
Improving Discrete Latent Representations
With Differentiable Approximation Bridges

Jason Ramapuram* +

University of Geneva &
University of Applied Sciences

Geneva, Switzerland
jason@ramapuram.net

Russ Webb*

Apple
One Apple Park Way,
Cupertino, CA 95014

rwebb@apple.com

Abstract—Modern neural network training relies on piece-wise
(sub-)differentiable functions in order to use backpropagation to
update model parameters. In this work, we introduce a novel
method to allow non-differentiable functions at intermediary
layers of deep neural networks. We do so by training with
a differentiable approximation bridge (DAB) neural network
which approximates the non-differentiable forward function and
provides gradient updates during backpropagation. We present
empirical results from more than 600 experiments in four
different domains: unsupervised (image) representation learning,
variational (image) density estimation, image classification, and
sequence sorting to demonstrate that our proposed method im-
proves state of the art performance. We demonstrate that training
with DAB aided discrete non-differentiable functions improves
image reconstruction quality and posterior linear separability by
10% against the Gumbel-Softmax relaxed estimator [26], [37] as
well as providing a 9% improvement in the test variational lower
bound in comparison to the state of the art RELAX [16] discrete
estimator. We also observe an accuracy improvement of 77%
in neural sequence sorting and a 25% improvement against the
straight-through estimator [5] in an image classification setting.
The DAB network is not used for inference and expands the
class of functions that are usable in neural networks. Our code
is available at https://github.com/apple/ml-dab.

I. INTRODUCTION

Deep neural networks have advanced the state of the art
in object recognition [21], [46], machine translation [9], and
game playing [45], however they generally only function over
the range of numerical values encountered during training
[48]. In contrast, traditional (non-learned) algorithms, such
as Merge-Sort [27], are provably stable and can deal with
arbitrary inputs. In this work, we introduce a novel formu-
lation that allows for the incorporation of non-differentiable
functions, such as Merge-Sort, Signum and K-Means in neural
network pipelines.

Most state of the art neural networks [15], [21], [46] rely
on some variant of Robbins-Monroe [44] based stochastic
optimization. The requirement for utilizing this algorithm
includes the assumption that the gradients of the functional be
Lipschitz continuous. In contrast, some of the most common
functions used in neural networks, the ReLU activation [1]
and the Max-Pooling layer [57] are not fully differentiable.

*Equal Contribution
+Work done during Apple internship.

In general, this problem is circumvented by ignoring the
measure zero non-differentiable domain or through the use
of the adjoint method. Functions such as sort and k-means are
not amenable to a similar treatment.

In this work, we study approximate gradient pathways
that allow for non-differentiable functions as sub-modules
of neural networks. We validate DAB using the sort, top-k,
k-means, signum, binary-threshold and non-reparameterized
bernoulli non-differentiable functions and demonstrate com-
petitive performance on a variety of tasks. DAB enables the
use of these functions by introducing a smooth neural network
approximation to the non-differentiable function; the gradients
of the DAB network are then used at training time to update
previous layers of the network. The DAB network is trained
jointly with the central optimization objective and creates its
approximation via the introduction of a regularizer (Section
III). At inference, the DAB network is removed, thus requiring
no extra memory or compute after training.

II. RELATED WORK

Traditional Solutions: Traditional solutions to handling non-
differentiable functions in machine learning include using the
score function estimator (SFE) [13], [32] (also known as
REINFORCE [56]), the straight-through estimator (STE) [5],
or the reparameterization path-wise estimator [30]. While the
SFE is an unbiased estimate of the gradients, it generally
suffers from high variance [16] and needs to be augmented
with control variates [12] that require manual tuning and do-
main knowledge. The STE on the other hand is a solution that
simply copies gradients back, skipping the non-differentiable
portion (i.e. treating it as an identity operation). Furthermore,
the STE does not allow for operators that change dimension,
i.e. f : RA 7→ RB , A 6= B, since it is unclear how the
gradients of the larger/smaller output would be copied back.
In contrast to the SFE, the reparameterization trick used in
variational autoencoders (VAE) [30], enables differentiating
through distributions by reframing the expectation with respect
to a variable that is not part of the computational graph. The
difference between the SFE and the reparameterization trick
can be understood by analyzing how they estimate gradients:

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Method / Objective
Supports

Non-Differentiable
Functions

Scales to
Large

Dimensions

Works with
Operators that

Change Dimension

Typical
Unique Hyper

Parameters
DNI [25] / DPG [24] / DGL [4] Asynchronous network updates. no yes yes -

Gradient Free Methods [2], [10], [11], [14], [28], [35], [51] Optimize arbitrary functions. yes no yes -

Score Function Estimator [13], [32] Differentiate non-differentiable functions. yes no yes 0
Straight-Through Estimator [5] Ignore non-differentiable functions. yes yes no 0
Relaxed Estimators [16], [26], [37], [49] Relaxed approximations to non-differentiable functions. yes yes yes 1 - 3

DAB (ours) Differentiate non-differentiable functions. yes yes yes 1

TABLE I
SUMMARY OF RELATED WORKS.

SFE: ∇θEqθ [f(z)] = Eqθ [f(z)∇θ log qθ(z)]
Reparameterization: ∇θEqθ [f(z)] = Ep(ε)[∇θf(z)]

The reparameterization path-wise estimator takes into account
how the derivative of the function, f(z), is modulated by the
choice of measure, qθ, while the SFE treats the function, f(z),
as a black box. See [39] for a thorough treatment on the topic.

