
Meta-Reward Model Based on Trajectory Data with
k-Nearest Neighbors Method

Xiaohui Zhu
Department of Computer Science and Eng.

Waseda University
Tokyo, Japan

ricardo-zhu@toki.waseda.jp

Toshiharu Sugawara
Department of Computer Science and Eng.

Waseda University
Tokyo, Japan

sugawara@waseda.jp

Abstract—Reward shaping is a crucial method to speed up
the process of reinforcement learning (RL). However, designing
reward shaping functions usually requires many expert demon-
strations and much hand-engineering. Moreover, by using the
potential function to shape the training rewards, an RL agent
can perform Q-learning well to converge the associated Q-table
faster without using the expert data, but in deep reinforcement
learning (DRL), which is RL using neural networks, Q-learning is
sometimes slow to learn the parameters of networks, especially in
a long horizon and sparse reward environment. In this paper, we
propose a reward model to shape the training rewards for DRL in
real time to learn the agent’s motions with a discrete action space.
This model and reward shaping method use a combination of
agent self-demonstrations and a potential-based reward shaping
method to make the neural networks converge faster in every
task and can be used in both deep Q-learning and actor-critic
methods. We experimentally showed that our proposed method
could speed up the DRL in the classic control problems of an
agent in various environments.

Index Terms—reinforcement learning, reward shaping, ma-
chine learning.

I. INTRODUCTION

In recent years, systems with deep reinforcement learning
(DRL) have attained excellent performance in a number of
challenging tasks in robot and game AI domains. However, a
major limitation of such applications is the need for massive
amounts of training data. Thus, it always takes a long time
to train a DRL agent, especially when the reward of the
environment is sparse or the original reward model contains
uncertainty in the long horizon environment that makes it
difficult for the agent to learn.

Recently, meta-reinforcement learning has been found to be
a useful way to improve learning efficiency and the ability
to accelerate the learning process for task adaptation [1]–
[3]. For meta-learning in reinforcement learning (RL), one of
the most popular algorithms is model-agnostic meta-learning
(MAML) [4], which learns a versatile initialization of model
parameters θ through reusing the data that the agent used to
successfully solve the task in the environment. However, it is
not easy to use MAML due to its slow running because it
has to compute a great number of gradients backpropagated
in neural networks.

To accelerate the DRL process, apart from using meta-
learning, reward shaping is one of the useful and powerful

solutions to reduce the amount of training data, and its goal is
to shape the original rewards into a better reward structure that
makes it easier for the DRL agent to learn to solve various
problems. Potential-based reward shaping (PBRS) through
the state of the agent and potential reward function is an
effective method for directly shaping the rewards from the
training environment [5]–[8], but it had poor performance and
thus slowed the learning convergence when using it in DRL.
To shape the reward for a DRL agent, the human teacher
approach is useful to train the agents to navigate to earn
more training rewards in practice [9]–[12]. Furthermore, Ibarz
et al. [13] proposed a reward shaping method that used the
expert demonstrations to pre-train the agent and the annotator
to label the data. Obviously, the limitation of this method
is the difficulty in getting expert demonstrations in various
environments; thus, we often have to hand-craft the reward
model while pre-training.

This paper focuses on the learning of motion of an agent,
which is a control program for a mobile robot, vehicle, drone,
or computer game player, to accelerate learning its movement
or operations in various tasks. We assume that the activities of
the agent can be expressed by the trajectory that is usually a
long sequence of actions, so the agent’s tasks are long horizon
problems. Because these trajectory data describe the successful
experiences of solving tasks, we attempt to make more use of
these trajectory data so that the agent can identify how to
execute the tasks efficiently by shaping the training reward.
By using the shaped reward proposed here, the distribution
of rewards in the environment is modified to make the agent
learn faster to successfully control the movement so that we
can reduce the training time.

Then, we propose a trajectory action meta-reward model
(TAMRM) based on k-nearest neighbors (k-NN) and PBRS
for DRL to learn how to execute the given tasks efficiently.
Our contributions are: (1) this meta-reward model does not
need the expert demonstration data by using the agent’s self-
demonstrations to shape the reward for training, and (2) this
meta-reward model requires only a reasonable amount of
memory and can predict the rewards in real time with fewer
calculations without extra gradient backpropagation [14]. This
model is versatile in the sense that it can be used in both
the actor-critic method (AC method) [15] and the deep Q-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

learning using the deep Q-network (DQN) [16]. This model
also makes the agent learn faster and makes the PBRS more
suitable for the DRL. We experimentally evaluated our reward
shaping method by solving classic motion control problems in
long horizon environments with a simple deep neural network
for the AC method and the Q-learning.

