
Knowledge-guided Deep Reinforcement Learning
for Interactive Recommendation

Xiaocong Chen1, Chaoran Huang1, Lina Yao1, Xianzhi Wang2, Wei liu1, Wenjie Zhang1

1School of Computer Science and Engineering, University of New South Wales, Australia
2School of Computer Science, University of Technology Sydney, Australia

1{xiaocong.chen, chaoran.huang, lina.yao, wei.liu, wenjie.zhang}@unsw.edu.au
2xianzhi.wang@uts.edu.au

Abstract—Interactive recommendation aims to learn from
dynamic interactions between items and users to achieve re-
sponsiveness and accuracy. Reinforcement learning is inherently
advantageous for coping with dynamic environments and thus
has attracted increasing attention in interactive recommendation
research. Inspired by knowledge-aware recommendation, we pro-
posed Knowledge-Guided deep Reinforcement learning (KGRL)
to harness the advantages of both reinforcement learning and
knowledge graphs for interactive recommendation. This model
is implemented upon the actor-critic network framework. It
maintains a local knowledge network to guide decision-making
and employs the attention mechanism to capture long-term
semantics between items. We have conducted comprehensive
experiments in a simulated online environment with six public
real-world datasets and demonstrated the superiority of our
model over several state-of-the-art methods.

Index Terms—Recommender System, Reinforcement Learning,
Deep Neural Network

I. INTRODUCTION

Recommendation systems have been widely used by indus-
try giants such as Amazon, YouTube, and Netflix to identify
relevant, personalized content from large information spaces.
Modern recommendation systems are facing severe pressures
for coping with emerging new users, ever-changing pools
of recommendation candidates, and context-dependent inter-
ests [1]. In contrast, traditional recommendation methods focus
on modeling user’s consistent preferences and may not reflect
high dynamics in user interest and environments. In such
situations, interactive recommendation rises as an effective
solution that incorporates dynamic recommendation processes
to improve the recommendation performance. An interactive
recommendation system would recommend items to an indi-
vidual user and then receive the feedback to adjust its policies
during the iterations [2]. Many studies model interaction rec-
ommendation as a Multi-Armed Bandit (MAB) problem [3]–
[5]. Such methods generally assume a user’s preference is
consistent during the recommendation and focus on the trade-
off between immediate and future rewards. Therefore, they
face challenges for handling environments with dynamically
changing user preference or interest. Reinforcement learning
(RL) is a promising approach to interactive recommendation.
Considerable efforts have shown the outstanding performance
of RL methods in recommendation systems [6]–[8], thanks

to its ability to learn from user’s instant feedback. Given
its potential to handle dynamic interactions, RL has been
widely regarded to be a possible better solution for interactive
recommendation. However, most existing RL techniques in
interactive recommendation focus on the usefulness instead
of performance. For example, Liu et al. [9] employ the RL
to increase the recommendation diversity, but not focus on
the efficacy. The primary reason is the agent only provides
limited and partial information, making it difficult to control
the decision-making process properly. Besides, interactive
recommendation systems usually contain a large number of
discrete candidate actions, leading to high time complexity and
low accuracy of RL-based techniques. Moreover, all the Deep
Q-Networks (DQN)-based work [7], [10]–[12] gets struggled
with a large number of discrete actions because DQN contains
a maximise operation, which considers all actions. When the
size of action increasing, the maximise operation will come
to extremely slow, or even get stuck. The policy gradient
based methods will get stuck in this case as well because
it may converge in the local maximum instead of the global
maximum.

Recently, knowledge-aware recommendation systems have
become popular as the knowledge graph can transfer the rela-
tion to contextual information and boost the recommendation
performance [13], [14]. Inspired by the above research, we
propose a framework named knowledge-guided deep rein-
forcement learning (KGRL) for interactive recommendation.
We use the actor-critic framework to formulate the whole
process. Specially, we design a knowledge graph to represent
relations between items so that the recommendation system
can make recommendations based on the relations, and the
critic network employs the knowledge graph as the guideline
to improve the performance.

