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Abstract—Panoramic video is considered to be an attractive
video format, since it provides the viewers with an immersive
experience, such as virtual reality (VR) gaming. However, the
viewers only focus on part of panoramic video, which is referred
to as viewport. Hence, the resources consumed for distributing
the remaining part of the panoramic video are wasted. It is
intuitive to only deliver the video data within this viewport for
reducing the distribution cost. Empirically, viewports within a
time interval are highly correlated, hence the historical trajectory
may be used for predicting the future viewports. On the other
hand, a viewer tends to sustain attention on a specific object in a
panoramic video. Motivated by these findings, we propose a deep
learning-based viewport Prediction scheme, namely HOP, where
the Historical viewport trajectory of viewers and Object tracking
are jointly exploited by the long short-term memory (LSTM)
networks. Additionally, our solution is capable of predicting
multiple future viewports, while a single viewport prediction
was supported by the state-of-the-art contributions. Simulation
results show that our proposed HOP scheme outperforms the
benchmarkers by up to 33.5% in terms of the prediction error.

Index Terms—panoramic video, viewport prediction, object
tracking, deep learning

I. INTRODUCTION

Panoramic video has been attracting substantial research
attention, since it enables 360 degree experience of the desig-
nated scenes. It may be utilized in numerous scenarios, such
as sports, social network, advertisement and virtual reality
(VR) gaming. The rapid expansion of networks, such as
the fifth generation (5G) wireless networks [1], [2], may
further motivate the applications of panoramic videos. Each
panoramic frame may cover a range of 360°×180° video data
in the horizontal and vertical directions, respectively. As shown
in Fig. 1a, the planar panoramic video is projected onto a
spherical surface for achieving immersive experience, where a
viewer equipped with head-mounted displays (HMDs) is po-
sitioned at the center of the rendered sphere. The terminology
viewport means the specific region of panoramic video, which
attracts sustained attention of the viewer. The viewer may
freely change the viewport by altering the orientation of his
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Fig. 1: Illustration of watching a panoramic video using HMD.

head or body, which is detected by the embedded positioning
sensors of the HMDs. The size of viewport may range from
60° to 110° depending on the HMD, while the remaining
part of the panoramic video is invisible to the viewer. Three
sampled viewports are shown in Fig. 1b, and they are extracted
from three panoramic frames. Fig. 2 exemplifies viewports
of two different viewers of a panoramic frame. Note that
different viewers may have different viewports depending on
their interests in the panoramic videos. Below, we will review
the researches of the panoramic video in various aspects.

• Projection: Equirectangular projection (ERP) is one of
the most popular formats for panoramic videos, which is
illustrated by Fig. 1a. Cube map projection (CMP) [3]
was proposed by Wang et al. to replace ERP, since the
CMP scheme can reduce the distortion and enhance the
region-of-interest (ROI) signals of panoramic videos.

• Compression:Sánchez et al. [4] advocated an
H.265/HEVC based video streaming algorithm for
improving the quality of the ROI.

• Viewport-adaptive delivery: For reducing the bandwidth
requirement while maintaining the quality of experience,
an viewport-adaptive video distribution scheme was pro-
posed in [5]–[10]. It aimed to deliver the video data ac-
cording to the viewer’s viewport, where more bandwidth
may be allocated to the viewport region in comparison to
sending the full panoramic video. Firstly, the viewport-
adaptive algorithm is more bandwidth-efficient than de-
livering the full panoramic videos. Moreover, it may be
readily integrated with dynamic adaptive streaming over
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Fig. 2: Demonstration of two viewers’ viewports.

HTTP (DASH) protocol and the HTTP protocol by using
tile-based delivering schemes.

• Virtual cinematography: Chang et al. [11] proposed
a non-heuristic algorithm to model the composition
styles of professional photographs within a panoramic
panoramic scene by analyzing the structural features and
the layout of visual saliency. Su et al. [12] utilized
dynamic programming to find the optimal human-like
camera trajectory, which may be used for deriving the
viewers’ viewport. Hu et al. [13] proposed a 360° pilot
scheme to predict the next viewport using the selected
historical viewports and the characteristics of objects,
which include their appearance, motion and locations.

