExpert(NE) data points are shown using PCA(left)
and t-SNE(right)

other levels and chose the best discrimination combination and
repeat it till we consumed all levels. In Fig 7, it depicts the
accuracy achieved during the different combinations applying
QDA. We have achieved 100% accuracy if we concatenate
all the levels in all the families. We observed an essential
observation that if we remove the approximation coefficient
a8, an error rate of classification increases from 0 to 3%,
and keeps on escalating if we sequentially remove the levels.
It suggests the impact of each coefficient which contributes
to enhancing the discriminatory property. QDA outperforms
all the classifiers, so to figure out the possible reason, we
employed PCA and t-SNE to visualize the structure of the
high dimensional feature matrix. In Fig 8, features were
reduced from 320 to 2 variables. The visualization suggests
the quadratic behavior of the matrix.

V. CONCLUSION

In this work, we have demonstrated a methodological
pipeline to develop the computational models for classifying
the meditative state between expert and nonexpert meditators.
This study explains the importance of detail coefficients ex-
tracted from five wavelet families using relative power and
entropy as feature extraction techniques. We have successfully
classified the meditative state between expert and non-expert
meditators. We observed detail coefficient d8 has the high-
est accuracy when compared with a8,d5,d6,d7 coefficients.
Bior3.5 and Coif3 have produced maximum classification
characteristics. We have achieved 100% accuracy using fea-
tures from a8,d5,d6,d7,d8 coefficients in all wavelet families.
Relative power has shown better performance than relative
entropy. Multi-Layer Perceptron and QDA outperforms all
the mentioned machine learning classifiers. This work demon-
strates computational models for meditation.
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