Relaxed Differentiability: While the reparameterization
estimator has lower variance than the SFE, it did not afford
a discrete reparameterization until recently. The Gumbel-
Softmax relaxed estimator (simultaneously proposed in [26],
[37]) for the Bernouilli and Discrete distributions anneals
a softmax with additive Gumbel noise until it eventually
converges to the corresponding ‘hard’ distribution. This
technique can be interpreted as a form of bias-variance trade-
off [37]. More recently, REBAR [49] and RELAX [16] were
proposed to combine both the SFE and the reparameterization
trick in order to produce a new estimator with lower variance.
RELAX [16] differs from REBAR [49] by using a learned
Q function [55] neural network as a control variate. We
empirically contrast our estimator against Gumbel-Softmax
in Experiment IV-C and RELAX and REBAR in Experiment
IV-D, demonstrating improved performance using three
different metrics.

Gradient Free Methods: Machine learning has a rich history
of backpropagation alternatives, ranging from simulated
annealing [51], particle swarm optimization [28], genetic
algorithms [14], evolutionary strategies [2], and Bayesian
approaches such as MCMC based sampling algorithms [10],
[11]. These algorithms have been shown [43] to not scale
to complex, large dimension optimization problems in large
neural network models. More recent work in the analysis
of backpropagation alternatives [35] has demonstrated the
possibility of learning weight updates through the use of
random matrices; however, no statement was made about
training / convergence time. In contrast DAB provides smooth
gradients along the direction of the true derivative.

Asynchronous Neural Network Updates: Recent work such
as decoupled neural interfaces (DNI) [25] and decoupled
parallel backpropagation (DPG) [24] introduced an auxiliary
network to approximate gradients in RNN models. Similar
approximation techniques have been introduced [4] (DGL) to
allow for greedy layerwise CNN based training. The central
objective with these models is to enable asynchronous updates
to speed up training time. Our work differs from all of these

solutions in that our objective is not to improve training
speed / parallelism, but to learn a function approximator of a
non-differentiable function such that it provides a meaningful
training signal for the preceding layers in the network. This
approach allows us to utilize non-differentiable functions such
as kmeans, sort, signum, etc, as intermediary layers in neural
network pipelines.

III. MODEL

Fig. 1. Typical differentiable model

Fig. 2. Model of our proposed framework. lhard represents the non-
differentiable function and zhard its outputs. zφ approximates zhard.

Given a set of training input images, Xtr = {xi}Ni=0, xi ∈
RM×M , coupled with related ground-truth labels,
Ytr = {yi}Ni=0, yi ∈ RJ (for classification) or yi ∈
RM×M (for autoencoding), our objective is to learn the
parameters, θ, of a model, fθ : xi 7→ yi, such that we
generalize well on a hold-out test set, {Xte, Yte}, evaluated
with a predefined metric, M(fθ(Xte), Yte). We focus on the
case where the parameters θ are optimized using stochastic
gradient descent [44], operating on a differentiable loss
function L(fθ(Xtr), Ytr).

We begin by decomposing the model, fθ, into a layer-wise
representation, fθ = lθ3 ◦ lθ2 ◦ lθ1 , as shown in Figure 1. We
represent the output of each of the above layers as {z3, z2, z1}
respectively, where fθ(xi) = z3 = lθ3(z2). In this work we
explore replacing the differentiable function, lθ2 , with a non-
differentiable version, lhard, as shown in Figure 2. Directly
swapping lhard for lθ2 is not viable since it would prevent
backpropagation gradient updates of lθ1 .

In order to circumvent this, we draw inspiration by vi-
sualizing what a typical multi-layer dense neural network
does when it fits an output that is discontinuous. In Figure
3 we visualize three (test) snapshots of a network during
training. The ground truth target, yi, for this exposition is a
non-differentiable ε-margin signum function, yi = sgn(xi, ε),
where xi ∼ U(−1, 1) and ε = 0.5.

Fig. 3. Demonstration of a simple DAB approximation: scatter plots visualize test predictions and gradients of a multi-layer dense network fitting an ε-margin
signum function (ε = 0.5) over an input space of U(-1, 1). Left: Near beginning of training. Middle: Mid-way through training. Right: End of training.

sgn(xi, ε) =

−1 xi < −ε
0 xi ∈ [−ε, ε]
1 xi > ε

(1)

We train a small three layer ELU dense network using Adam
[29] and use the final layer’s (un-activated) output in a least-
square loss, L = ||yi − fθ(xi)||22. Neural networks have been
extensively used to interpolate latent space in models such
as variational autoencoders [30] and Word2Vec [38]. These
interpolations are possible because neural networks learn a
smooth K-Lipschitz mapping to transform the inputs to their
target outputs, which implies smooth gradients. We rely on
this property and introduce the DAB network, lφ.

The DAB network receives z1 from the previous layer,
z1 = lθ1(x), and produces an output, zφ = lφ(z1). This
output is constrained to be close to the output of the hard
function, zhard = lhard(z1), through the introduction of an L2
regularizer 1, LDAB = γ||zhard − zφ||22, where γ represents
represents a hyper-parameter that controls the strength of the
regularization. We observed that the choice of γ did not have
a strong effect and thus did not conduct an extensive hyper-
parameter search to optimize it. Our final optimization objec-
tive is our typical objective, L(fθ(xi), yi) and the regularizer,
LDAB , described above:

min
θ,φ
L(lθ3(lhard(lθ1(xi))), yi)︸ ︷︷ ︸

typical loss

+ γ||lhard(z1)− lφ(z1)||22︸ ︷︷ ︸
DAB loss(LDAB)

(2)

The main difference between a typical model and the DAB
aided model presented above is that we use lhard during
the forward functional evaluations at both training and test
time. During training, the model returns the DAB model’s
smooth K-Lipschitz gradients, δlφ

δlθ1
, to update the parameters

θ1, thus allowing the entire model to be trained end-to-end. At
inference, the DAB model is completely discarded, requiring
no extra memory or compute.