Viewport prediction may be utilized in various applica-
tions of panoramic videos, such as ROI based compression
[4], virtual cinematography [11]–[13], rendering [14] and
viewport-adaptive delivery [6]–[10]. The viewports of viewers
only occupy a small portion of panoramic videos, while the
remaining parts are invisible to the viewers as exemplified by
Fig. 2. Hence, massive bandwidth is required for distributing
these panoramic videos intactly. As a solution, viewport-
adaptive delivery schemes adaptively allocate the bandwidth
for the ROI signals and ignore the remaining regions, thereby
reducing the required bandwidth for delivering panoramic
videos. Qian et al. [15] investigated the weighted linear
regression (WLR) model for predicting the future viewport
using historical viewport trajectory, which verifies that future
viewports are correlated with their historical trajectory. Based
on the panoramic content, saliency map [16] and optical flow
[17] were investigated to predict the ROI by Fan et al. [18].

Motivated by the viewport-adaptive panoramic video de-
livery solutions, this paper aims to predict multiple future
viewports of a single viewer. Therefore, the accuracy of
predicted viewport may significantly affect the performance of
viewport-adaptive panoramic systems, while larger number of
predicted viewports correspond to lower network delay. For
determining the ROI of a viewer, we employ the historical
viewport trajectory and the foreground object1 attracting the
focus of the viewer. We observe from the dataset [19], [20]
that viewers sustain their attention on some foreground objects,
hence their viewports may change in a similar pace with these
objects. Furthermore, in a panoramic video containing multiple

1Take a movie as an example, people may always focus on their favorite
stars.

objects, the viewers may focus on some of these objects, while
their viewports tend to follow their favorite objects. We employ
the tool of OpenCV for multi-object tracking [21]–[24]. Since
the long short-term memory (LSTM) network [25], [26] is a
powerful mechanism of solving sequence problems [27], [28],
we propose a deep learning-based viewport prediction scheme
for estimating the future viewport trajectory for a sequence
of future frames, namely HOP, where the historical viewport
trajectory and the tracking of objects are jointly exploited by
the LSTM network.

Our main contributions are listed as follows:
(1) We propose a HOP scheme for predicting multiple future

viewports, and the experiments validate the effectiveness of
our solution.

(2) We are the first to exploit object tracking along with
the historical viewport trajectory for improving the accuracy
of the viewport prediction.

(3) We propose a “trajectory translation” algorithm to solve
the discontinuity issue of viewport trajectory.

The rest of this paper is organized as follows. In section II,
we detail the architecture of the proposed HOP scheme. Then
the performance of the HOP scheme is presented in Section
III. Finally, Section IV concludes the paper.

II. PROPOSED APPROACH

In this section, we commence by introducing the prob-
lem formulation, followed by detailing our framework. The
“trajectory translation” and “trajectory selector” blocks of the
architecture will be detailed in section II-C and section II-D,
respectively. Notations employed are defined in Table I.

A. Problem Formulation

Since panoramic video carries a 360-degree view of the
designated scene, typically it is substantially larger than the
traditional video. Moreover, the invisible region of panoramic
video is also delivered through the network, which causes
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Fig. 3: Timeline of a viewport trajectory
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Fig. 4: Architecture of our HOP scheme

massive bandwidth waste. Hence, we aim for predicting future
viewports for viewport-adaptive panoramic video delivery,
where more accurately predicted viewports lead to lower
bandwidth cost.

For predicting the viewport of a future frame, we exploit two
aspects: the historical viewport trajectory and the content of
panoramic video. As shown in Fig. 2, viewers may be attracted
by different regions of the same panoramic frame. Hence, the
historical viewport trajectory for different viewers are also
different. Again, viewports of a historical trajectory may be
highly correlated, hence a future viewport may be estimated
from the viewer’s historical trajectory. In spherical coordinate
system, we denote the viewer’s viewport of the tth frame as
vt = (λ, φ), where λε [−π, π] and φε [−π/2, π/2] indicate
the corresponding longitude and latitude, respectively. Fig. 3
illustrates the timeline of a viewport trajectory. Furthermore,
l historical viewports may be expressed as

{vt}0t=1−l = {v1−l, v2−l, ..., v0} . (1)