The critic network is used to evaluate the performance
of the actor so as to let the actor optimize itself to the
correct direction. Besides, we apply graph convolutional net-
work (GCN) inside the critic network capture the high-level
structural information inside the knowledge graph and Deep
Deterministic Policy Gradients (DDPG) to train our model. In
summary, we make the following contributions in this work:
• We proposed a novel model KGRL where the knowledge

graph is introduced into the reinforcement learning pro-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I: Main notations

Symbols Meaning
U Set of users
I Set of items
R Set of relations
E Set of entities
| · | Number of unique elements in ·
Su,t User u’s recent actions before timestamp t

G = (E,R) Constructed Knowledge Graph
E Item embedding
W parameter matrices
St state space at timestamp t
at action space at timestamp t
d dimension of the latent space

cess to help the agent make decisions.
• To improve the efficiency, we maintain a local knowledge

network which is based on the knowledge graph, to fasten
the process while keeping the performance;

• Comprehensive experiments in the simulated online en-
vironment with six real-world datasets prove the perfor-
mance of our propose approach.

II. PROBLEM DEFINITION

An interactive recommendation system features incorporat-
ing user’s feedback dynamically during the training process.
Given a set of users U = {u, u1, u2, u3, ...} and a set of items
I = {i, i1, i2, i3, ...}, the system first recommends item i1
to user u1 and then gets a feedback x. The system aims to
incorporate feedback to improve future recommendations. To
this end, it needs to figure out an optimal policy π∗ regarding
which item to recommend to the user to achieve positive
feedback. We can formulate the problem as a Markov Decision
Process (MDP) by treating the user as the environment and
the system as the agent. We define the key components of the
MDP as follows (Table I summarizes the main notations used
in this paper):
• State: A state St is determined by the recent l items in

which the user was interested before time t.
• Action: Action at represents a user’s dynamic preference

at time t as predicted by the agent.
• Reward: Once the agent chooses a suitable action at

based on the current state St at time t, the user will
receive the item recommended by the agent. The user’s
feedback on the recommended item (i.e., clicking the
item, ignoring it) accounts for the reward r(St, at), which
will be considered to improve the recommendation policy
π.

• Discount Factor γ: The discount factor γ ∈ [0, 1] is used
to balance between the future and immediate rewards—
the agent will fully focus on the immediate reward when
γ = 0 and take into account all the (immediate and future)
rewards otherwise.

III. METHODOLOGY

Our approach involves two steps: knowledge preparation
and deep reinforcement recommendation

A. Knowledge Preparation

We construct the knowledge graph based on entity-relation-
entity tuples {(i, r, j)|i, j ∈ E , r ∈ R}. For example, the
tuple (The Elements of Style, book.author, William Strunk
Jr.) means that William Strunk Jr authored the book The
Elements of Style. We consider every item (e.g., The Elements
of Style) as an entity in the knowledge graph G and transform
the knowledge graph to represent user’s preference more
precisely [15]. Given a user u ∈ U and an item q ∈ I,
suppose D(i) is the set of items that has direct relationship
with item i and rij denotes the relation between items i and
j. We calculate the user-specific relation scores as follows:

friju = g(u, rij) where g : Rd × Rd → R

where g is a scoring function (e.g., inner product) to compute
the score between user and relation; d is the dimension of user
representation and relation representation; u ∈ Rd, rij ∈ Rd;
f
rij
u measures the importance of rij to user u.

Let D(i) be the set of candidates to recommend, we
normalize the user-specific relation scores as follows:

f
rij
u =

fridu∑
d∈D(i) f

rid
u
∈ [0, 1]

Inspired by [16], we transform the knowledge graph into
a user-specific graph Au, which is an adjacency matrix of
R|I|×|I|. In this matrix, each position (i, j) corresponds to
a score friju , and a higher score indicates a stronger relation
between two items i and j.

B. Deep Reinforced Recommendation

We develop our recommendation model (Figure 1) based on
the Actor-Critic reinforcement learning framework [17], where
the actor generates actions, the critic evaluates actions, and the
actor network updates the policy based on the suggestion made
by the critic.