1An analysis of the choice of regularizer and convergence is provided in
Appendix Section VI-D.

IV. EXPERIMENTS

We quantify our proposed algorithm on four different bench-
marks: sequence sorting, unsupervised (image) representation
learning, variational (image) density estimation, and image
classification. For a full list of hyper-parameters, model spec-
ifications, and example PyTorch [40] code see the Appendix.

A. Neural Sequence Sorting

We begin by exploring the problem of neural sequence
sorting in order to demonstrate the effectiveness of our so-
lution. While neural networks outperform humans in many
object detection tasks [21], [46], they generally perform poorly
on combinatorial problems such as sorting [52], [53] and
visual relational learning [42]. This limitation is due to the
exponential growth of potential solutions in relation to the
dimensionality of the input space [47].
N input sequences of length T are generated

by sampling a uniform distribution, {X}Ni=1 =
{x1, . . . , xt, . . . , xT }Ni=1, xt ∼ U(0, 1). The objective
of the model, fθ, is to predict a categorical output,
{Y }Ni=1,Yi ∈ RT×T , corresponding to the index of the
sorted input sequence, Yi = sort(Xi). We provide a
single-sample example for T = 3 below:

[0.6, 0.234, 0.9812]︸ ︷︷ ︸
Xi

7→ [[0, 1, 0], [1, 0, 0], [0, 0, 1]]︸ ︷︷ ︸
Yi

We follow [52] and evalute the all-or-none (called out-
of-sequence in [52]) accuracy for all presented models.
This metric penalizes an output, fθ(Xi), for not predict-
ing the entire sequence in correct order (no partial-credit),
1
N

∑N
i=1(fθ(Xi) == Yi). The reasoning being that a partial

sort prediction is not useful in many cases. Note that larger
all-or-none accuracy implies larger accuracy.

We develop two novel models to address the sorting prob-
lem: a simple feed-forward neural network (Figure 5) and
a sequential RNN model (Figure 4). The central difference
between a traditional model and the ones in Figures 4 and
5, is the incorporation of a non-differentiable (hard) function
shown in red in both model diagrams. The dense model differs
from the RNN model in that it receives the entire sample, xTt=1,

Length (T) ELU-Dense Ptr-Net [53]
Read-Process

Write [52]
Signum-RNN (ours) Signum-Dense (ours)

T=5 86.46 ± 4.7% (x5) 90% 94% 99.3 ± 0.09% (x5) 99.3 ± 0.25% (x5)
T=10 0 ± 0% (x5) 28% 57% 92.4 ± 0.36% (x5) 94.2 ± 0.1% (x5)
T=15 0 ± 0% (x5) 4% 10% 87.2 ± 0.3% (x5) 79.8 ± 0.8% (x5)

TABLE II
ALL-OR-NONE SORTING TEST-ACCURACY (PRESENTED AS MEAN ± STD (REPLICATION)) FOR VARYING LENGTH (T) SEQUENCES.

Fig. 4. LSTM Model with a non-differentiable function.

Fig. 5. Dense sorting model with non-differentiable-function.

simultaneously. In contrast, the RNN processes each value, xt,
one at the time, only making a prediction after the final value,
xt=T is received.

During the forward functional evaluations of the model, we
directly use the (hard) non-differentiable function’s output for
the subsequent layers. The DAB network receives the same
input as the non-differentiable function and caches its output.
This cached output is used in the added regularizer presented
in Section III in order to allow the DAB to approximate the
non-differentiable function (LDAB in Figures 4 and 5). During
the backward pass (dashed lines), the gradients are routed
through the DAB instead of the non-differentiable function.
While it is possible to utilize any non-differentiable function,
in this experiment we use the ε-margin signum function from
Equation 1.

We contrast our models with state of the art for neural
sequence sorting [52], [53] 2 and a baseline ELU-Dense
multilayer neural network and demonstrate (Table II) that our
model outperforms all baselines (in some cases by over 75%).
Since the only difference between ELU-Dense and Signum-
Dense is the choice of activation, the gains can be attributed
to the choice of non-differentiable function that we use in
our model. We believe that the logic of sequence sorting can
be simplified using a function that directly allows binning
of intermediary model outputs into {−1, 0, 1}, which in turn

2We report the best achieved results (taking pondering (Section IV-B) into
account) directly from [52], [53].

simplifies implementing a swap operation in a similar manner
as classical Sorting Networks [3].

After observing these significant improvements over the
state of the art in neural sorting [52], [53], we attempted to use
a soft version of the ε-margin signum function in Equation 1
(Tanh). We observed that it performed better than [52], [53] on
the 5 and 10 sort problems, but failed to generalize on the 15-
sort problem. The Tanh model resulted in average all-or-none
accuracies of 99.3%, 88.3% and 1.9% for the corresponding
5, 10 and 15 sort problems. The reason for this reduction
in performance can be attributed to the simplification of the
problem through the use of the hard function; e.g. instead of
learning that all continuous values in the range of [0.5, 1.0]
indicate a swap is needed, the network only needs to learn that
values that are exactly 1.0 indicate a swap. This reasoning has
been extensively applied in vector quantization (VQ) models
such as [8], [17], [50].