Additionally, viewers tend to sustain their attention on
specific content of the panoramic video. Although two viewers
may have different viewports as shown in Fig. 2, the over-
lapped ROI of them may be extracted and utilized for predict-
ing future viewport trajectory. Initially, we extract the common
ROI of the next k frames {ft}kt=1 in the panoramic video. We
observe from viewport trajectory that viewers are more likely
interested in foreground objects. Viewers’ viewport trajectories
are associated with the motions of multiple foreground objects.
Therefore, we use the multi-object tracking tool of OpenCV
for recording motions of these objects in the panoramic video.
The motions of d objects in the next k panoramic frames may
be expressed as

S =
{{
o11, ..., o

1
k

}
, ...,

{
od1, ..., o

d
k

}}
. (2)

Our HOP scheme aims to combine the historical trajectory
{vt}0t=1−l and the motion tracks of the multi-object S. Then
the predicted viewport of kth frame may be formulated as

TABLE I: Symbol definition

Symbol Definition

l the length of the historical viewport trajectory

k the index of the viewport to be predicted

vt the viewport vt = (λ, φ) of the tth frame, where λ and
φ denote the longitude and the latitude, respectively

v0 the viewport of the current frame

{vt}0t=1−l l historical viewports, containing the current viewport v0

vt the translated version of vt

{w̄t}kt=1 the viewports generated by the LSTM Cell-1 network
with {v̄t}0t=1−l as the input

{ft}kt=1 k panoramic frames of the future

oit the location of the ith object in the tth frame

αi the spatial angle between the object oit and the viewport
vt

m the index of the object having minimum spatial angle α

ōmt the translated version of omt

{ct}kt=1 the fused vector of {w̄t}kt=1 and {ōmt }kt=1

{v̂t}kt=1 the viewports of the predicted k frames

v̂k = HOP
(
{vt}0t=1−l ,S

)
. (3)

B. Architecture

The architecture of the HOP scheme is illustrated in Fig. 4,
which consists of three parts, namely the historical trajectory,
the object tracking and the fusion.

1) Historical trajectory: The “historical trajectory” part of
Fig. 4 aims to predict the future viewport trajectory depending
on the corresponding historical trajectory. The viewport trajec-
tory {vt}0t=1−l, as exemplified in Fig. 4, contains l historical
viewports including the current viewport v0. The viewport
v0, namely the rear of the historical trajectory {vt}0t=1−l, is
the starting point of the predicted viewport trajectory {v̂t}kt=1

for the k future frames. However, we observe that there is a



dramatic overturn around ±π in longitude, which breaks the
continuity of this historical trajectory. Hence, the “trajectory
translation” block of Fig. 4, as will be detailed in Section II-C,
is introduced for mitigating this “longitude overturn” issue of
the historical trajectory. The translated trajectory generated by
the “trajectory translation” block, namely {v̄t}0t=1−l, is utilized
by the LSTM Cell-1 network for generating the predicted
trajectory {w̄t}kt=1, as shown in Fig. 4. Note that each viewport
is determined by a pair of longitude and latitude, as defined
in Table I. At this stage, the resultant of predicted trajectory
purely depends on the historical trajectory.

2) Object tracking: The “object tracking” part of Fig. 4 is
designed for obtaining the motion trajectories of foreground
objects, which will be utilized for predicting the viewport
trajectory. Firstly, the motion trajectories of multiple objects S
are extracted from the successive k panoramic frames {ft}kt=1.
The “trajectory selector” block of Fig. 4, as will be detailed in
Section II-D, aims to find the motion trajectory of the “key”
object2. Generally, the object closest to the current viewport
will be selected as the “key” object. The motion trajectory
of the “key” object is denoted as {omt }

k
t=1, which will be

translated to {ōmt }
k
t=1 and be concatenated with {v̄t}0t=1−l by

the “trajectory translation” block of Fig. 4.
3) Fusion: The “fusion” part aims to derive the refined

version of the predicted trajectory, namely {v̂t}kt=1 in Fig. 4,
where the predicted trajectory {w̄t}kt=1 and the selected mo-
tion trajectory {ōmt }

k
t=1 are jointly exploited. Specifically, the

vector {ct}kt=1 is concatenated from the predicted trajectory
and the selected motion trajectory. Given the vector {ct}kt=1,
the predicted viewport trajectory is generated by the LSTM
Cell-2 network of Fig. 4. The “reversed translation” block
of Fig. 4 reversely performs the translation for obtaining the
rectified predicted trajectory {v̂t}kt=1.