1) Actor Network φ: Given a current state St, the actor
network employs a neural network to infer an optimal policy
π∗ to work out an action at. Given St, which consists of
user’s recent interests (shown in Figure 1, we first obtain
vector representation of user’s recent interest via embedding.
Suppose we have a set of user’srecently interested items
before time t, Su,t = {S1u,S2u, ...,Slu}. The actor network
takes an input sequence Su,t and the corresponding feed-
back sequence {F1

u,F2
u, ...,F lu} to deliver an output sequence

{S2u,S3u, ...,Sl+1
u }. Given an original item embedding matrix

M∈ R|I|×d (d is the dimension of the latent space), we apply
positional embedding [18], P ∈ Rn×l, to preserve the order
of user’s previously interested items, which updates the item
embedding into the following:

E =

M1 + P1

M2 + P2

. . .
Ml + Pl

We then fed this embedding into a self-attention layer to

reduce impurity in the embedding [19]. The layer uses the

�

�1

�2 �3

�5
�4

�6

�7

��

��

User's Recent Actions

Embedding

��−2
��−1��−3

Policy Function

�

Actor

... ...

Aggreate
Neighbour

GCN

Update Actor's policy at timestamp

�(,)�� ��

� �
� GCN

�
�

�
�

Search
Critic

Target Item

Environment

�5

�6�7

�1

�2 �3

�4

User's interest Knowledge

�

�1

�2
�3

User's recent interest

Recommend at timestamp

Update corresponding item's weight based on the feedback from user at timestamp

��

User

�

�

�

...

Self-Attention
Layer

Fig. 1: The KGRL structure. The left and right parts describe the actor network and the critic network, respectively, at time
t. The model takes user’s recent actions (regarding toys, books, and movies) as the input and recommends new items as the
output. Those actions will be represented as the latent factor in this model. The user, in turn, provides feedback for the model
to update user’s interest knowledge’s weights.

scaled dot-product attention [20], which is originally defined
as follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

where Q,K, V denotes queries, keys, and values, respectively;√
dk is the scaling factor to regulate the value range of QKT .

After applying the embedding E as the input, the attention
turns into the following:

Attention(EWQ,EWK ,EWV)

where EWQ,EWK ,EWV ∈ Rd×d. We fed this embedding
into two fully connected layers, which use ReLU and tanh as
the activation functions, respectively as described in [18]. The
output of the attention layer is the state St at time t.

2) Critic Network ψ: We design the critic network to
estimate the Q-value function Q(St, at) to evaluate actor’s
policy. The critic network takes state representation St and
action representation at as the input (shown in Figure 1). We
design a local knowledge network within the critic network to
capture the high-order structural proximity among the items
in the knowledge graph using graph convolutional network
(GCN). Specifically, given a user-specific graph gui generated
from the current state St, we feed it into a two-layer GCN
that applies the following layer-wide propagation rule:

H l+1 = σ(D−
1
2 ÂuD

− 1
2H lW l) (1)

where H l+1 is the representation of entities at layer l+1; Au
is the input matrix that aggregates the neighbour’s entities; Âu
is set to Au+I , where the I is an identity matrix used to avoid
negligence of the old representation via self-connection; Du is
the diagonal degree matrix for Âu where Dii

u =
∑
j Â

ij
u (the

symmetric normalization was applied to keep the representa-
tion H l stable, as denoted by D−

1
2 ÂuD

− 1
2); W l is the weight

matrix for layer l; and σ(·) denotes the non-linear activation
function.

Recent research shows the feasibility of searching in graphs
processed by GCN [21]. Since GCN capture’s all the structural
information in the knowledge graph, it will not affect the
search results. In this study, we assume an unweighted graph
where a user is equally interested in every item. Then, we start
searching with the actor predicted action at (i.e., predicted
item ip) to the real target it, based on the user’s personalized
interest knowledge (i.e., trained graph with all parameters θkg).
Finally, we calculate the Q value by estimating the reward r
based on the distance between the predicted item and the target
item:

r =
100√

Distance(ip, it) + ε
∗Wpt

where Wpt is the sum of weight of the shortest path from ip
to it; ε is the parameter to avoid the denominator becoming 0.
We calculate the distance using the Dijkstra’s algorithm with
MinHeap.

C. Complexity Analysis

We analyze the time and space complexity of the critic
network, especially the search part, in this section. We consider
a vector composition (i.e., the combination of the state vector
and action vector) and assume the transmission time as a
constant c. Given a user interested in Iu items, we consider
the worst case—a complete graph and each item i having
M nearest non-duplicate neighbours. Thus, we get a graph
with Iu + IuM nodes (exclude the centralised user node)
and (Iu + IuM)(Iu + IuM − 1)/2 edges. We then calculate
the time and space complexity as O((|Iu + IuM)2 + |Iu +
IuM | log |Iu + IuM |) ∼ O(|Iu + IuM |2) and O(2|Iu +
IuM |) ∼ O(|Iu + IuM |). In comparison, if we feed the
environment knowledge graph to the critic network directly,
the time and space complexity would be O(|I + IM |2)
and O(|I + IM |). Apparently, the local knowledge network
significantly improves the performance and saves the memory
space in our model (Iu � I). Moreover, the local knowledge
network is easier to converge as it has fewer nodes than the
environment knowledge graph.