B. Effect of Pondering in Neural Sequence Sorting

Fig. 6. Effect of increasing ponder steps for 5-sort (left) and 10-sort (right)
problems. The mean and standard deviation of the maximum test all-or-none
accuracy are reported over 5 trials per ponder length.

The model presented in [52] evaluates the effect of pon-
dering in which they iterate an LSTM with no further inputs.
This pondering allows the model to learn to sort its internal
representation. Traditional sorting algorithms run O(log T)
operations on the T dimensional input sequence. Iterating
the LSTM attempts to parallel this. We introduce a similar
pondering loop into our model and show the performance
benefit in Figure 6; we observe a similar performance gain, but
notice that the benefits decrease after five pondering iterations.

C. Unsupervised Discrete Representations

In this experiment, we study the usefulness of learnt un-
supervised representations by latent variable models such
as the Variational Autoencoder (VAE) [30]. Variational Au-
toencoders, coupled with Gumbel relaxed reparameterization
methods [26], [37] enable learning of compact binary latent

Fig. 7. We sweep a range of bits-per-pixel (BPP) values for FashionMNIST and CIFAR10, performing 5 experiments at each BPP level per model type
(results reported as mean ± std). Left: Test Multi-Scale Structural Similarity (MS-SSIM) [54]. Middle: Purely unsupervised linear posterior test-classification
accuracy. Right: Test input images and their reconstructions at BPP=0.1.

representations. Given an input random variable x ∼ p(x),
VAEs posit an approximate posterior, qφ(z2|x), over a la-
tent variable, z2, and maximize the Evidence Lower BOund
(ELBO). We contrast the VAE ELBO with our optimization
objective below 3:

VAE: Eq [log pθ(x|z2)]−DKL[qφ(z2|x)||p(z)]
DAB: Eq [log pθ(x|zhard)] + Eq [γ log q(zhard|lφ(z1))]

In the case of the DAB model, q(zhard|lφ(z1)) ∼
N (lφ(z1), I). This formulation is equivalent to the one from
Section III since the log-likelihood of a Gaussian distribution
(evaluated on a sample zhard) is proportional to the L2-loss
(Appendix Section VI-D). The specific functional value of
zhard is based on the type of non-differential function used
and is listed in Table III.

Good latent representions should not only be compact
(in terms of bits-per-pixel), but also useful as a mechanism
to produce a more separable representation space4, z2. In
addition, given a latent representation the model should be
able to reconstruct the original sample well. We demonstrate
the usefulness of non-differentiable functions to both these

3Note that the backpropagation step for the DAB follows the same logic
as presented earlier in Section III.

4This differs from recent work on disentangled representations [36] which
necessitate each dimension of the latent variable independently control a factor
of variation in the original data space.

objectives through the use of two metrics: the MS-SSIM [54]
and linear classification of posterior samples. The MS-SSIM is
a metric that provides a sense of how similar (in structure) the
reconstructed image is to the original. Linear classification of
posterior samples provides us with an evaluation of separable
latent representations: a useful property for models that use
the latent representation in downstream tasks. Importantly, we
do not specifically train the model to induce better linearly
separability as that would necessitate the use of supervision.

In Figure 7 and Table IV, we contrast our models (dab-*)
against state of the art bernoulli and discrete relaxed gumbel-
reparameterized models [26], [37] and a naive downsample,
binary-threshold and classify using optimal threshold solution
(threshold). The variants are summarized in Table III below:

Functional Form

dab-bernoulli Sample from non-reparameterized
distribution: zhard ∼ Bern(lθ1 (x)).

dab-binary bin(z1) =

{
1 z1 ≥ mean(z1)
0 z1 < mean(z1)

dab-signum Equation 1. BPP is scaled by log2(3)
due to trinary representation.

threshold bilinear(x, BPP), threshold(x, τ) and
linearly classify for the best τ .

TABLE III
VARIANTS OF ACTIVATIONS USED IN EXPERIMENT.

We begin by using the training set of Fashion MNIST,

CIFAR10, and ImageNet to train the baseline bernoulli and
discrete VAEs as well as the models with the non-differentiable
functions (dab-*) presented above. We train five models per
level of bpp for FashionMNIST and CIFAR10 and evaluate
the MS-SSIM and linear classification accuracy at each point.
We repeat the same, but only for bpp=0.00097 for Imagenet
(512 × 512 × 3) due to computational restrictions. Each
epoch of training at this resolution takes approximately 1.5
hours on 8 V-100 GPUs. Note that bpp=0.00097 requires a
matrix that projects into a 786 dimensional space. Increasing
this dimension substantially increases the parameters of the
network. The linear classifier is trained on the same training
dataset5 after the completion of training of the generative
model. We present the mean and standard deviation results
in Figure 7 and Table IV for all three datasets.

Imagenet BPP = 0.00097
(768 dimensional latent)

MS-SSIM Linear Separability

Gumbel-Bernoulli 0.295 +/- 0.00058 0.0405 +/- 0.00035

DAB-Signum † 0.296 +/- 0.00063 0.0430 +/- 0.00068
DAB-Bernoulli 0.293 +/- 0.00051 0.0387 +/- 0.00022

DAB-Binary 0.292 +/- 0.00062 0.0356 +/- 0.00092

TABLE IV
FIVE TRIALS (EACH) OF IMAGENET USING ONLY BPP=0.00097 (RESULTS

REPORTED AS MEAN ± STD). IMAGES ARE COMPRESSED FROM
R512×512×3 TO 786 BITS († 496 FOR dab-signum SINCE

786 ≈ 496 log2 3) AND YIELD A 43X IMPROVEMENT OVER RANDOM
GUESSING (0.001). FULL TEST CURVES IN APPENDIX SECTION VI-B.