C. Trajectory Translation

Since the viewer may watch the panoramic video from
arbitrary direction, the viewport trajectory is equivalent to a
spherical arc as exemplified in Fig. 5a. Again, the viewport
trajectory may have an overturn in the longitude coordinate
around ±π. Alternatively speaking, the viewport trajectory
may cross the ±π in longitude, as shown in Fig. 5a. This
discontinuity issue may confuse the LSTM network when
generating the predicted trajectory. Therefore, the “trajectory
translation” block of Fig. 4 is introduced for avoiding this
discontinuity.

Generally, the “trajectory translation” block aims to concate-
nate multiple discontinuous trajectories to a single continuous
trajectory. An initial spherical arc is shown in Fig. 5a, which
consists of two discontinuous longitude sections, namely [-
8π/9,−π] and [+π,+8π/9]. The processes of the “trajectory
translation” block are listed as follows:

(1) Translate the longitude λ1−l of the first historical
viewport v1−l (λ, φ) to 0 radian in longitude, and then the

2Viewers may focus on some specific objects, such as a movie star, a car
or an animal. In this paper, we refer to it as the “key” object.
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Fig. 5: Trajectory translated to 0 radian in longitude.

rest of the spherical arc {λt}02−l is translated to
{
λ̄t
}0
2−l

with
the same size.

(2) Estimate the continuity of the ith and the i − 1th

viewports using the distance ‖ λ̄i − λ̄i−1 ‖. If the longitude
difference between λ̄i−1 to λ̄i is larger than π, λ̄i will be
rectified with a deviation of ±2π.

The “trajectory translation” block may be formulated as
follows:

{
λ̄t
}0
t=1−l

= {λt}0t=1−l − λ1−l, (4a)

λ̄i =


λ̄i + 2π λ̄i − λ̄i−1 ≤ −π,
λ̄i − 2π λ̄i − λ̄i−1 ≥ π,
λ̄i ‖ λ̄i − λ̄i−1 ‖< π.

(4b)

Upon completing the trajectory translation, the longitude
of the translated historical trajectory will be around 0 ra-
dian, thereby avoiding the discontinuity issue. The translated
trajectory {v̄t}0t=1−l is shown in Fig. 5b, where its latitude
coordinate remains the same.

D. Trajectory Selector

In this section, we detail the “trajectory selector” block
of Fig. 4, which generates the motion trajectory {omt }

k
t=1 of

the “key” object. Again, different viewers may have different
types of viewports, as shown in Fig. 6, where three types of
viewports are exemplified. The considered panoramic frame f0
contains multiple (six) foreground objects, where the location
of the ith object is denoted as oi0. We summarize these types
of viewports as follows:

• Single object: There is only one object in the current
viewport v0, which means that only a single object is
visible to the viewer. Therefore, this single object is the
“key” object.

• Multiple objects: There are multiple objects in the current
viewport v0. The object closest to the viewport center is
deemed as the “key” object, since viewers tend to focus
on the center of their visual field.

• None object: None object is visible to the viewer, which
may be interpreted as that the viewer is switching his
“key” object.
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Fig. 6: Different types of viewports and the “key” object
selection.

Given the locations
{
oi0
}d
i=1

of d objects in frame f0, the
“key” object om0 may be found by minimizing the spatial angle
αi, which is calculated as

αi = arccos
(
v0 (x, y, z)� oi0 (x, y, z)

)
, (5)

where the symbol � means vector dot product. Additionally,
v0 (x, y, z) and oi0 (x, y, z) are the corresponding planar coor-
dinates of viewport v0 (λ, φ) and object oi0(λ, φ), where the
Geographic coordinates may be transformed to the Cartesian
coordinates as follows

x = cosφ cosλ,

y = cosφ sinλ,

z = sinφ.

(6)

Then, the “key” object is given by

αm = min {α1, ..., αi, ..., αd} ,
s.t. αm ≤ π/2.

(7)

Therefore, the index of the “key” object is m, while its
corresponding trajectory is expressed as {omt }

k
t=1. The “key”

object locates in the current viewport v0. In the “none object”
case, the predicted viewport trajectory may be independent of
these objects, since the “trajectory selector” block may not
output any motion trajectory.

III. EXPERIMENTS

In this section, we conmerce by defining the the evaluation
metrics, followed by introducing the benchmarkers. After-
wards, we describe the panoramic video dataset employed in
the simulations. Finally, the system performance is presented
and analyzed.

