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Abstract—Developing computational algorithms to model the
biological vision system has challenged researchers in the com-
puter vision field for several decades. As a result, state-of-the-art
algorithms such as the Convolutional Neural Network (CNN)
have emerged for image classification and recognition tasks with
promising results. CNNs however remain view-specific, producing
good results when the variation between test and train data
is small. Making CNNs learn invariant features to effectively
recognise objects that undergo appearance changes as a result
of transformations such as scaling remains a technical challenge.
Recent physiological studies of the visual system are suggesting
new paradigms. Firstly, our visual system uses both local features
and global features in its recognition function. Secondly, cells
tuned to global features respond quickly to visual stimuli for
recognising objects. Thirdly, information from modalities that
handle local features, global features and color are integrated
in the brain for performing recognition tasks. While CNNs rely
on aggregation of local features for recognition, these theories
provide the potential for using global features to solve transfor-
mation invariance problems in CNNs. In this paper we realise
these paradigms into a computational model, named as global
features improved CNN (GCNN), and test it on classification of
scaled images. We experiment combining Histogram of Gradients
(HOG) global features, CNN local features and color information
and test our technique on benchmark data sets. Our results show
GCNN outperforms traditional CNN on classification of scaled
images indicating potential effectiveness of our model towards
improving scale-invariance in CNN based networks.

Index Terms—convolutional neural network, scale invariance,
invariant features, global features, local features, histogram of
gradients, color histogram

I. INTRODUCTION

Whilst evolution has made our vision system a state-of-the-
art biological object detector, recognition engine and classifier,
making computer vision algorithms achieve the same remains
a challenge and an active field of research. Efforts by computer
scientists to model this behaviour has resulted in various
techniques from which most notable in the last decade has
been the Convolutional Neural Network (CNN) [1]. CNNs
have achieved great success in numerous computer vision
tasks and are applied in various practical application domains
such as in self driving cars, facial recognition authentication
systems such as in mobile phones, medical image processing
and quality assurance in manufacturing industries.

CNNs however still remain view-specific, producing good
results when the variation between test and train data is small.

This means when invariances are introduced in test images,
CNN exhibit considerable drop in accuracy [2]–[4]. Invariance
refers to the ability of recognising objects even when the
appearance varies in some ways as a result of transforma-
tions such as translations, scaling, rotation or reflection. The
biological vision system of primates on the other hand learn
invariant features and are hence able to recognise objects
regardless of their pose, size or orientation. It remains a
technical challenge to make CNNs learn invariant features to
effectively recognise objects that undergo appearance changes
as a result of transformations such as scaling.

Existing anatomical and physiological models of the visual
system suggest visual stimuli captured on the retina propagates
via low level cells to complex cells [5]–[8]. The dense low
level cells such as V1 cells in the ventral stream are highly
responsive to extracting low level local features such as lines,
curves and their orientations, while complex cells such as the
AIT aggregates these information into a higher representative
form referred to as global features. Whilst this model suggests
the final global features from AIT are delivered to the cortex
for performing the vision task at hand, recent physiological
studies are suggesting new paradigms on the workings of the
visual system. Firstly, studies of the visual pathway reveal
that the visual system uses both local and global features
in its recognition function. Secondly, cells tuned to global
features respond to visual stimuli much quickly than to cells
tuned on local features leading to suggestions of a unique
response strategy of the visual system to speed-up recognition.
This suggests cells (neurons) tuned to global features can be
activated independently by visual stimuli rather than waiting
for information to propagate through low level cells first.
And lastly, information from three modalities namely local
features, global features and color information are integrated
and collectively used for recognition purposes [9], [10]. Earlier
works of Navon [11] and Avargues-Weber et al. [12] have
suggested the use of global features as an important ingredient
for visual recognition tasks.