We observe that our models perform better in terms of test-
reconstruction (MS-SSIM) and also provide a more separable
latent representation (in terms of linear test accuracy). We
observe either dab-signum or dab-binary performing better
than all variants across all datasets. Since only the activation
is being changed, the benefit can be directly attributed to the
use of the non-differentiable functions used as activations.
Since the DAB-decoder only operates over discrete inputs, it
drastically simplifies the learning problem for this network.
This contrasts the Gumbel-Softmax estimator which slowly
anneals a continuous distribution to a discrete one over the
training process. This validates the core tenant of DAB: use
discrete (non-differentiable) outputs during the forward func-
tional evaluations, but provide a smooth K-Lipschitz gradient
during backpropagation.

D. Contrasting State of the Art Discrete Estimators
In order to relate this work to newer state of the art discrete

estimators [16], [49], we parallel the simple VAE experiments
used for RELAX [16] and REBAR [49]. The experiment
proposed in [16], [49] is to estimate a (variational) density
model for Binarized MNIST and Binarized Omniglot using a
latent variable posterior distribution of 200 Bernouilli random
variables. This task is challenging for neural networks that
learn with gradient descent, as quantization (of the forward
functional evaluations) removes the subtle directional infor-
mation from the gradients. Thus, all of the proposed relaxed

5We use the encoded latent representation as input to the linear classifier.

estimators [16], [26], [37], [49] use some form of annealed
continuous distribution (such as the Gumbel distribution) dur-
ing their forward functional evaluations. These distributions
provide the model with continuous gradient information to
update parameters during backpropagation. Over time, these
continuous distributions are annealed towards the desired
discrete representation, albeit sometimes with large variance
[49]. In contrast, DABs always use discrete outputs during
forward functional evaluations, while providing a smooth, K-
Lipschitz gradient to enable learning. This approach allows
the decoder in the VAE model to restrict itself to the range of
discrete numerical values that the problem specifies.

As in [16], [49], we use a single hidden layer model with
ReLU activations and 200 latent Bernouilli random variables.
Adam is used as an optimizer with a learning rate of 3e-4 and
γ from Equation 2 is fixed to 10. In contrast to Experiment
IV-C, we optimize the following objective:

DAB-VAE : Eq[log pθ(x|zhard)]−DKL[qφ(lφ(z1)|x)||p(z)]
+Eq[γ log q(zhard|lφ(z1))]

(3)

The objective in Equation 3 ensures that the the DAB-VAE
compress the latent variable in a manner similar to REBAR
and RELAX.

Binarized
MNIST

Binarized
Omniglot

Epochs
Binarized
MNIST

Epochs
Binarized
Omniglot

REBAR [49] -111.12 -127.51 331 368
RELAX [16] -119.19 -128.20 --- ---

DAB (ours) -109.59 -125.19 9933 2366

TABLE V
BINARIZED MNIST & OMNIGLOT TEST VARIATIONAL LOWER BOUND

(ELBO) IN NATS AND TRAINING EPOCHS TO CONVERGENCE. ---
INDICATES NON-REPORTED VALUES.

We report the best test variational lower bound (Equation
3 without Eq[γ log q(zhard|lφ(z1))] to provide a meaningful
comparison) for Binarized MNIST and Omniglot in Table V
(larger ELBO values being better) 6. The same table also pro-
vides the number of training epochs needed for each model to
converge to their reported best value. While DAB takes longer
to converge, both REBAR and RELAX begin to overfit and
continued training does not improve the bound. We observed
that the generalization gap for DAB (1-2 nats) was smaller
than RELAX and REBAR (5-10 nats). This improvement is
because the decoder, log pθ(x|zhard), is required to reconstruct
(at training and testing) the input sample, x, using a latent
variable sampled from a stochastic, non-differentiable func-
tion, zhard ∼ Bern(lθ1(x)). DAB outperforms both REBAR
and RELAX on both the Binarized Omniglot and Binarized
MNIST problems; the relative simplicity of training makes it a
strong candidate for applications requiring non-differentiable
functions. Adding a learning rate scheduler to the DAB based
training is likely to improve convergence time, however this
is left to future work.

6Full test curves in Appendix Section VI-B.

Fig. 8. Left: Signum non-differentiable function evaluated at different sections of a Resnet18 model. Middle: Earth mover distance between input to non-
differentiable function and output of non-differentiable function. Right: CIFAR10 test accuracy for DAB vs. Straight-Through-Estimator using Sort-1D.

E. Image Classification
CIFAR10

Test-Accuracy Mean +/- Std Functional Form

Baseline 92.87% 0.06% Identity(z1)
Signum 91.95% 0.07% Equation 1

Sort 92.93% 0.1%
sort-row(z1)
⊕

sort-col(z1)

Topk 92.21% 0.14%
(sort-row(z1)

⊕
sort-col(z1))[0:k]

K-Means 91.97% 0.16% kmeans(z1, k=10)

TABLE VI
CIFAR10 TEST-ACCURACY OVER FIVE TRIALS FOR EACH ROW. ⊕ IS A

CONCATENATION.