II. RELATED WORK

There are many studies on improving learning efficiency
to reduce the amount of training data or training time. For
example, reward shaping is a very effective way to speed
up training [17], [18]. PBRS modifies the original reward
function by using potential-based shaping functions Φ(s) to
make RL methods (e.g., Q-learning) converge faster [5], [19],
[20]. PBRS usually depends on state s, but it has also been
extended to potential-based advice (PBA) [21] to include
action a in potential function Φ(s, a). It has also been extended
to dynamic PBRS [22] by introducing time t into potential
function Φ(s, t). Marom and Rosman [23] proposed a reward
shaping framework based on the Bayesian method in Q-
learning for executing complex tasks. Besides, by combining it
with expert demonstrations for the complex tasks, the PBRS
in RL became more powerful [24]. Zou et al. [14] used a
method, which is similar to MAML, to pre-train the dueling
deep Q-network (dueling-DQN [25]) and used the PBRS for
fast convergence. On the other hand, our work differs from
these efforts in that we shape the reward for the agent in the
DRL without any pre-training stage.

Inverse reinforcement learning is also an effective way
to find the reward function by using the expert demonstra-
tions [26]–[29]. By combining the imitation learning and the
DRL, Wu [30] created a hand-coded RL reward function
designed by experienced human experts for a learning agent.
Hester et al. [31] proposed a framework of the deep Q-learning
from demonstrations (DQfD) and Ibraz et al. [13] trained a
deep neural network to model the reward function by using
expert demonstrations and real-time expert feedback and then
used its predicted rewards to train a DQN. In our work,
however, we do not need any professional demonstrations and
feedback from experienced people; we just use the agent’s
self-demonstrations to shape the rewards in a real-time manner
instead.

III. PRELIMINARIES

A. k-Nearest Neighbors Algorithm

k-NN [32] is a simple algorithm that stores all the avail-
able data that are already classified and then classifies the
new data into one of the classes using a similarity measure
(e.g., distance functions, such as the Euclidean distance and
Manhattan distance) based on the class labels of k neighbors.
k-NN is also used for regression by calculating its average
value. Parameter ‘k’ in k-NN refers to the number of nearest
neighbors to include in the majority of the voting processes.
The advantage of the k-nearest neighbors algorithm is that it is
simple to implement and has high accuracy, but its accuracy is
greatly affected by the selection of parameter k. It also needs

to perform a great number of calculations when there is a large
amount of sample data in memory.

B. Potential-based Reward Shaping (PBRS)

Reward-shaping function F : S × A × S → R is used to
modify original reward function R to make the RL methods
(e.g., Q-learning) converge faster using more “instructive”
rewards. It usually resides in the same functional space as
the reward function and transforms the original Markov deci-
sion process (MDP), MDP(S,A, T, γ,R), into another shaped
MDP(S,A, T, γ,R

′
), where R

′
= R + F . In the MDP, S is

the state space, A is the action space, T is the state transition
probability, γ is the discount factor, and R is the original
reward function, i.e., the reward from the environment. Of
all possible shaping functions, the potential-based shaping
functions [5] lead to the optimal policy, as summarized below.

R
′

= R+ F (S,A, S
′
), (1)

F (S,A, S
′
) = γΦ(s)− Φ(s

′
). (2)

Φ(s) is the potential function that theoretically can be an
arbitrary function that represents the state reward correctly.
Generally, it is suggested to use the optimized value of s ∈ S,
V ∗(s), where

V ∗(s) = maxa∈AQ
∗(s, a). (3)

Therefore, the real-time reward is updated by: R
′

= R +
γV ∗(s)− V ∗(s′).

It is possible that an agent will adjust the Q-value effectively
and adapt the training environment quickly by making use of
the shaped reward. The PBRS is a simple method to accelerate
the process of the RL but is not used in the DRL; in contrast
to the Q-table based method, the DRL uses the neural network
with randomly initialized weight and bias to approximate the
Q-values. Therefore, the shaped reward may be inappropriate
before adapting it sufficiently because the output from the
network may be incorrect; thus, if it is used to update the
real-time reward, this may result in a failure of learning or
slow learning, especially with a long horizon or sparse reward,
which needs a long time to adjust the parameter values of the
network. In this paper, we attempt to make the PBRS method
more effective in the DRL by using our proposed method.