D. Training Strategy

Training the actor-critic network requires train two parts
of the neural network simultaneously. We apply the Deep
Deterministic Policy Gradient (DDPG) (Algorithm 1) to train
our model [22], where we train the critic by minimising a loss
function:

l(θψ) =
1

N

N∑
j=1

((r + γξ)− ψθψ (St, at))2

where ξ = ψθ′ψ (St+1, φθ′φ(St+1))

where θψ is the parameter in critic; θφ is the parameter in
actor; N is the size of mini-batch from the replay buffer;
ψθ′ψ and φθ′φ are the target critic and target actor network,
respectively.

Algorithm 2 describes the training of the local knowledge
network, where we define the same loss function for all users
for the local knowledge network :

lk =
∑
u∈U

(
∑
i:yui

J(yui, ŷui))

where J is the cross-entropy; yui is a piece-wise function to
reflect the interest/action (defined below):

yui =

{
1 if u interested in i
0 otherwise

IV. EXPERIMENTS

In this section, we report our experimental evaluation of
our model in comparison with several state-of-the-art models
using real-world datasets.

Algorithm 1: DDPG algorithm for our model

1 Initialize actor network φ with parameter θφ and critic
network ψ with parameter θψ randomly;

2 Initialize target network φ′ and ψ′ with weight
θ′φ ← θφ, θ′ψ ← θψ ;

3 Initialize the local knowledge network ;
4 Initialize Replay Buffer B ;
5 for i = 0 to n do
6 Receive the initial state Si ;
7 for t = 1 to T do
8 Infer a action at according to the φ(·) ;
9 Execute the action at to receive a reward rt

and observe a new state St+1;
10 B.append(St, at, rt, St+1) ;
11 Sample a random mini-batch of N transitions

(Sk, ak, rk, Sk+1) from B ;
12 Set yi = rt + γξ ;
13 Update Critic by minimise the loss l(θψ) ;
14 Update local knowledge net by Algorithm 2 ;
15 Update the Actor policy by using the sampled

policy gradient:
16 ∇θφφ =

1
N

∑N
j=1∇aψ(Sk, a)|a=φ(Sk)∇θφφ(Sk) ;

17 Update target network:
18 θ′φ ← τθφ + (1− τ)θ′φ;
19 θ′ψ ← τθψ + (1− τ)θ′ψ;
20 end
21 end

Algorithm 2: Training the local knowledge network
input: The user specific graph gui , environment KG Ge

1 Initialize the parameters for GCN θ ;
2 Initialize the depth of graph dg ;
3 Initialize the reward storage P ;
4 for i in gui do
5 Receive the reward r from Ge ;
6 P.append(r);
7 end
8 r = min(P);
9 while GCN is not converge do

10 if dg < r then
11 aggregate next level’s neighbours into gui

dg ← dg + 1;
12 end
13 Update the GCN and its corresponding θ;
14 end

A. Datasets

We conducted experiments on six public real-world datasets
(Table II shows the statistics). All these datasets provide the
necessary information for building the respective knowledge
graphs.

TABLE II: Statistics of our experimental datasets

Dataset # of users # of items # of interactions
Amazon CD 75,258 64,443 3,749,004
Librarything 73,882 337,561 979,053

Book-Crossing 278,858 271,379 1,149,780
GoodReads 808,749 1,561,465 225,394,930

MovieLens-20M 138,493 27,278 20,000,263
Netflix 480,189 17,770 100,498,277

Book-Crossing1: This dataset contains user’s demographic
information and book information from the Book-Crossing
community. It is extremely sparse with a density of 0.0041%.
MovieLens-20M2: This is a well-known benchmark dataset
that contains 20 million ratings from around 140 thousand
users on the MovieLens website. It also provides movie tags,
which can be used to build relations in the knowledge graph.
Librarything3: This dataset contains book review information
collected from the librarything website.
Amazon CDs and Vinyl4: This is a highly sparse dataset that
contains the product metadata, user reviews, ratings, and item
relations, as part of the Amazon e-commence dataset.
Netflix Prize5: This dataset contains 100 million ratings from
480 thousand users and item information for yearly open com-
petition to improve Netflix’s recommendation performance.
Goodreads6: This dataset contains user’s ratings and reviews
to books on the Goodreads book review website.