This experiment evaluates how well a DAB enhanced model
performs in classifying images of CIFAR10 using a Resnet18
model tailored to operate on R32×32×3 images. We evaluate a
variety of non-differentiable functions and present their test
accuracy and standard deviation in Table VI. We observe
that utilizing a sort as the final activation in the Resnet18
model improves upon the vanilla model (Baseline) by 0.1%.
While these results show that DAB outperforms the baseline
Resnet18 model, the difference is small. In contrast, when we
used the same non-differentiable function in a simpler multi-
layer dense model for the same problem, we observed a larger
difference (≈10%) between the test-accuracies. We attribute
this to the quantization based regularization effect induced by
the choice of non-differentiable activation.

Many of the tested non-differentiable activations in Table VI
perform equivalently to the state of the art (Baseline). DAB
enables the exploration of novel networks with unconvential
layers, including ones (such as MergeSort) which generalize
to arbitrary numerical values. These unconvential activations
can also be used for auxiliary tasks (e.g. [50]).

1) Classification Ablation / Case Studies: Layer
Placement: In order to validate where to place the non-
differentiable function within the Resnet18 architecture, we
perform an ablation study. Since the Resnet18 model has four
residual blocks, we place the non-differentiable function at the
output of each block and train with each configuration 5 times
(Figure 8-left). We observe that the network remains stable
throughout training when the non-differentiable function

is after he fourth layer and use this configuration for all
experiments presented in Table VI.

Conditioning of Preceding Layer: We utilize the Sort non-
differentiable function shown in Table VI to explore the effect
of the regularizer introduced in Equation 2. We calculate
the empirical earth mover distance between the input to the
non-differentiable function (z1 in Figure 2) and its output
(zhard in Figure 2). We repeat the experiment five times and
report the mean and standard deviation in Figure 8-middle.
The regularizer conditions the input layer to produce partially
sorted values, as demonstrated by the decrease in the test EMD
over time.
Contrasting the STE: The straight-through-estimator (STE)
was originally used to bypass differentiating through a simple
argmax operator [5], however, here we analyze how well it
performs when handling a complex operand such as sorting.
Since the STE cannot operate over transformations that vary in
dimensionality, we use a simplified version of the sort operator
from the previous experiment. Instead of sorting the rows and
columns as in Table VI, we simply flatten the feature map and
run a single sort operation. This allows us to use the STE in
this scenario. We observe in Figure 8-right that DAB clearly
outperforms the STE.

V. DISCUSSION

Extensive research in machine learning has focused on
discovering new (sub-)differentiable non-linearities to use
within neural networks [20], [31], [41]. In this work, we
demonstrate a novel method to allow for the incorporation
of simple non-differentiable functions within neural networks
and empirically demonstrate their benefit through a variety of
experiments using a handful of non-differentiable operators,
such as kmeans, sort, and signum. Rather than manually deriv-
ing sub-differentiable solutions (e.g. [18]), using the Straight-
Through-Estimator (e.g. [50]) or relying on REINFORCE, we
train using a neural network to learn a smooth approximation
to the non-differentiable function. This work (code provided
at [URL anonymized]) opens up the use of more complex
non-differentiable operators within neural network pipelines.

REFERENCES

[1] A. F. Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[2] T. Asselmeyer, W. Ebeling, and H. Rosé. Evolutionary strategies of
optimization. Physical Review E, 56(1):1171, 1997.

[3] K. E. Batcher. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, spring joint computer conference, pages
307–314. ACM, 1968.

[4] E. Belilovsky, M. Eickenberg, and E. Oyallon. Decoupled greedy
learning of cnns. arXiv preprint arXiv:1901.08164, 2019.

[5] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013.

[6] A. C. Berry. The accuracy of the gaussian approximation to the sum
of independent variates. Transactions of the american mathematical
society, 49(1):122–136, 1941.

[7] S. Bittanti and M. CAMP. Recursive least-squares identification algo-
rithms with incomplete excitation: Convergence analysis and application
to adaptive control. IEEE Transactions on Automatic Control, 35(12),
1990.

[8] D. Brodsky and B. Watson. Model simplification through refinement.
In Graphics Interface, volume 2000, pages 221–228. Citeseer, 2000.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proc.
of the 2019 Conference of the North American Chapter of the ACL:
Human Language Technologies, Volume 1, 2019.

[10] A. E. Gelfand and A. F. Smith. Sampling-based approaches to calculat-
ing marginal densities. Journal of the American statistical association,
85(410):398–409, 1990.

[11] W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte
Carlo in practice. Chapman and Hall/CRC, 1995.

[12] P. Glasserman. Monte Carlo methods in financial engineering, vol-
ume 53. Springer Science & Business Media, 2013.

[13] P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM, 33(10):75–84, 1990.

[14] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine
learning. Machine learning, 3(2):95–99, 1988.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, 2014.

[16] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Back-
propagation through the void: Optimizing control variates for black-box
gradient estimation. ICLR, 2018.

[17] R. Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.
[18] E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom.

Learning to transduce with unbounded memory. In Advances in neural
information processing systems, pages 1828–1836, 2015.

[19] L. Guo. Self-convergence of weighted least-squares with applications
to stochastic adaptive control. IEEE transactions on automatic control,
41(1):79–89, 1996.

[20] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, 405(6789):947, 2000.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[22] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[23] P. J. Huber. Robust estimation of a location parameter. In Breakthroughs
in statistics, pages 492–518. Springer, 1992.

[24] Z. Huo, B. Gu, and H. Huang. Training neural networks using features
replay. In Advances in Neural Information Processing Systems, pages
6660–6669, 2018.