C. Deep Reinforcement Learning

Deep-reinforcement learning (DRL) [15] applies the deep
learning technique for RL to decide tasks to do next in a
complex environment. The most popular and powerful RL
methods are Q-learning and actor-critic (AC).

1) Actor-Critic: AC is an efficient RL method that com-
bines value-based methods and policy-based methods. In the
AC method based on neural networks, the policy network θ
plays the role of an actor that selects actions (policy-based),
and the value network $ plays the role of a critic that measures
how good each action taken is (value-based). In the advantage

actor-critic (A2C) [33] method in the DRL, the policy and the
values are updated as follows:

∆θ = α ∗ (Q$(s, a)− V$) ∗ 5θlogπθ(s, a),

∆$ = β ∗ (R(s, a) + γV$(s
′
)− V$(s)) ∗ 5$V$(s),

where α and β are the learning rates, and γ is the discount rate.
V$(s) is the output from the value network and Q$(s, a) =
R(s, a) + γV ∗(s

′
), where s

′
is the next state. πθ(s, a) is a

value function, measuring how good action a is in situation s.
2) Deep Q-learning: DQN [16] uses a neural network to

approximate the Q-values, and the agent chooses the action
whose Q-value is the highest (value-based). With experience
replay and a fixed target Q-network, the DQN exhibited good
performances in various domains, and it may even outperform
human behaviors. In the DQN, the neural network θt at time
t is updated to minimize the loss function:

L(s, a|θt) = (r + γmaxa∈AQ(s
′
, a|θt)−Q(s, a|θt))

2
,

where r is a reward from the environment. Then, network θt+1

is updated for the next time:

θt+1 = θt + α5θ L(θt),

where α is the learning rate, and γ is the discount rate.

IV. PROPOSED METHOD

People often use their experiences or the contents of their
memory to compare the current situation with similar situa-
tions in their memory to learn/decide what action is beneficial
and thus will do it next. In our studies, the agent retains the
sequence of actions that led to a desirable result in an episode
as trajectory data {(a0, a1....aL)}, where L is the length of the
sequence and is also the time to finish the task or the length
of the episode. When L ≥ Llong , where Llong is a positive
integer, we define it as a long horizon task (we set it to 100 in
our experiments below). Then, these desirable data are stored
in memory pool D in the agent.

We attempt to know the situation of the agent from the
current trajectory data, so, inspired by k-NN, we propose a
method to find similar situations by comparing the distance
between the current trajectory data of the agent and the data in
memory pool D. By imitating a human decision, if the agent’s
current trajectory is close to one of good data in memory pool
D, we attempt to give a more positive prediction reward for the
agent; otherwise, a smaller negative prediction reward will be
given. By combining our prediction method with the PBRS to
fix the output of the neural network, we propose a meta-reward
model to predict the training reward in a real-time manner.

Figure 1 shows the view of the trajectory action meta-reward
model (TAMRM) to update the rewards of the current action
for the agent. In our reward model, we make use of the Q-
value of the agent’s networks to calculate F (S,A, S

′
) with

Formulae (2) and (3) and take advantage of the action chosen
by the agent to calculate the value of the k-NN-based reward
prediction method below. Finally, we use these two values to
shape the original reward to make the agent’s learning faster.

Fig. 1. Trajectory action meta-reward model.

Fig. 2. Example of encoding the up, right, down, and left actions.

A. k-NN-based reward prediction

We store the pair of the trajectory data and associated total
reward di = {(ai0, ai1....aiLi

, Ri)} of the agent in each episode
(episode reward) in memory pool D to predict the rewards
for future tasks, where Ri is the total reward calculated using
only the original rewards from the environment. Note that we
choose the best data, which has the highest episode reward,
from memory pool D. When the memory pool is full and the
episode reward of the new trajectory data is greater than the
minimum episode reward in the memory pool, the trajectory
data with the minimum episode reward is replaced with the
new data so that the data in the pool can be guaranteed to be
the best historical trajectory data.