B. Evaluation Metrics

We evaluate the performance of recommendation using
three metrics: precision, recall, and normalized Discounted
Cumulative Gain (nDCG). All the metrics were calculated
based on the top-10 recommendations to each user for each test
case. To ease processing, we removed users who have fewer
than ten interactions and scaled the ratings from all datasets to
the range of [0, 5]. Only the items with a rating score higher
than three were considered a relevant item.

C. Experimental Setup

We evaluated our model in a simulated online environment
built upon offline public datasets, using the algorithm proposed
in [9] and the aforementioned reward function. This way,
we avoided collecting private user information and expen-
sive online training [23]. Specifically, the simulator generated
feedback based on logistic matrix factorization (LMF) [24].
We randomly split each dataset into a training set (70%), a
validation set (10%), and a testing set (20%) to conduct 10-
fold cross-validation. The discount factor γ was initialized to
0.99.

1http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
2https://grouplens.org/datasets/movielens/
3http://cseweb.ucsd.edu/∼jmcauley/datasets.html#social data
4http://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/netflix-inc/netflix-prize-data
6http://cseweb.ucsd.edu/∼jmcauley/datasets.html#goodreads

D. Compared Methods

We compared out model with several competitive baselines:
Policy-Guided Path Reasoning (PGPR) [13]: A state-of-
the-art knowledge-aware model that employs reinforcement
learning for explainable recommendation.
Tree-structured Policy Gradient Recommendation
(TPGR) [25]: A state-of-the-art model that uses reinforcement
learning and binary tree for large-scale interactive
recommendation.
HLinearUCB [3]: A contextual-bandit approach that learns
extra hidden features for each arm to model the reward for
interactive recommendation.
Wolpertinger [6]: A deep reinforcement learning framework
that uses DDPG and KNN for recommendations in large
discrete action spaces.
DeepPage [7]: A DDPG-based reinforcement learning model
that learns a ranking vector for page-wise recommendation.
DRN [8]: A DQN-based recommendation method that employ
deep Q learning to estimate Q-value for news recommenda-
tion.
FactorUCB [26]: A matrix factorization-based bandit algo-
rithm for interactive recommendation .
ICTRUCB [5]: A MAB approach that uses a depend arm for
online interactive collaborative filtering.

E. Results

Table III shows our evaluation results of recommendation
models. We observed that our model outperformed all the
baselines in all metrics almost on all the datasets—it per-
formed only slightly worse than TPGR on the Book-Crossing
dataset. This may be attributed to the specifical design of
TPGR to deal with large-scale datasets. None of the MAB-
based methods (HLinearUCB, FactorUCB and ICTRUCB)
performed well on those datasets because they all assume static
user interest and may not give up-to-date recommendations
We also observed that PGPR performed worse than DRN on
the Amazon CD and Book-Crossing datasets—these sparse
datasets might not provide sufficient relation for PGPR to infer
the recommendation path. Finally, all the models achieved
their best results on the MovieLens-20M dataset, given the
rich information and dense relation in the dataset.

F. Ablation and Complexity Studies

We conducted ablation studies to explore the impact of
the attention mechanism and local knowledge network on
the performance of our model on the above six datasets. We
selectively choose MovieLens-20M and the Book-Crossing as
the example because the Book-Crossing dataset is the most
sparse one and the MovieLens-20M is the most dense one;
they can show the capability of our model in the normal
case and extreme case. Due to the exponential increase in
time usage, we only show the first five level of neighbours.
The results (Figure 2(a,d)) show that our model’s performance
dropped slightly (by 1% in precision, 2% in recall, and 1%
in nDCG) without the attention mechanism while elevated

(a) (b) (c)

(d) (e) (f)

Fig. 2: Ablation and complexity studies on MovieLens-20M(a,b,c) and Book-Crossing(d,e,f): (a,d) Three models’ performance
in Recall, Precision, and nDCG; (b,e) Three models’ time and memory consumption in conducting search for a target item
located among fifth level neighbours; (c,f) Three models’ time consumption along with an increasing level of the target item.
M denotes our original model, M-A the model without the attention layer, meaning the item embedding will directly goes to
state, and M-K the model deprived of the local knowledge network—in this case, the model uses GCN to learn the whole
environment inside itself. The level of neighbours represents the geographical location indicative of the shortest distance. For
example, first-level neighbours represent the items which have a distance of 1 to the current item i.

slightly without the local knowledge network because the
model already contains all the information, including abundant
relation between items to support the decision making.