[25] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
D. Silver, and K. Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1627–1635. JMLR. org, 2017.

[26] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with
gumbel-softmax. ICLR, 2017.

[27] J. Katajainen and J. L. Träff. A meticulous analysis of mergesort
programs. In Italian Conference on Algorithms and Complexity, pages
217–228. Springer, 1997.

[28] J. Kennedy. Particle swarm optimization. Encyclopedia of machine
learning, pages 760–766, 2010.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In ICLR, 2014.

[30] D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR,
2014.

[31] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-
normalizing neural networks. In Advances in neural information
processing systems, pages 971–980, 2017.

[32] J. P. Kleijnen and R. Y. Rubinstein. Optimization and sensitivity analysis
of computer simulation models by the score function method. European
Journal of Operational Research, 88(3):413–427, 1996.

[33] T. L. Lai, C. Z. Wei, et al. Least squares estimates in stochastic
regression models with applications to identification and control of
dynamic systems. The Annals of Statistics, 10(1):154–166, 1982.

[34] T. L. Lai and Z. Ying. Recursive identification and adaptive prediction
in linear stochastic systems. SIAM Journal on Control and Optimization,
29(5):1061–1090, 1991.

[35] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Ran-
dom synaptic feedback weights support error backpropagation for deep
learning. Nature communications, 7:13276, 2016.

[36] F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Schölkopf, and O. Bachem.
Challenging common assumptions in the unsupervised learning of
disentangled representations. ICLR, 2019.

[37] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A
continuous relaxation of discrete random variables. ICLR, 2017.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv:1301.3781, 2013.

[39] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte carlo
gradient estimation in machine learning. CoRR, abs/1906.10652, 2019.

[40] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[41] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[42] J. Ramapuram and R. Webb. A new benchmark and progress toward
improved weakly supervised learning. BMVC, 2018.

[43] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal of
Global Optimization, 56(3):1247–1293, 2013.

[44] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[45] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484, 2016.

[46] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
arXiv preprint arXiv:1602.07261, 2016.

[47] J. Tenenbaum. Building machines that learn and think like people.
In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 5–5. International Foundation
for Autonomous Agents and Multiagent Systems, 2018.

[48] A. Trask, F. Hill, S. E. Reed, J. Rae, C. Dyer, and P. Blunsom. Neural
arithmetic logic units. In Advances in Neural Information Processing
Systems, pages 8035–8044, 2018.

[49] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein.
Rebar: Low-variance, unbiased gradient estimates for discrete latent
variable models. In NIPS, pages 2627–2636, 2017.

[50] A. van den Oord, O. Vinyals, et al. Neural discrete representation
learning. In Advances in Neural Information Processing Systems, pages
6306–6315, 2017.

[51] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987.

[52] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to
sequence for sets. ICLR, 2016.

[53] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances
in Neural Information Processing Systems, pages 2692–2700, 2015.

[54] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural
similarity for image quality assessment. In The Thrity-Seventh Asilomar
Conference on Signals, Systems & Computers, 2003, volume 2, pages
1398–1402. Ieee, 2003.

[55] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[56] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–
256, 1992.

[57] H. Wu and X. Gu. Max-pooling dropout for regularization of convolu-
tional neural networks. In ICONIP, pages 46–54. Springer, 2015.

VI. APPENDIX

A. Simple Pytorch Implementation

The base class for any hard function along with an example of the ε-margin signum operand (Equation 1) below. The
BaseHardFn accepts the input tensor x along with the DAB approximation (soft y). Coupling this with the DAB loss (Equ.
VI-D) provides an generic interface for using DABs. A full implementation is available at [URL anonymized].

class BaseHardFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, soft_y, hard_fn, *args):

""" Runs the hard function for forward, cache the output and returns.
:param ctx: pytorch context, automatically passed in.
:param x: input tensor.
:param soft_y: forward pass output (logits) of DAB approximator network.
:param hard_fn: to be passed in from derived class.
:param args: list of args to pass to hard function.
:returns: hard_fn(tensor), backward pass using DAB.
:rtype: torch.Tensor"""
hard = hard_fn(x, *args)
saveable_args = list([a for a in args if isinstance(a, torch.Tensor)])
ctx.save_for_backward(x, soft_y, *saveable_args)
return hard

@staticmethod
def _hard_fn(x, *args):

raise NotImplementedError("implement _hard_fn in derived class")

@staticmethod
def backward(ctx, grad_out):

""" Returns DAB derivative.
:param ctx: pytorch context, automatically passed in.
:param grad_out: grads coming into layer
:returns: dab_grad(tensor)

:rtype: torch.Tensor"""
x, soft_y, *args = ctx.saved_tensors
with torch.enable_grad():

grad = torch.autograd.grad(outputs=soft_y, inputs=x,
grad_outputs=grad_out,
retain_graph=True)

return grad[0], None, None, None

class SignumWithMargin(BaseHardFn):
@staticmethod
def _hard_fn(x, *args):

""" x[x < -eps] = -1; x[x > +eps] = 1; else x = 0
:param x: input tensor
:param args: list of args with 0th element being eps
:returns: signum(tensor)
:rtype: torch.Tensor"""
eps = args[0] if len(args) > 0 else 0.5
sig = torch.zeros_like(x)
sig[x < -eps] = -1
sig[x > eps] = 1
return sig

@staticmethod
def forward(ctx, x, soft_y, *args):

return BaseHardFn.forward(ctx, x, soft_y, SignumWithMargin._hard_fn, *args)

B. Further Experiments

Fig. 9. Contrasting RELAX and REBAR, test
negative variational lower bound (-ELBO) for
binarized MNIST and Omniglot. While REBAR
and RELAX used learning rate schedulers, DAB
result are from a fixed learning rate (3e-4) with
Adam. Using a scheduled learning rate may
improve convergence time for DAB.