In this prediction method, first, we will compute the distance
between trajectory data di ∈ D and current trajectory data d
at each time t in the training stage as follows:

disi = ‖di − d‖ =

t∑
j=0

|aj − a
′

j |2, N ≤ t ≤ Lmin

where aj and a
′

j are the j-th actions in di and d, t is the
current time, Lmin is the minimum length of trajectory data
in memory pool D, and N > 0 is the start threshold.

To compute the distance between actions |aj − a
′

j |, we
use one-hot encoding to encode the action space, as shown
in Fig. 2. Note that the length of the trajectory data in the

memory pool may be different, so in this case, we set the
minimum length (Lmin) of the trajectory data in the memory
pool to the end threshold. If current time t is greater than
Lmin and the episode does not terminate, the reward prediction
will be stopped, and the agent will use the original reward
from the environment; then, it continues training. Note that to
avoid over imitating the historical trajectory data, by setting an
integer N > 0 in the training process, the original environment
reward will be used to train the agent before the N timestep,
and after N timesteps, we start to predict the reward for the
agent. If the episode stops quickly within several timesteps or
the length of the episode is short, we have to set N to a small
value.

Second, based on distance disi, we calculate probabilities
Pi with all trajectory data ∀di ∈ D.

Ratei =

∑
di∈D disi

disi

Pi =
Ratei∑

di∈D Ratei

These probabilities indicate how similar the current agent’s sit-
uation (expressed by the current trajectory) is to the trajectory
data in the memory pool.

Then, we calculate real-time rewards r(t) for the current
action of the agent:

xi =
Ri −mini∈DRi

maxi∈DRi −mini∈DRi

f(t) =

k∑
i∈D

xiPi (4)

r(t) = ef(t) − e 1
2 , (5)

where xi is the normalized episode reward of trajectory data di
in D, so xi ∈ [0, 1]. Note that in Formula (4), similar to k-NN,
we set the k best values to choose the k largest probabilities
P1, P2,Pk and normalize episode rewards xi to calculate
f(t). k cannot be greater than the size of D, so 1 ≤ k ≤ |D|.
By using Formula (5), we can calculate the predicted reward
based on the agent’s self-demonstration data in a real-time
manner and use it in our reward model in the next part.

B. Meta-reward model

By combining the k-NN-based reward prediction and the
PBRS, we propose the meta-reward model, TAMRM, to tune
the training rewards Rmeta for the agent calculated by:

Rmeta = R+ α ∗ r(t) + β ∗ F (s, a, s
′
),

where R is the original reward from the environment, αandβ
are the reference rates, and F (s, a, s

′
) is defined by taking

into account Formulae (2) and (3) as follows:

F (s, a, s
′
) = γV ∗(s

′
)− V ∗(s).

With the proposed k-NN-based reward prediction method, we
can obtain the predicted rewards from successful experience
data to make the reward easier and the learning faster. By using

Algorithm 1 Off-policy DRL with meta-reward model
Initialize neural network and replay buffer B
Initialize meta-reward model and pool D
for each task do

if memory pool is not full then
run the agent under policy ε-greedy and store experi-
enced data {st, at, R, st+1} in replay buffer B
update network with experience samples from B by
gradient descent

else
run the agent under policy ε-greedy
if timesteps < N then

store experience data {st, at, R, st+1} in B
else

store shaped data {st, at, Rmeta, st+1} in B
end if
update network with experience samples from B by
gradient descent if off-policy learning.

end if
store the trajectory data{(a0, a1....at, Ri)} in D.

end for

the PBRS, we can adjust the output values from the neural
network effectively. The learning procedure of reinforcement
learning based on this model is shown in Algorithm 1. Unlike
with off-policy DRL (e.g., DQN) in the on-policy DRL (e.g.,
AC and A2C), we can use the obtained shaped reward directly
to train the agent using the experience data from the replay
buffer, not samples.

Note that in our model, one task corresponds to one memory
pool D. When the agent switches to a new task, a new pool
will be built, and the agent will store the new task’s trajectory
data in this new pool. In the training process, when the initial
state or the destination of the task is to be changed, we define
that the agent has started to perform a new task.