A. Evaluation Metrics

Since the predicted viewport v̂k and the ground truth vk
are on the sphere surface, three-dimensional coordinates are
required to express the linear growth of the distance. For
evaluating the distance between the predicted viewport v̂k and
the ground truth vk of the kth frame, we define the angle error
(AE) as

AE = arccos (v̂k (x, y, z)� vk (x, y, z)) , (8)

where v̂k (x, y, z) and vk (x, y, z) are the Cartesian coordi-
nate version of v̂k (λ, φ) and vk(λ, φ). The range of AE is
[0, π], while smaller AE indicates more accurate prediction.
Furthermore, mean angle error (MAE) may be employed for
measuring the average prediction accuracy, which is defined
as

MAE =
1

N

N−1∑
n=0

AEn. (9)

Generally, with smaller AE, lower bandwidth is required for
delivering panoramic videos. However, the AE may fluctuate
for different panoramic frames. For example, the AE may be
more stable, when the viewer is focusing on a slow-moving
object. To associate the AE with the fluctuation of the required
bandwidth, we define the metric mean square deviation (MSD)
to evaluate the stability of AE. The MSD is formulated as

MSD =
1

N

N−1∑
n=0

(AEn −MAE)
2
. (10)

B. Benchmarkers

There is a paucity of contributions on the viewport trajec-
tory prediction. We benchmark our HOP scheme against the
weighted linear regression (WLR) [15] and the LSTM based
prediction schemes [18].

• WLR [15]: As an enhanced version of linear regression,
WLR has unequal coefficient weights, which increases
along with the time-axis of the historical viewport trajec-
tory. In other words, temporally closer viewports tend to
exhibit higher correlations. However, WLR predicts the
future trajectory purely relying on the historical viewport
trajectory, while ignoring the features of the panoramic
video content.

• LSTM [18]: Considering the expertise of LSTM in
sequence generation, the tile-based LSTM network is
conceived for viewport prediction using the orientation,
saliency map and optical flow map of historical frames.
However, the saliency map and the optical flow map are
prohibited in this benchmarker.

• HOP without object tracking (HOP w/o tracking): HOP
w/o tracking is a simplified version of HOP, where the
object tracking part is disabled. This benchmarker is
considered for providing further insights into the object
tracking part of Fig. 4.
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Fig. 7: CDF for different prediction length.

TABLE II: MAE and MSD comparison of benchmarkers

Method MAE(radian) MSD(radian)

5th 10th 15th 20th 25th 30th 5th 10th 15th 20th 25th 30th

WLR [15] 0.090 0.147 0.229 0.280 0.349 0.392 0.106 0.170 0.254 0.302 0.365 0.402

LSTM [18] 0.052 0.095 0.192 0.232 0.317 0.404 0.067 0.120 0.222 0.270 0.368 0.391

HOP w/o tracking 0.048 0.090 0.168 0.207 0.276 0.321 0.066 0.115 0.186 0.235 0.302 0.329

HOP 0.047 0.088 0.152 0.195 0.261 0.298 0.067 0.115 0.189 0.239 0.304 0.340

C. Dataset

Two datasets [19], [20] are employed, and they contains
head movements of 21˜50 viewers when watching panoramic
videos. More specifically, each video has a length of 60 to
70 seconds with frames per second (FPS) of 30. In numerous
practical applications, the motion objects may occupy a large
proportion of panoramic videos, such as sports, crowded
streets etc. We mainly focus on these panoramic videos,
while panoramic videos without any motion object are not
considered. For keeping data consistency, the head movement
data represented in four elements [20] is transformed to euler
angle.

D. Performance

This section evaluates the performance of our HOP scheme
for predicting the future viewports of a single viewer. We

benchmark the HOP scheme against the WLR scheme, the
LSTM scheme and the HOP w/o tracking scheme. Specifically,
the performance of k = [5, 10, 15, 20, 25,30] is presented.

Evaluation of the CDF of AE. Fig. 7 shows the cumulative
distribution function (CDF) of AE, where the y axis indicates
the cumulative probability and x axis means the AE. We
observe from Fig. 7 that our HOP scheme outperforms the
benchmarkers in all scenarios in terms of the cumulative prob-
ability. The CDF value decreases with an increasing k, which
means that the predicted viewport becomes less accurate, when
the predicted frame length is larger. Specifically, in Fig. 7f, the
HOP scheme achieves a CDF gain of about 14% in comparison
to both of the WLR and LSTM schemes, when the AE ranges
from 0 to 0.3.

