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Abstract—Scale variation is one of the most challenging prob-
lems in general object detection. Although current approaches
have achieved significant progress by exploiting the multi-level
information, they pay little attention to how to fuse feature maps
and construct the feature pyramid more effectively. In this paper,
we propose two novel modules to enhance the characteristics of
object detection. First, a Pair-wise Attention Module (PAM) is
proposed to introduce the two-way attention mechanism, which
can emphasize informative features and filter less useful ones
adaptively when fusing feature. Second, a Pyramid Reconfigure
Module (PRM) is proposed to promote cross-level spatial infor-
mation communication by the split-align-reconstruct operation.
Then the feature among different levels can be complemented
and enhanced with each other. The effectiveness of our proposed
modules is evaluated on the COCO benchmark, and experimental
results show that our approach achieves state-of-the-art results.

I. INTRODUCTION

General object detection is one of the most fundamental
and extensively-applied tasks in computer vision [1]. Com-
pared with face detection and pedestrian detection, it is more
challenging because it needs to detect at a wider range of cat-
egories and geometries. Despite the significant improvements
bought by Deep Convolutional Neural Network (DCNN), it
still struggles in many problems. Scale variation across object
instances is one of the major challenges [2] [3].

In the early period, the majority of object detection methods
based on DCNN [2] [4] [5] [6] [7], use the top-most layer
of the network to detect objects at different scales, as shown
Fig. 1(a). However, the information in this layer may be
too coarse spatially to allow precise localization, especially
for small objects [3]. On the contrary, earlier layers have
more fine-grained details but are also much less sensitive to
semantics. Intuitively, exploiting multi-level features can get
the best of both worlds. Many methods have been proposed
based on this principle. Although the methods vary widely,
they can be roughly divided into three types. Some approaches
detect with combined features of multiple DCNN layers [8]
[9] [10]. They combine finer features from lower layers and
coarse semantic features from higher layers by concatenation.
But simply incorporating features from different levels does
not yield significant improvements due to overfitting caused by
high dimensionality. Different from the above, there are many
methods of detecting on multiple levels [11] [12] [13] [14],

Fig. 1. Comparison of different methods. (a) Detect with the top-most feature
map, which performs poorly in small object detection, due to low resolution.
(b) Recent detection systems construct feature pyramid with hierarchical
feature maps, but the low-level feature lacks semantic information. (c) One
solution is introducing a reverse fusion module to enhance the low-level
feature maps. (d) Our method adopts the attention mechanism and reconfigures
the feature pyramid when fusing features at different levels.

shown Fig. 1(b). These methods allocate objects of different
sizes to different layers, high-level feature maps with stronger
semantic information are used to detect large objects, while
low-level features with richer spatial details to detect small
objects. However, without sufficient semantics and contextual
information, the earlier feature maps cannot capture small
objects as we expected. By analyzing the characteristics of
the above two approaches, the latest methods [3] [15] [16]
[17] [18] supplement an existing bottom-up pathway with a
Reverse Fusion Block(RFB), as illustrated in Fig. 1(c), which
is specifically composed of a top-down branch and a lateral
connection. Bottom-up features at intermediate depths with
finer details, after lateral processing, are combined with the
top-down features carrying semantics, and this combination
is further transmitted down to lower layers by reverse fusion
module.

Building a feature pyramid with a reverse fusion module is
the best way to solve multi-scale problems in the mentioned
methods. We go beyond this standard structure with new
issues. Generally speaking, the above-mentioned methods have
two following limitations. Firstly, in the RFB, most methods
adopt simple addition or concatenation when combining two-
level feature maps. While in common backbone(e.g. ResNet
[19]), the adjacent levels are separated by a series of convolu-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 2. An overview of the proposed method. Our method utilizes the backbone to extract features from the input image and takes the output of different stages
from the backbone to construct the feature pyramid C={C2,C3,C4C5}. During the reverse fusion process, different level feature maps P={P2,P3,P4P5}
can be fused by an effective Pair-wise Attention Module(PAM) without destroying the features’ representative abilities. Feature maps with rich semantics
are generated recursively by this way. Then the Pyramid Reconfigure Module(PRM) module adopts the operation of split-rescale-aggregate to combine
high-level semantics and low-level details. The characteristics of different levels complement each other, with multi-scale information for detection. Finally,
P′={P ′