V. EXPERIMENTS AND EVALUATION

We evaluated our method using three standard deep re-
inforcement learning environments (the cart pole, mountain
car, and maze problems) and compared the experimental
results using our meta-reward model with those using the
conventional methods (deep Q-learning and A2C) using PBRS.
Note that these neural networks have the same parameters and
structures. We used the OpenAI’s Gym framework and Tkinter
to build up our test environments

A. Experiment 1— Cart pole problem

The cart pole problem (Fig. 3) is a classic discrete action
problem in reinforcement learning. It has a dense reward: a
reward of +1 is provided for every timestep that the pole
remains upright, and a reward of -1 is provided when the
pole is at an angle of more than 15 degrees from the vertical.
It usually has a long horizon but has a short horizon if the
episode ends negatively when the pole is more than 15 degrees
from the vertical or the cart moves more than 2.4 units from the

center. Because the original rewards of the cart pole problem
do not distinguish between the desired situation (i.e., keeping
the pole in an upright position) and dangerous ones (i.e. where
the pole is just about to fall), it is inefficient to learn to solve
this problem. By using OpenAI’s environment Gym to train the
agent, the observation of the cart pole problem is represented
by the array that expresses the position and velocity of the
cart and pole. Then, we use this array as the input to train the
neural network. The output of the network is the action of left
or right to control the car.

The basic setting for the experiment is as follows. An
episode terminated after 200 timesteps; thus, the maximum
episode reward was 200. The cart pole problem defines the
“solution” as getting an average reward of 195.0 over 100
consecutive trials. The agent was trained using the A2C. We
used k-NN with k = 20 and set the size of the memory pool
to |D| = 30 and set the reference rates to αandβ = 0.8. We
used an MLP with two hidden layers of size 20 for the A2C.

The results of the cart pole problem are shown in Fig. 4.
By using the meta-reward model, the agent could solve the
problem in the 455th episode, which is faster than other
methods because the TAMRM evaluated the reward for current
actions using data in the memory pool that made the agent’s
action closer to that of the trajectory data of the high episode
reward history. However, for the PBRS, before converging the
neural networks,

Fig. 3. Cart pole problem.

Fig. 4. Results of cart pole problem.

the output of the networks might not be accurate enough,
and if we used these inaccurate values to shape the rewards, it
might mislead the agent. Both the A2C and A2C+PBRS could
not solve the task within 1000 episodes because the learning
was not so easy with the original reward scheme; therefore,
we need a more tailored reward scheme so that the agent can
learn the appropriate actions, and our proposed method can be
one of the probable methods.

B. Experiment 2 — Mountain car problem

Similar to the cart pole problem, the mountain car problem
(Fig. 5) has a dense reward. However, it usually has a long
horizon because an episode will terminate only when the car
arrives at the goal at the top of the mountain, so the length of
an episode is likely to be long in the beginning. In the training
process, the environment reports the position and velocity of
the car as observational data, and they are fed to the neural
network. The output of the network is the action of push left,
no push, or push right to control the car to the goal.

In this environment, we used the deep Q-learning to test
our proposed method in off-policy DRL. We set the size of
the memory pool in the meta-reward model to 20, α, β = 1,
and k = 20. Note that in the mountain car problem, the fewer
the steps to arrive at the goal, the higher the episode reward
is. For the simple DQN, we use an MLP

Fig. 5. Mountain car problem.

Fig. 6. Results of mountain car task.

with two hidden layers of size 20, and the initial epsilon
value was set to 0.1. The decay rate was 0.9, replay buffer
size was 50,000, and learning rate was 0.005.

In the long horizon environment, as indicated by the results
of the experiment shown in Fig. 6, the DRL agent needed
more time to fix the output of neural networks. Therefore, if
we used the incorrect value of the network, the PBRS made
it more difficult for the agent to converge Q-values. With the
TAMRM, the agent could retrieve the history of the data in the
memory pool and make the agent’s behavior change direction
toward successful self-demonstrations; thus, the network could
converge faster than the conventional methods. These exper-
imental results indicated that our method was also useful in
the off-policy RL.

C. Experiment 3 — Maze problem

The maze problem is a standard long horizon and sparse
reward environment for training a DRL agent. We build an
8 × 8 maze in which the red mark is the start point and the
yellow mark is the end point; the black marks are the walls, as
shown in Fig. 7. Before arriving at the goal, the reward from
the environment is 0, and when the agent gets to the goal, it
can get a reward of +1. Maze search failure is defined when
an agent cannot arrive at the goal within 10,000 steps.

In this environment, the DQNs of the agents have an MLP
with two hidden layers of size 10, replay buffer size was
20,000, and epsilon was 0.1. The decay rate was 0.9, and
the learning rate was 0.01. We used the agent’s coordinate
data in this maze as the input to the networks of agents, and
the network output is the action of up, down, left, or right to
control the agent.