Evaluation of the MAE and MSD. Table II shows the
MAE and MSD results of all benchmarkers with various pre-
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Fig. 8: Longitude and latitude comparison of our HOP scheme and the HOP w/o tracking scheme.

Fig. 9: Comparison of viewport prediction for the 15th frame using various panoramic videos: the HOP, WLR and LSTM
schemes are benchmarked. The leftmost column shows the original panoramic frames, while the other columns demonstrate
the sampled results of predicted viewports within 1 second. The red, green and blue circles indicate the viewports generated
by the HOP, WLR and LSTM schemes, respectively, while the yellow circle represents the ground truth viewport.

diction length. In terms of MAE, our HOP scheme outperforms
the WLR scheme by 23.9% to 47.7%, while gains of 7.3%
to 26.2% are observed against the LSTM scheme, when the
prediction length k increases from 5 to 30. In comparison
to the HOP w/o tracking scheme, our HOP scheme reduces
MAE by 0.023 at the prediction length of 30. In terms of
MSD, the HOP w/o tracking scheme exhibits lower MSD
than our HOP scheme and outperforms the other benchmakers.
Our HOP scheme is only second to the HOP w/o tracking
scheme and is more stable in AE compared with the WLR and
LSTM schemes. The performance improvement of our HOP
scheme is attributed to: (1) Our HOP scheme combines object
tracking and the historical viewport trajectory, while the WLR
and LSTM schemes generate future viewports purely relying
on the historical viewport trajectory. (2) Our HOP scheme

may benefit from the trajectory translation for avoiding the
“longitude overturn” issue.

Evaluation of the “trajectory translation”. We benchmark
the HOP w/o tracking scheme against the WLR and LSTM
schemes. As shown in Table II, by averaging the range of
k = 5 to 30, the HOP w/o tracking scheme decreases the
MAE values by 29.4% and 11.6% in comparison to the
WLR and LSTM schemes, respectively, which validates the
effectiveness of the trajectory translation. Meanwhile, the HOP
w/o tracking scheme decreases the MSD by 25.8% and 11.4%
in comparison to the WLR and LSTM schemes, respectively.
Therefore, we may benefit from the “trajectory translation”
block for decreasing the prediction error while maintaining
stable bandwidth consumption.

Evaluation of the object tracking. In Fig. 8, we compare
longitude and latitude trajectory of our HOP sheme and the



HOP w/o tracking scheme for predicting the future 15th

viewport. Observe from Fig. 8, the longitude exhibits larger
range than latitude does for the 500 frames, which indicates
that viewers tend to move more in the horizontal direction
instead of vertical direction. When the orientation of the
ground truth viewport changes, the HOP w/o tracking scheme
exhibits an increasing AE, while our HOP scheme is capable of
effectively adjusting the predicted viewport. Hence, our HOP
scheme may benefit from the object tracking, especially when
the orientation of the viewport trajectory changes.

To provide further insights into our experiments, a variety
of panoramic frames are visualized in Fig. 9 for predicting the
15th viewport. In the first row of Fig. 9, the main motion object
is a fast-moving biker. The LSTM and WLR schemes exhibit
modest AE, while our HOP scheme provides more accurate
viewport prediction with the aid of the object tracking. In
the middle and bottom rows of Fig. 9, the panoramic videos
contain multiple objects, where the middle row containing the
horses exhibits larger motion in comparison to the bottom
row containing a slow-moving rhino. Therefore, the predicted
result of the rhino sequence is better than that of the horses
panoramic video. In both scenarios, our HOP scheme exhibits
better performance than the other schemes. The results reveal
that our HOP scheme predicts more accurately than the WLR
and LSTM schemes, since the multi-object tracking part is
employed.

IV. CONCLUSION

In this paper, we proposed our HOP scheme to predict the
viewport trajectory for the future frames. The multi-object
tracking and the historical viewport trajectory were jointly
exploited. Moreover, considering the fact that multiple objects
may exist in a panoramic video, an object selection algorithm
was designed. Simulation results shows that our HOP scheme
substantially outperforms the benchmarkers. Our future work
will extend the HOP scheme to three-dimensional panoramic
videos, where the depth map may be exploited.
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