CNNs are based on the local to global feature extraction
strategy of the visual system and uses layers of convolution
operations to extract features. While later layers in a CNN can
be regarded as complex cell layers it is difficult to ascertain
or segregate these layers from other layers. Hence for this
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reason, we propose opening a new visual stimuli pipeline
that explicitly extracts global features using global feature
extraction methods. We would like to emphasise that in our
work global features extracted at the end of a CNN feature
extractor pipeline are different to the global features extracted
by global feature extraction methods. Further, while it is still
unclear how the visual system learns invariant features to
solve invariance problems, we hypothesis that global features
and color information play an important role in this function
supported by evidence provided in Huang et al. [9]. While
the idea of using global features for visual recognition task
is not new, these theories do provide the potential for using
global features to solve transformation invariance problems in
CNNs. Also, we acknowledge there are several invariances
to consider such as translations, rotations and color changes
but for the purpose of this paper we consider solving scale
invariance classification of images.

In this paper, we address improving classification of scaled
images by exploiting these paradigms and propose an ensem-
ble neural network model named as global features improved
CNN - (GCNN). GCNN allows CNNs to better classify scaled
images by combining both global and local features of the
target image during network training. This is achieved by ex-
tracting global features from feature descriptor methods, local
features from CNN independently and then fusing them with
color information in the fully connected layer of the network.
We experiment with Histogram of Gradients (HOG) [13] as
our global feature descriptor method. For color information
we use normalised color histograms.

We conduct extensive experiments to evaluate scale invari-
ance performance of GCNNs. We use two well-known CNN
architectures in our work as our benchmark models, namely
VGG16 [14] and LeNet5 [1]. Tiny ImageNet [15] and Fashion-
MNIST [16] are used as our benchmark datasets. First the
datasets are trained on the CNNs to establish benchmark
results for comparison. Then we transform the physiological
model proposed by Huang et al. [9] into a 3-channel com-
putational model referred to as GCNN. This is achieved by
integrating CNN as local feature extractor in the first channel,
HOG as global feature extractor in the second channel and
a routine to extract normalised color histogram in the third
channel. We train GNN on the same datasets using the same
training constraints as the benchmark CNNs such as number
of training epochs, learning rate, loss function and optimizer.
We study the performance of GCNN in classifying image
samples on specific scale categories. We generate these scale
categories by selecting images from the test dataset and scaling
them. In total we generate 7 scale categories. For consistency
we use the same scaled samples on all models developed.
In all our case studies, performance of GCNN are compared
with the classification scores from benchmark VGG16 and
LeNet5 models on all scale categories. Whilst, on the basis of
our experimental results, VGG16 and LeNet5 models show
some degree of recognising scaled images, in comparison
GCNN demonstrates higher geometric invariance in terms of
recognising more scaled images accurately despite changes

in scale. Thus, in applications where handling objects with
multiple scales is desired, GCNN will prove beneficial.

This paper aims to contribute to the body of knowledge
towards finding effective solutions to classification of scaled
images by:

1) showing the usefulness of combining global features and
color information together with CNN features, using a
computational model based on the 3-channel physiolog-
ical model such as one proposed by Huang et al. [9],

2) showing a probable validation of the plausible model of
the vision system that indicate information processed in
three distinct modalities are used for recognition tasks,
and

3) showing global features such as HOG as well as color
information prove more useful when applied on 3-
channel color images than on grey-scale images.

The rest of the paper is organised as follows: Section II
reviews related work while Section III introduces our model.
Section IV describes our experiment design and results are
presented in Section V. We summarise and suggest future
research directions in Section VI.

II. BACKGROUND

We summarise below the main advances in research in
vision systems providing the basis for the current research
and the presented outcomes.