2,P ′
3,P ′

4P
′
5} produces dense bounding boxes and category scores.

tion layers, pooling and activation functions. The distribution
of features at different levels is quite diverse, and the naive
fusion method will damage the original feature. We believe
that the information which is more important to the detection
should be adaptively highlighted, so the attention mechanism
is very necessary during fusing. Secondly, if we compare
neural networks to human eyes when we detect an object,
we must not only rely on the scale and details of the object
itself but also the surrounding environmental information. For
example, let’s suppose that there is a cup of small size on
a given image, and the low-level features may accurately
locate it, but it is not easy to determine if it’s a cup or other
cylindrical things due to the lack of object-level information.
However, there is very little communication among different
levels in the previous method. The feature at different levels
is assigned to detect the different subset of objects according
to the scale, which contradicts the judgment logic of human
eyes.

The goal of this paper is to construct a more effective
feature pyramid for detecting multi-scale objects. The pair-
wise attention mechanism and pyramid reconfiguration are
introduced in our method as shown in Fig. 1(d). And the
overview of the method is illustrated in Fig. 2. Similar as
the traditional methods, we take ResNet [19] as backbone
pretrained on ImageNet [20] to extract feature at different
levels. Given the multi-level feature, we design the Pair-wise
Attention Module(PAM) to help feature from the adjacent
level to fuse. In this module, we emphasize the importance of
mutual supervision and filtering. To the best of our knowledge,

though the channel-wise self-supervising method is popularly
used, the pair-wise attention mechanism is rarely mentioned in
the detection task. And we conduct extensive experiments to
prove that this method is more efficient in heightening features,
compared with the self-attention during the process of feature
fusion.

Moreover, a Pyramid Reconfigure Module(PRM) is pro-
posed to promote information transfer across the channels
among the feature maps. We accept that the feature at different
levels should be mutually promoted and supplemented. Even if
we use the high-level feature maps to detect large objects, we
need the underlying details in the low-level feature. Similarly,
we rely more on high-level semantics when we apply low-
level features to detect small objects. In order to combine
semantics and fine-grained appearance in the PRM, we adopt
the split-rescale-reconstruct method to enrich every single level
with information from other levels. At this point, we have
obtained feature maps with characteristics of multi-level and
multi-scale, then the detector can detect more comprehensively
and accurately. It is worth noting no additional parameters are
introduced in this process.

Since FPN [3] and mask-RCNN [21] are powerful structures
for detection, we implement them as the baseline in our
experiments to investigate the impact of our method. We
do the ablation studies on the COCO benchmark [22] to
demonstrate the effectiveness of the Pair-wise Attention Mod-
ule and Pyramid Reconfigure Module from various aspects.
Experimental results show that our approach achieves state-
of-the-art results. The main contributions of this paper are



summarized as follows:
• First, we develop a Pair-wise Attention Module(PAM)

to introduce mutual attention guiding the feature from
adjacent levels to fuse adaptively.

• Second, we propose a Pyramid Reconfigure Mod-
ule(PRM) to enhance the cross-channel information com-
munication between different levels.

• Our method achieves state-of-the-art results on the COCO
dataset benchmark.

II. RELATED WORK

Detection is one of the most important and fundamen-
tal tasks in the field of computer vision. Researchers have
proposed many methods to improve detection accuracy. And
different network structures have been proposed to exploit the
potential of multi-level feature maps’ representation power.