1) Static structure maze: In the first test, the size of the
memory pool and k in the meta-reward model were 10 and
α = 0.8, β = 0.3 (for a sparse reward environment, it is
suggested to set β and memory size to small values). The
maze environment is shown in Fig. 7.

As indicated by the results of this experiment shown in
Fig. 8 and listed in Table I, the agent that used the DQN
with the PBRS found it difficult to solve the maze problem
because its rewards were sparse since the rewards were 0
before arriving at the goal. When the rewards were 0, the
networks were hard to converge, and the PBRS with the output
value of networks estimated the training reward incorrectly,
so the PBRS agent performed poorly in this task. On the
other hand, using the TAMRM, the agent could reduce the 0
training reward and update the training rewards in every step
by referring to the historical trajectory that successfully got
to the goal. The agent with the conventional DQN could also
exhibit good performance but lower performance than that of
the agents using the TAMRM.

2) Modified maze: In this experiment, we set a new situ-
ation in the maze that after 100 episodes, the start point was
changed, as shown in Fig. 9. We used the same settings of
the DQN and the meta-reward model. Then, we compared
the running results with our proposed method with those of

Fig. 7. The maze environment.

Fig. 8. Results of the Maze problem

TABLE I
TOTAL NUMBER OF STEPS COMPARISON IN MAZE

Used network Total steps in 200 episodes

DQN with meta-reward model 127478
Conventional DQN 137599
DQN with PBRS 1433215

Fig. 9. Modified structure in the maze.

Fig. 10. Results of modified structure in the Maze problem.

the conventional DQN because the difference of performances
with these methods was small.

After the 100th episode, because the place of the start point
was changed, the agent had to learn to solve a new task. As
indicated by the results shown in Fig. 10, the conventional
DQN was affected by the previous tasks, and because the
agent received 0 rewards before arriving at the goal, the agent
needed more time to correct its behavior for the new start
point. In our reward model, after starting to perform the new
task, the agent could build a new memory pool to record the
new trajectory data to shape the reward, instead of using the
old pool. Through shaping the reward, we could reduce the
effects of the previous task and make the agent focus more on
the new task so that the neural network converged fast even
for the modified maze.

D. Discussion

The original reward from the training environment may be
correct, but it is often difficult for the agent to learn because
the original reward structure usually cannot express the current
situation correctly or cannot navigate the course of the correct
actions effectively; thus, the agent can be unaware of the
subsequent rewards, good or bad. In our proposed reward
model, based on the original environment rewards, we used
historical trajectory data of the agent to try to make the rewards
for each action more sensitive to good trajectory data during
the training process. For example, in the cart pole experiment,
unlike the original reward that gives +1 every time and so
may make the agent think that all actions are good, our reward
model tried to shape the rewards to make the agent recognize
the current actions that are possible to get better or worse
results in the future; thereby, the use of our method could solve
the cart pole problem fast and effectively. Similar to the cart
pole problem, the agent in the mountain car problem could
recognize how fast to arrive at the goal by giving different
rewards for the different actions by referring to the agent’s
self-experience using our model. In the maze experiment,
the original rewards from the environment were sparse, but
our proposed meta-reward model changed the sparse reward
structure by adding a few rewards to the zero-reward actions
and thus the obtained reward structure could navigate the agent

to the goal faster. Using our shaped rewards, we can also
refresh the output structure of the network quickly for the
new task, just like the maze experiment with the modified
structure. Thus, our reward model had better performance in
the experiment above by shaping the rewards.

The meta-reward model based on successful trajectory data
is useful to accelerate the reinforcement learning process. We
also assume that problem environments are almost stable.
Therefore, if the environment varies, the agent is unable to
generate successful data for shaping reward.

VI. CONCLUSION

In this paper, we proposed a new reward shaping method,
TAMRM, which is simple to implement and uses only the
historical trajectory data of itself to automatically shape the
training reward in real time to make the agent learn efficiently
and effectively by giving good rewards. It does not need
to expand the neural network structure [34] and does not
need to calculate the extra gradients backpropagated to fix
the PBRS [14]; thus, it does not need a great amount of
computation resources. Therefore, it has good performance
in both dense and spare reward environments. In addition, it
has better performance in on-policy reinforcement learning.
Theoretically, it can be used in all types of reinforcement
learning methods based on reward.