Fig. 10. Full test curves (mean ± std) for
Imagenet for MS-SSIM and Linear Separabil-
ity; five trials (each) of ImageNet using only
BPP=0.00097 due to computational restrictions
Left: Test MS-SSIM [54]. Right: Purely unsu-
pervised linear posterior test-classification ac-
curacy; Images are compressed from R512×512

to 786 bits (496 for dab-signum since 786 ≈
496 log2(3)) and show 40x improvement over
random guessing (0.001).

C. Model Hyper-Parameters

FashionMNIST CIFAR10 ImageNet Sorting Classification
Optimizer Adam RMSProp RMSProp Adam Adam

LR 1e-3 1e-4 1e-4 1e-4 1e-4

Batch-Size 128 128 192 1024 128

Activation ELU ReLU ELU Tanh ELU

Normalization Batchnorm
Batchnorm-Conv,

None-Dense
Batchnorm-Conv,

None-Dense
None Batchnorm

Layer-Type Similar to U-Net
Coord-Conv encoder,

Dense decoder
Resnet18 encoder,

Dense decoder
LSTM (gradclip 5) + Dense(256) CifarResnet18

DAB-γ 10 70 2 10 10

D. Bayesian Interpretation of DAB

A graphical model depicting a generic version of our framework is shown above; lhard represents the non-differentiable function
and zhard its (latent variable) outputs. Given some true input data distribution, x ∼ p(x), y ∼ p(y|x), and a set of J (J = 3
in figure) functional approximators, lθi : RN 7→ RN , i ∈ {1..J}, our learning objective is defined as maximizing the log
likelihood, log pθ(y|x), coupled with a new regularizer, log pφ(zhard|zφ) (LDAB in figure), introduced in this work:

max
θ,φ

J (θ, φ) = Ex[log pθ(y|x) + γ log pφ(zhard|zφ)], (4)

= Ex[log pθ(y|zhard) pφ(zhard|z1) pθ(z1|x) + γ log pφ(zhard|zφ)], (5)
= Ex[log pθ(y|lθ3(lhard(lθ1(x)))) + γ log pφ(zhard|lφ(z1))]. (6)

We transition from Equation 4 to Equation 5 by using the conditional independence assumptions from our graphical model
(see above). Since the latent representations zi are simple functional transformations, we can represent the distributions,
p(zi|zi−1), i > 0 (Equation 5. Note, z0 := x.), by dirac distributions centered around their functional evaluations: zi|zi−1 ∼
δ(lθi(zi−1)). We rewrite our objective as shown in Equation 6, where γ is a problem specific hyper-parameter. During the
forward functional evaluations of the model, we use the non-differentiable function, lhard. Next, we describe the gaussianity
assumptions on the regularizer pφ(zhard|z1) and why it converges. We analyze the regularizer introduced in Equation 6 /
Equation 2 in the special case where the non-differentiable function output, zhard = lhard(z1) = φz1 + ε, is a (differentiable)
linear transformation of the previous layer coupled with additive Gaussian noise (aleatoric uncertainty):

zhard = φz1 + ε, ε ∼ N (0, σ2), (7)

zhard|φz1, σ2 ∼
N∏
i=1

N (φz1, σ
2). (8)

Under these simplifying assumptions our model induces a Gaussian log-likelihood (Equ. 8). We can directly maximize the
above likelihood using maximum likelihood estimation. If available, we can use apriori knowledge as a prior, p(φ), over the
weights φ, and minimize the negative log-likelihood multiplied by the prior to evaluate the posterior (which will be induced
as a gaussian), i.e. the MAP estimate. If we make a conjugate prior assumption, p(φ) ∼ N (0, σ2

φ), then:

− log(posterior) ∝ − log

N∏
i=1

N (φz1, σ
2)︸ ︷︷ ︸

likelihood

N (0, σ2
φ)︸ ︷︷ ︸

prior

, (9)

=

N∑
i=1

−1
σ2

(zhard − φz1)2 −
φ2

σ2
φ

+ const, (10)

∝ ||zhard − φz1||22. (11)

This analysis leads us to the well known result that a linear transformation with aleatoric Gaussian noise results in a loss
proportional to the L2 loss (Equ. 11). However, what can we say about the case where zhard is a non-linear, non-differentiable
output? In practice we observe strong results using the L2 loss, coupled with a non-linear NN transformation, lφ(z1).
This observation aligns with intuition from the central limit theorem. Assuming a zero mean, positive variance, and finite
absolute third moment, the rate of convergence can be shown to be proportional to 1√

N
, where N is the number of samples [6].

Sketch of Convergence Proof:

Given: the true distribution converges to a Gaussian (in the limit) as per Section VI-D.
Given: neural networks are universal function approximators [22],

then in the limit, lφ(z1) ≈ lhard(z1) which implies
δlφ
δlθ1

≈ δlhard
δlθ1

.

Then DAB converges via the least-squares estimator to the true distribution via the least-square estimator
convergence proofs of [7], [19], [33], [34].

We empirically explored alternatives such as the Huber loss [23], cosine loss, L1 loss and cross-entropy loss, but found the
L2 loss to consistently produce strong results, and we use it for all presented experiments.