A. Object Detection

Breakthrough progress has been made in object detection
since the popularity of DCNN. Although there are many
variations based on DCNN, all methods can be roughly
divided into two groups:(i) proposal-based and (ii)proposal-
free methods. For the former, Fast-rcnn [4], spp-net [2]made
proposals through Selective Search, exposing computation as
a bottleneck. Faster-RCNN [5] proposed Region Proposal Net-
work(RPN), which utilizes DCNN to compute proposals as a
precedent. The method reduced the computational complexity
and boosts the detection accuracy greatly. However, methods
mentioned above exploited the top-most layer to make a
prediction which is not sensitive to small objects. FPN [3]
extends the existing bottom-up path in DCNN with a reverse
fusion module. It ensures all layers are semantically strong,
including high-resolution level. R-FCN [6]shared the compu-
tation after ROI-pooling to run faster and utilized position sen-
sitive ROI-pooling to enrich the feature with more localization
representation. Mask-RCNN [21] adds an extra object mask
branch based on box detection path in parallel. Meanwhile,
ROI-Align layer is proposed to avoid quantification of the
proposals’ boundaries. It can restrain misalignment compared
with the ROI-pooling in Faster-RCNN [5]. Cascade-RCNN
[23] consists of a series of detectors, trained with increasing
IOU thresholds. Then the detector cannot be easily misled
by false positives and leads to more accurate localization.
The proposal-based approach is not efficient because proposals
need to be computed first by DCNN then regressed. Repre-
sentative methods in proposal-free like YOLO [7],SSD [11]
merged two stages into one, which can be applied in real-
time tasks. YOLO [7] predicted bounding boxes and class
probabilities directly from full images in one evaluation with
a single neural network. SSD [11] detected at multilayer,
high-level is responsible for large objects, lower for small.
Subsequently, lots of work [15] [16] [17] based on SSD [11]
have been proposed. They adopt the reverse fusion module
to strengthen the low-level features. Also, they utilized other
techniques to achieve comparable localization accuracy to the

proposal-based methods [16], solve the unbalance of positive
and negative samples [17] [24].

B. Detection with Multi-Level Feature

Many research results have shown that making better use
of multi-level features is of vital importance to accurate visual
recognition. To the best of our knowledge, the methods of
multi-layer feature fusion are mainly divided into the following
three types.

Hypercolumns [8], HyperNet [9], ION [10] detect with
combined features of multiple DCNN layers by the skip-layer
connection. Hypercolumns [8] exploited the hypercolumn de-
scriptor for every pixel, which means concatenating activations
of all DCNN units above that pixel as a vector. Some layers
were skipped since adjacent layers are strongly correlated. ION
[10] used skip pooling to extract information at multiple levels,
adopted L2 normalization prior to combining them. HyperNet
[9] aggregates hierarchical feature maps and compresses them
into a uniform space first, then generate region proposals.
HyperNet is more computation efficiency compared with ION
because all features can be precomputed before region pro-
posal generation and the detection module. To combine multi-
level feature maps at the same resolution, upsampling and
downsampling are implemented by deconvolution and max-
pooling respectively.

SSD [11], MSCNN [12] detected at multi-layers directly.
In these methods, detection is performed at multiple output
layers, so that receptive fields can match objects of different
scales. The deeper feature with the large receptive field is
responsible for big objects, while the shallower with more
details for small objects. However, the semantics of the low-
level feature is too weak to detect small objects. RFB-Net
[13] proposed Receptive Field Block, which adopted multi-
branch pooling with varying kernels corresponding to receptive
field of different sizes. And further assembled Receptive Field
Block to the top of SSD, enhancing discriminability and
robustness of features at all levels. DSOD [14] proposed a
dense structure for prediction which can learn half and reuse
half. In each scale, half of the feature maps are learned from
the previous scale with convolution, while the remaining half
feature maps are directly down-sampled, then concatenate
them to fuse feature.