We also used valgrind7 to monitor the memory usage,
which, on the other hand, reveals the huge advantages of using
a local knowledge network in reducing both the time and space
complexity (also see Figure 2(b)). We mentioned that in figure
2 (c,f), the model M −K have an incredible increase in time
consumption when the level goes over 2. One possible reason
is that as the level goes higher, the graph comes more and
more complex, which will affect the search critically.

V. RELATED WORK

Most existing work models interactive recommendation as
a Multi-Armed Bandit (MAB) problem. And the primary
solution lies in finding an Upper Confidence Bound (UCB). Li
et al. [27] employ the first linear model to calculate the UCB
for each arm. Since then, many researchers combine other
techniques such as matrix factorization, to find the UCB [26].
For example, Wang et al. [5] proposed a new approach by

7http://www.valgrind.org/

choosing a dependent arm to calculate the UCB; Shen et
al. [28], instead, use deep learning-based methods to solve
MAB.

Recent studies have shown the effectiveness of reinforce-
ment learning in modeling interactions-related recommenda-
tion processes, where the recommendation problems are usu-
ally formulated as Markov Decision Processes. One approach
is based on Deep Q-learning (DQN) [29], which maximizes
the Q-value from the predicted item and the target item. Zheng
et al. [8] combine the DQN with the Dueling Bandit Gradient
Decent (DBGD) [30] policy to recommend news. Another
thread of methods is DDPG-based [22]. Such methods aim
to let the agent learn a proper policy instead of using the Q-
value. For example, Liu et al. [9] adopt DDPG to promote
the diversity in interactive recommendation; Zhao et al. [7]
use DDPG for page-wise recommendation. It is also worth
mentioning that knowledge graphs can be useful for providing
guidance in explainable recommendation [13]. Knowledge-
aware recommendation systems heavily rely on the use of
relation inference to generate paths for recommendations [31].
Wang et al. [32] show graph convolutional network can help
learn neighbour representations and thus boost the recommen-

TABLE III: The overall results of our model comparison with several state-of-arts models in different datasets. The result was
reported by using the percentage and based on top-10 recommendation as mentioned before. The highlighted result in bold is
the best result.

Dataset Amazon CD Librarything
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 1.542 ± 0.192 1.521 ± 0.145 3.331 ± 0.201 3.441 ± 0.313 3.673 ± 0.221 4.115± 0.251
HLinearUCB 3.112 ± 0.331 2.647 ± 0.171 4.005 ± 0.341 8.102 ± 0.396 7.431 ± 0.204 8.157 ± 0.241
FactorUCB 3.531 ± 0.232 4.512 ± 0.242 6.012 ± 0.251 8.541 ± 0.241 8.162 ± 0.355 8.653 ± 0.351
ICTRUCB 4.124 ± 0.293 3.110 ± 0.395 5.982 ± 0.602 9.201 ± 0.241 7.980 ± 0.151 8.012 ± 0.466
DeepPage 7.124 ± 0.181 4.127 ± 0.134 7.245 ± 0.154 10.342 ± 0.422 9.012 ± 0.241 9.124 ± 0.673

DRN 8.006 ± 0.232 4.234 ± 0.241 6.112 ± 0.241 10.841 ± 0.112 9.412 ± 0.242 9.527 ± 0.455
TPGR 7.294 ± 0.312 2.872 ± 0.531 6.128 ± 0.541 14.713 ± 0.644 12.410 ± 0.612 13.225 ± 0.722
PGPR 6.619 ± 0.123 1.892 ± 0.143 5.970 ± 0.131 11.531 ± 0.241 10.333 ± 0.341 12.641 ± 0.442
Ours 8.208 ± 0.241 4.782 ± 0.341 7.876 ± 0.511 15.128 ± 0.241 12.451 ± 0.242 14.985± 0.252