Because we limited the one-hot encoding to encode the
action space and have to calculate the distance between
sequences of actions, our method is effective with a discrete
action space, such as simple motions of agents, but we need to
extend our method to apply it to other types of applications. In
future work, we will attempt to extend the current method to
make it applicable to other problems by using other encoding
methods. We also intend to shape the reward for the DRL
agent to solve the problems in a continuous action space and
try to train the agent to play in a video game.

VII. ACKNOWLEDGMENT

This work is supported by JSPS KAKENHI Grant Number
17KT0044 and 20H04245.

REFERENCES

[1] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint
arXiv:1810.03548, 2018.

[2] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-
tional conference on machine learning, 2016, pp. 1842–1850.

[3] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Advances in neural information
processing systems, 2016, pp. 3630–3638.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[5] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
vol. 99, 1999, pp. 278–287.

[6] A. Eck, L.-K. Soh, S. Devlin, and D. Kudenko, “Potential-based re-
ward shaping for POMDPs,” in Proceedings of the 2013 international
conference on Autonomous agents and multi-agent systems, 2013, pp.
1123–1124.

[7] B. Badnava and N. Mozayani, “A new potential-based reward shaping
for reinforcement learning agent,” arXiv preprint arXiv:1902.06239,
2019.

[8] M. Grześ, “Reward shaping in episodic reinforcement learning,” in
Proceedings of the 16th Conference on Autonomous Agents and Multi-
Agent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2017, pp. 565–573.

[9] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,” in
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2018, pp. 2067–2069.

[10] W. B. Knox and P. Stone, “Reinforcement learning from simultaneous
human and MDP reward.” in AAMAS, 2012, pp. 475–482.

[11] D. Abel, J. Salvatier, A. Stuhlmüller, and O. Evans, “Agent-
agnostic human-in-the-loop reinforcement learning,” arXiv preprint
arXiv:1701.04079, 2017.

[12] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” in Advances in
Neural Information Processing Systems, 2017, pp. 4299–4307.

[13] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei,
“Reward learning from human preferences and demonstrations in Atari,”
in Advances in Neural Information Processing Systems, 2018, pp. 8011–
8023.

[14] H. Zou, T. Ren, D. Yan, H. Su, and J. Zhu, “Reward shaping via meta-
learning,” arXiv preprint arXiv:1901.09330, 2019.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 2011.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[17] M. J. Mataric, “Reward functions for accelerated learning,” in Machine
Learning Proceedings 1994. Elsevier, 1994, pp. 181–189.

[18] A. D. Laud, “Theory and Application of Reward Shaping in Reinforce-
ment Learning,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, USA, 2004, aAI3130966.

[19] J. Asmuth, M. L. Littman, and R. Zinkov, “Potential-based Shaping in
Model-based Reinforcement Learning.” in AAAI, 2008, pp. 604–609.

[20] A. Harutyunyan, T. Brys, P. Vrancx, and A. Nowé, “Off-policy shaping
ensembles in reinforcement learning,” arXiv preprint arXiv:1405.5358,
2014.

[21] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods for
advising reinforcement learning agents,” in Proceedings of the 20th
International Conference on Machine Learning (ICML-03), 2003, pp.
792–799.

[22] S. M. Devlin and D. Kudenko, “Dynamic potential-based reward
shaping,” in Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems. IFAAMAS, 2012, pp.
433–440.

[23] O. Marom and B. Rosman, “Belief reward shaping in reinforcement
learning,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[24] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor,
and A. Nowé, “Reinforcement learning from demonstration through
shaping,” in Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[25] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[26] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[27] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
Entropy Inverse Reinforcement Learning,” in Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 3, ser. AAAI’08.
AAAI Press, 2008, pp. 1433–1438.

[28] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[29] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova, “Learning from
demonstration for shaping through inverse reinforcement learning,”
in Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, 2016, pp. 429–437.

[30] Y. Wu and Y. Tian, “Training Agent for First-Person Shooter Game with
Actor-Critic Curriculum Learning,” in 5th International Conference
on Learning Representations, ICLR 2017. OpenReview.net, 2017.
[Online]. Available: https://openreview.net/forum?id=Hk3mPK5gg

[31] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[32] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[34] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, and J. Z. Leibo,
“Learning to reinforcement learn,” in CogSci, 2017.