For the first method mentioned above, multi-layer features
are directly aggregated into one for detection, which leads
to overfitting problem due to high dimensions and affects
the feature representation of the model. For the second,
the high-resolution features struggle in insufficient seman-
tics when making the final prediction directly. In view of
the disadvantages of the two methods, assembling reverse
fusion block to the existing hierarchical multi-layer features
is adopted by many latest methods [3] [15] [16] [17]. The
Reverse Fusion Block(RFB) consists of a top-down branch
and a horizontal connection to the existing bottom-up branch.
Bottom-up features at the intermediate depth, after lateral pro-
cessing, are fused with the top-down feature carrying semantic
information, and this fusion is then continuously transmitted



down through reverse fusion path. Although there are many
variations in this approach, they may differ in the design of the
RFB. In the top-down branch, since the resolutions of the two
adjacent levels are different, FPN [3] carried out up-sampling
on low-resolution features by interpolation, and DSSD [15],
RON [17], RefineDet [16] used deconvolution. In the lateral
processing, FPN and RetinaNet [24] used 1x1 convolution,
RON and RefineDet used 3x3 convolution, and DSSD uses
additional BatchNormalization(BN) [25] and ReLU [26] be-
sides 3x3 convolution. When fusing, FPN, RON, RefineDet
adopted element-wise addition, and DSSD used the element-
wise product. RFB strengthens the low-level features through
iterative fusion and transmission significantly. It is recognized
that constructing a feature pyramid with a reverse fusion is one
of the most powerful measures against multi-scale problems.

III. PROPOSED METHOD

The overall architecture of our method is shown in Fig. 2.
Similar to FPN [3], we adopt the effective ResNet [19] as the
backbone and use a multi-level feature pyramid network to
explore the effect of Pair-wise Attention Module and Pyramid
Reconfigure Module. We first briefly review the structure of
FPN, then present the details of our method.

A. Feature Pyramid Network

Fig. 3. Illustration of FPN. Based on the bottom-up pathway, FPN adopts a
novel reverse fusion module, semantics is transferred recursively in the top-
down path until the lowest level. The lateral connection fuses feature maps
from different levels together through the addition.

As shown in Fig. 3, FPN network is composed of the
bottom-up pathway and reverse fusion block, which consists
of a top-down pathway and lateral connection. In the bottom-
up pathway, supposed that the input image is I, FPN uses
the output of the last residual block of each stage in ResNet
to create the feature pyramid. In the reverse fusion block,
high-level feature maps can get the same resolution as the
current by bilinear interpolation during the top-down path.
Feature maps at adjacent levels are unified into 256 channels
by 1x1 convolution in lateral connection. Then the feature for

detection P={P2,P3,P4P5} is obtained by add operations. This
process can be expressed by (1).

Pl−1 = Fu(Pl) + αl−1Cl−1

l ∈ [2, 5], P5 = α5C5

(1)

where α means weights in 1x1 convolution, Fu means upsam-
pling by bilinear interpolation, l means the lth level in P and
C. We can find that Pl is the linear combination of the feature
at the current level and other higher-level features in (2).

Pl =

5∑
i=l

wiCi (2)

where wl is the generated final weights for lth layer output
after similar polynomial expansions. The linear combination
with a deeper feature hierarchy can enrich the shallower layer
recursively. However, its representation power is not enough
for the complex task of object detection which often lives on
a non-linear function of input [27].

B. Pair-wise Attention Module

Motivation Given the hierarchy feature at different levels,
how to enrich low-level features with more semantics from
higher levels is essential. FPN adopts the add operation simply.
Though there are many nonlinear convolutions between the
adjacent level. The representation of features has relative
independence. Combining characteristics from different lev-
els should be skillful. So we proposed the two-way choice
mechanism to emphasize informative features and filter less
useful ones.

Fig. 4. Illustration of Pairwise Attention Module. We introduce the Squeeze-
and-Excitation method to extract descriptors of different-level features, then
cross-multiply them with the original feature maps to obtain pair-wised
attention.