Dataset Book-Crossing GoodReads
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 0.782 ± 0.121 1.235 ± 0.131 0.976 ± 0.242 6.245 ± 0.122 3.415 ± 0.207 5.315 ± 0.321
HLinearUCB 2.421 ± 0.131 1.724 ± 0.141 2.865 ± 0.322 7.917 ± 0.303 5.151 ± 0.214 6.561 ± 0.351
FactorUCB 3.123 ± 0.141 2.976 ± 0.223 3.536 ± 0.241 5.643 ± 0.441 4.129 ± 0.221 6.122 ± 0.395
ICTRUCB 3.441 ± 0.121 3.421 ± 0.333 4.001 ± 0.321 8.415 ± 0.132 6.432 ± 0.221 7.124 ± 0.241
DeepPage 5.124 ± 0.323 3.245 ± 0.142 6.976 ± 0.142 10.071 ± 0.212 7.961 ± 0.232 8.329 ± 0.232

DRN 7.124 ± 0.122 4.123 ± 0.112 7.433 ± 0.142 10.620 ± 0.123 8.432 ± 0.241 9.461 ± 0.442
TPGR 7.246 ± 0.321 4.523 ± 0.442 7.870 ± 0.412 13.219 ± 0.323 10.322 ± 0.442 9.825 ± 0.642
PGPR 6.998 ± 0.112 3.932 ± 0.121 7.333 ± 0.133 11.421 ± 0.223 10.042 ± 0.212 9.234 ± 0.242
Ours 8.004 ± 0.223 4.521 ± 0.332 7.459 ± 0.401 13.444 ± 0.321 10.331 ± 0.331 11.641 ± 0.446

Dataset MovieLens-20M Netflix
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 7.821 ± 0.171 2.341 ± 0.142 4.002 ± 0.151 3.924 ± 0.222 2.911 ± 0.141 3.425 ± 0.261
HLinearUCB 13.591 ± 0.281 10.601 ± 0.132 12.537 ± 0.285 5.142 ± 0.314 5.052 ± 0.362 6.007 ± 0.425
FactorUCB 14.421 ± 0.412 11.229 ± 0.365 11.422 ± 0.611 5.643 ± 0.432 4.129 ± 0.233 6.122 ± 0.442
ICTRUCB 14.345 ± 0.212 9.923 ± 0.222 11.051 ± 0.423 7.00 1± 0.312 6.212 ± 0.432 9.112 ± 0.523
DeepPage 12.472 ± 0.312 10.161 ± 0.332 13.129 ± 0.322 8.431 ± 0.212 7.324 ± 0.133 9.872 ± 0.223

DRN 14.742 ± 0.223 14.092 ± 0.342 16.245 ± 0.242 12.310 ± 0.144 10.213 ± 0.142 16.562 ± 0.153
TPGR 16.431 ± 0.369 13.421 ± 0.257 18.512 ± 0.484 12.512 ± 0.556 11.512 ± 0.595 17.425 ± 0.602
PGPR 14.234 ± 0.207 9.531 ± 0.219 11.561 ± 0.228 10.982 ± 0.181 10.123 ± 0.227 17.134 ± 0.243
Ours 18.021 ± 0.498 14.989 ± 0.432 19.007 ± 0.543 13.009 ± 0.343 11.874 ± 0.232 19.082 ± 0.348

dation performance. Another approach for knowledge aware
recommendation is the embedding based [33], [34].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a knowledge-guided deep
reinforcement learning framework (KGRL) for interactive rec-
ommendation. KGRL uses the critic-actor learning framework
to harness the interaction between users and the recommen-
dation system and employs a local knowledge network to
improve the stability and quality of the critic network for
better decision-making. Extensive experiments over an online
simulator with six public real-world datasets demonstrate its
superior performance over state-of-the-art models. To verify
the effectiveness for each component, we conduct the ablation
study for the local knowledge network and attention mecha-
nism and selectively present the performance both in normal
case and extreme case. We are planning to introduce various
types of user information (e.g., user’s thought when browsing
items) to enrich the interaction and deploy our model in online
business platforms to further test the performance in the future.
In addition, the cold-start problem is another big challenge to

be focused on. Besides, the algorithm 1 used to train the model
still lacks the knowledge about how to update step size will
affect the training time and the convergence which can be
solved in the future work.