Pair-wise Attention Module(PAM) brings attention when
fusing features from different levels as shown in Fig. 4, low-
level features can learn how to chose and high-level features
can learn how to share. The design of this module is based
on the Squeeze-and-Excitation block [28] and we increase
skillfully designed mutual supervision mechanisms. Given the
feature pyramid, C={C2,C3,C4,C5}, we take Cl and Cl−1

as an example to present the pairwise mechanism because
the resolution of Cl is twice smaller than Cl−1, we firstly
upsample Pl by bilinear method to make sure that feature
maps from two levels have the same size. Then we use global
average pooling to squeeze global information to channel-wise



Fig. 5. Illustration of Pyramid Reconfigure Module. In the process of reverse fusion, high-level semantic information is always transmitted downward, but
it is challenging to get the low-level details. PRM selects parts of channels from different levels as representatives, combines them to exchange information.
Then the different characteristics among different levels can be complemented and enhanced with each other.

descriptor zl and zl−1 for the lth level and the l-1thlevel at
the squeeze step.

zl−1 = Fsq(Cl−1) =
1

Hl−1 ×Wl−1

Hl−1∑
i=1

Wl−1∑
j=1

Cl−1(i, j)

zl = Fsq(Cl) =
1

Hl ×Wl

Hl∑
i=1

Wl∑
j=1

Cl(i, j)

(3)

Where Hl and Wl refer to the height and width of the
feature map in the lth level. Since the global average pooling
is channel-wise, the dimension of zl is the same as the number
of channels of Cl.

To make use of the information aggregated in the squeeze
operation, the following excitation step aims at fully capturing
channel-wise dependencies respectively, as in (4).

sl−1 = Fex(zl−1) = σ(Wl−
2
1(δ(Wl−

1
1zl−1))

sl = Fex(zl) = σ(W 2
l (δ(W

1
l zl))

(4)

Where δ refers to ReLU [26] function, σ refers to sigmoid
Function, A parameterized gate mechanism is formed by a
bottleneck block with two fully-connect layer, W 1 ∈ RC×C

r

and W 2 ∈ RC
r ×C , we choose 16 as the reduction ratio r in

dimensionality-reduction layer. After squeeze and excitation
operation, We get sl−1 and sl as a collection of per-channel
modulation weights for two levels. Then we reconfigure the
feature maps Pl−1 using them as in (5).

Pl−1 = Fscale(sl, Cl−1) + Fscale(sl−1, Cl)

= slCl−1 + sl−1Cl

(5)

This operation can be regarded as a pairwise-attention
function on features of different levels. The relationships
between them are not supposed to be confined to the local
receptive field by the convolution filters. The mechanism
allows information from the global receptive field of the

network to be used by other levels. And the feature we get
from this operation is more powerful to be employed in fusing
cross levels.

C. Pyramid Reconfigure Module
Motivation After the feature selection and fusion in the
PAM, the feature for detection has obtained strong expressive
abilities. In the process of detecting network training, high-
level features are used to detect large objects and shallow
features for small objects. In this way, the dependence between
layers is destroyed. We demonstrated that the information
with different characteristics among different levels should
be complemented and enhanced with each other. Combining
and reconfigure of high-level semantics and low-level details
will effectively improve the detection accuracy of multi-scale
objects.

Given the feature set P, we propose a novel PRM module
as shown in Fig. 6, which does not introduce extra parameters.
First, we split the l-1th level feature map Pl into four slices. To
ensure that the features are aligned during the following fusion
operation, we need to adjust the slices to the scales of each
level in P. If the slice is the same size as the target feature,
we keep the original, if smaller, we upsample the slice feature
by bilinear interpolation, if larger, we adopt max pooling
operation. (e.g. If the target size is four times larger than
the current slices, bilinear interpolation will be done twice).
After rescaling, the slices can be denoted as S={S2

l ,S3
l ,S4

l S
5
l },

which has the same resolution with {P2,P3,P4P5}.Then we
combine the slice of each level with the same resolution into
a new feature map as in (6).

P ′l = Fconcat(S
2
l , S

3
l , S

4
l , S

5
l ) (6)

Where Fconcat means concatenation, and P ′l is the feature
for detection. Based on the original feature map Pl, we adopt
rescaling, reconfigure and align to combine semantics and
details at different levels.



TABLE I
EXPERIMENTS RESULTS

Method Backbone Avg. Precision, IoU Avg. Precision, Area delta, IoU delta, Area
mAP AP50 AP75 APs APm APl mAP APs

Faster-RCNN VGG 23.5 43.9 22.6 8.1 25.1 34.7 - -
R-FCN ResNet-50 27.1 49.0 26.9 10.4 29.7 39.2 - -

CoupleNet ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8 - -
FPN ResNet-50 36.4 59.0 39.2 20.3 38.8 46.4 - -

Ours+FPN ResNet-50 37.6 59.9 40.7 21.9 41.2 48.7 +1.2 +1.6
mask-RCNN ResNet-50 36.7 58.7 40.3 21.0 39.7 48.8 - -

Ours+mask-RCNN ResNet-50 37.8 60.2 40.7 22.0 40.7 50.2 +1.1 +1.0
FPN ResNet-101 38.8 61.1 41.9 21.3 41.8 49.8 - -

Ours+FPN ResNet-101 39.6 62.2 42.9 22.7 43.4 52.3 +0.8 +1.4
mask-RCNN ResNet-101 38.9 60.6 42.6 21.4 42.4 52.2 - -

Ours+mask-RCNN ResNet-101 39.9 62.1 43.6 22.9 44.0 52.3 +1.0 +1.5
FPN ResNeXt-101-32x4d 40.1 62.6 43.9 23.1 44.4 53.2 - -

Ours+FPN ResNeXt-101-32x4d 40.9 63.2 44.6 23.8 45.1 54.4 +0.8 +0.7
mask-RCNN ResNeXt-101-32x4d 41.1 63.4 45.2 23.9 45.6 54.6 - -

Ours+mask-RCNN ResNeXt-101-32x4d 42.0 64.2 46.7 24.9 46.8 55.7 +0.9 +1.0

IV. EXPERIMENTS

In this section, we present experimental results on the MS-
COCO benchmark. The dataset consists of 80 categories and
objects which vary in size and can be divided into small,
medium and large. We use the 115k images for training, and
5k images(minival) for validation, 20k images(test-dev) for
testing. To compare with the other state-of-arts models, we
report COCO mAP on test-dev which has no public labels
and requires the use of the evaluation server. And we report
the results of ablation studies on minival for convenience.
Our experiments include three parts:(1) Implement Details,
(2) Comparisons with state-of-the-art models, (3) Ablation
studies.

A. Implement Details

Training details. All architectures in Table 1 are trained end-
to-end. The input image is resized such that its shorter side
has 800 pixels, and the height and width should be divided
by 16. We trained the network on 8 GPUs and there are 2
images in a mini-batch per GPU. The iter size is set to 4.
We used a weight decay of 0.0005 and a momentum of 0.9.
The base learning rate is 0.02, and we adopt a warm-up mode,
which is when training starts, We reduce the base learning rate
by the multiplying warm-up factor(e.g. 1/3), and the learning
rate will increase linearly to the base value after warm-up
iters(e.g.500). We train 12 epochs. We choose 15 anchors
which involve 5 sizes and 3 ratios for each image finally. After
the RPN stage, if the score of the proposal is higher than 0.5,
we denote it as a positive example, otherwise negative. Then
we sampled 512 proposals by a positive-negative ratio of 1:3.
These proposals are used to train the Fast stage. We use the
ResNet pre-trained on Imagenet as the backbone, ResNet50,
ResNet101 and ResNext-101 [29] for comparison experiments.
In the ablation experiments, ResNet50 is used by default.
Testing Details During the test process, we rescale the image
to the same size as that in training. After the RPN stage, we
sort the proposals by score, and choose top 2000 proposals,

perform the NMS with a threshold at 0.5, and take the top
1000 proposals as the input of the second stage according to
score. After Fast stage, we select the boxes whose score is
higher than 0.01 and perform the NMS with a threshold at 0.7
to get the final detection bounding boxes.