REFERENCES

[1] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based rec-
ommender system: A survey and new perspectives,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[2] X. Zhao, W. Zhang, and J. Wang, “Interactive collaborative filtering,” in
Proceedings of the 22nd ACM international conference on Information
& Knowledge Management. ACM, 2013.

[3] H. Wang, Q. Wu, and H. Wang, “Learning hidden features for contextual
bandits,” in Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 2016, pp. 1633–
1642.

[4] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[5] Q. Wang, C. Zeng, W. Zhou, T. Li, S. S. Iyengar, L. Shwartz, and
G. Grabarnik, “Online interactive collaborative filtering using multi-
armed bandit with dependent arms,” IEEE Transactions on Knowledge
and Data Engineering, 2018.

[6] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[7] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep
reinforcement learning for page-wise recommendations,” in Proceedings
of the 12th ACM Conference on Recommender Systems. ACM, 2018,
pp. 95–103.

[8] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li,
“Drn: A deep reinforcement learning framework for news recommenda-
tion,” in Proceedings of the 2018 World Wide Web Conference. IW3C2,
2018, pp. 167–176.

[9] Y. Liu, Y. Zhang, Q. Wu, C. Miao, L. Cui, B. Zhao, Y. Zhao, and
L. Guan, “Diversity-promoting deep reinforcement learning for interac-
tive recommendation,” arXiv preprint arXiv:1903.07826, 2019.

[10] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin, “Recommenda-
tions with negative feedback via pairwise deep reinforcement learning,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 1040–1048.

[11] S.-Y. Chen, Y. Yu, Q. Da, J. Tan, H.-K. Huang, and H.-H. Tang, “Stabi-
lizing reinforcement learning in dynamic environment with application
to online recommendation,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
ACM, 2018, pp. 1187–1196.

[12] L. Yao, Q. Z. Sheng, X. Wang, W. E. Zhang, and Y. Qin, “Collaborative
location recommendation by integrating multi-dimensional contextual
information,” ACM Transactions on Internet Technology (TOIT), vol. 18,
no. 3, pp. 1–24, 2018.

[13] Y. Xian, Z. Fu, S. Muthukrishnan, G. de Melo, and Y. Zhang, “Rein-
forcement knowledge graph reasoning for explainable recommendation,”
in Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 2019, pp.
285–294.

[14] S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge graph
embeddings,” in Advances in Neural Information Processing Systems,
2019, pp. 2731–2741.

[15] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua, “Unifying knowledge
graph learning and recommendation: Towards a better understanding of
user preferences,” in The World Wide Web Conference. ACM, 2019,
pp. 151–161.

[16] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph
convolutional networks for recommender systems,” in The World Wide
Web Conference. ACM, 2019, pp. 3307–3313.

[17] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy gradi-
ents,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[18] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 2018.

[19] C. Zhou, J. Bai, J. Song, X. Liu, Z. Zhao, X. Chen, and J. Gao, “Atrank:
An attention-based user behavior modeling framework for recommen-
dation,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[21] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Advances in Neural
Information Processing Systems, 2018.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[23] W. Zhang, U. Paquet, and K. Hofmann, “Collective noise contrastive
estimation for policy transfer learning,” in Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[24] C. C. Johnson, “Logistic matrix factorization for implicit feedback data,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[25] H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang,
and Y. Yu, “Large-scale interactive recommendation with tree-structured
policy gradient,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3312–3320.

[26] H. Wang, Q. Wu, and H. Wang, “Factorization bandits for interactive
recommendation,” in Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[27] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web. ACM, 2010,
pp. 661–670.

[28] Y. Shen, Y. Deng, A. Ray, and H. Jin, “Interactive recommendation via
deep neural memory augmented contextual bandits,” in Proceedings of
the 12th ACM Conference on Recommender Systems. ACM, 2018, pp.
122–130.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[30] A. Grotov and M. de Rijke, “Online learning to rank for information
retrieval: Sigir 2016 tutorial,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 2016.

[31] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 635–644.

[32] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and
Z. Wang, “Knowledge-aware graph neural networks with label smooth-
ness regularization for recommender systems,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2019.

[33] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 2016, pp. 353–362.

[34] J. Huang, W. X. Zhao, H. Dou, J.-R. Wen, and E. Y. Chang, “Improv-
ing sequential recommendation with knowledge-enhanced memory net-
works,” in The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval. ACM, 2018, pp. 505–514.