B. Comparisons with State-of-the-art Models

Table I compares our model with other state-of-the-art
methods on COCO test-dev. FPN and mask-RCNN are recog-
nized as the most effective methods among different detection
algorithms. Therefore we adopt two algorithms, with different
sizes of backbone as the baseline to establish the effectiveness
of our method. We mainly focus on two metrics, mAP and APs,
where mAP can reflect the comprehensive performance of the
model, and APs can measure the accuracy of small objects that
is hard to detect. For FPN method, our model achieves 37.6
mAP with the backbone of ResNet50, 39.6 mAP for ResNet101
and 40.9 mAP for ResNeXt-101, which outperforms FPN 36.4
mAP, 38.8 mAP and 40.1 mAP. For mask-RCNN method,
our model achieves the state-of-the-art results, 37.8 mAP with
the backbone of ResNet50, 39.9 mAP for ResNet101 and
42.0 mAP for ResNet101. It is worth mentioning that, our
method can improve the accuracy of small objects significantly
regardless of the strong baseline. Deepening the network and
exploiting multi-layer information can make features more
representative. We can confirm that how to fully utilized multi-
level features is more relevant from the experimental results.
Our method integrates multi-level features more effectively
instead of extracting new features, the performance can be
promoted with only a few additional parameters consequently.

C. Ablation Studies

In this section, we conduct the ablation studies on Pair-wise
Attention Module and Pyramid Reconfigure Module on the
COCO minival dataset. The FPN method with the backbone
of ResNet-50 is used by default in all ablation studies.
Component Analysis We can achieve 37.2 mAP when only
use the PAM, with the 0.8 mAP improvement over 36.4 mAP



of FPN. This result proves that pair-wise attention is vital
when different levels fuse. Nevertheless, when we only use
PRM, there is almost no performance improvement. Because
information from different levels is destroyed when we tradi-
tionally join features. It is not enough to reconfigure the feature
pyramid. When PAM and PRM are applied simultaneously, we
can get a 1.2 mAP improvement. All experiment results are
shown in Table II.

TABLE II
COMPONENT ANALYSIS

Module AP Metrics
PAM PRM AP AP50 AP75 APs APm APl

36.4 59.0 39.2 20.3 38.8 46.4√
37.2 60.1 40.8 21.5 39.6 47.2√
36.5 59.2 38.9 20.2 38.8 46.5√ √
37.6 59.9 40.7 21.9 41.2 48.7

Why Pair-wise Attention in PAM? Attention is widely
practiced in DCNN. SE-block can provide channel-wise at-
tention simply but effectively. We do extended experiments
to evidence that pair-wise attention is more robust than self-
attention in the multi-level feature fusion. As shown in the
Fig. 6, we use the two methods to join the SE module. In
(a), we add an SE block to each level before fusing, and after
fusing in (b).

Fig. 6. SE.

Tabel III shows the experiment results, and we find that
both methods have much less improvement in performance
than PAM, indicating that we need mutual supervision between
adjacent levels, instead of self-attention in one single level.
The reason for Method (a) performing better than (b) is we
introduce attention within the reverse fusion block in (a),
which can participate in the information transfer between
different levels efficiently.

TABLE III
PAIR-WISE ATTENTION

Method a b PAM a+PRM b+PRM PAM+PRM
mAP 36.62 36.38 37.20 36.54 36.44 37.23
APs 20.41 20.12 21.5 20.39 20.24 21.93

How to slice in PRM? In PRM, we consider that the char-
acteristics carried by different channels are equivalent when

reconstructing the pyramid, hence the S are sliced most simply
as shown in Fig. 5, then the slices are rescaled and combined.
To prove this point, we try different slicing methods, such as
adjusting the order of slices, taking one channel every four
channels to concatenate into one slice, etc. The experimental
results are found to be the same as that obtained by the original
method. This shows that in the same level, the information
of different channels may vary slightly, but when combined
with other levels, any subset of channels can represent the
characteristics of the feature in current level.

V. CONCLUSION

In this paper, we mainly address the problem of scale
variation in general object detection. Based on the idea of the
feature pyramid and reverse fusion, we design a novel Pair-
wise Attention Module(PAM) to introduce a mutual guiding
mechanism between adjacent levels. Pyramid Reconfigure
Module(PRM) is used to enhance the communication of cross-
channel characteristics in different levels with no extra param-
eters. Overall, our model achieves state-of-the-art performance
on the COCO dataset benchmark.
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