A. Global Features as a Modality in the Vision System

Recent research by Park and Lee [17] show that humans
tend to view wide areas around the target pixel to obtain
spatial relationships between features. This claim is further
supported by Huang et al. [9] through their research that
the visual system in humans, non-human primates and honey
bees are more sensitive to global features than local features.
To test this hypothesis the authors trialled their experiments
on behaving monkeys where they were trained to make a
saccade to a target in the black background. These targets
represented shapes using local features (solid shapes such
as a circle) and global features (such as a hole in circle).
Their experiments showed detecting a distinction or change
in the global feature was faster than detecting a distinction or
change in a local feature. This means the visual system uses
information collected from wide areas around the target pixel
(global features) to obtain spatial and semantic relationships
for identifying objects prior to using local features. They also
placed emphasis on the importance of color as a key modality
in recognition of objects. Based on their findings they proposed
a plausible model of the vision system as described in Fig. 1
from which we adopt layers (a), (b) and (c) since our main
focus is recognition of scaled images.

B. Global Features

The term global features in computer vision refers to de-
scribing an image as a whole [18]. They are used to generalise
the distribution of the visual information in the object through
various statistics that represent information on contours, shape
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Fig. 1: A new model of vision proposed by Huang et al.
[9]. It describes a 3-channel architecture processing color,
global and local features as separate modalities (layer (b)),
before combining the features from the modalities for object
recognition (layer (c)).

and texture in the image and are useful for tasks such as
object detection and classification. Local features are used to
describe image patches (key points in the image) of an object
[19]. These features represented as lines and curves are basic
building blocks of object shapes and are useful for tasks such
as object recognition.

Investigating the impact of incorporating global feature
extraction strategy in CNNs has attracted some attention in the
research community. For example, Zheng et al. [20] examined
how pre-trained Alex-Net and VGG-19 networks process local
and global features. Several studies further report use of global
feature descriptors to solve image classification and object
detection problems such as HOG [13], [21], invariant moments
[22], [23], uniform local-binary patterns (LBP) and discrete
cosine transform (DCT) [24], discrete fourier transform (DFT)
[10], color and entropy statistics [19], and shape index [18] but
mostly without combining with CNNs. A similarity between
some of these work and our method is that features from
global feature descriptors are extracted as separate modalities
in parallel and later fused in the model architecture.

Another application of global features is demonstrated in the
work of Kerdvibulvech and Saito [25]. However, in contrast
to local-global feature extraction in CNNs, they proposed a
sequential model where they applied global processing on the
input image followed by local processing to extract features
for detection of the positions of fingertips of a hand playing a
guitar. In the context of their work, a global feature descriptor
(Gabor filters) was applied twice - first on the entire hand skin
area and then on a localised region of interest (ROI).

Our research reveals only few studies have shown combined
use of global feature descriptors with CNNs. A combined
invariant moments and CNN based approach for image anal-
ysis is proposed by Mahesh et al. [26]. However, instead of
combining moments based global features with local features
the authors use zernike moments to derive the initial training
convolution kernel coefficients by changing the moment or-
der. Their results showed zernike based kernels outperformed

CNN architectures that used random kernels as initial training
parameters on image analysis and classification.

Furthermore, a neural network model is proposed by Zhang
et al. [27] called histogram of gradients improved CNN
(HCNN) that combines texture features from traditional CNNs
and structural features from HOG to cover the shortness
of CNNs in recognising fooling images (where some local
features are chaotically distributed). Fusion of global with
local features made their network become more sensitive to
fooling images. We follow a similar approach in our work
and extend it to evaluate on scaled images.

C. Color

Apart from texture and shape information, color represents
an important filter our vision system also uses for object
recognition [9]. Making CNNs learn classification on color
distribution is studied in the work of Rachmadi et al. [28]. The
authors trained their CNN architecture on images converted
to HSV and CIE Lab color spaces and successfully applied it
for vehicle color recognition with improved performance over
traditional CNNs. Their method however does not employ use
of color as a separate modality representing global feature
information that can be used with CNNs in parallel. In a
similar work Chowda & Chen [29] explore color spaces and
show that certain classes of images from their datasets are
better represented in particular color spaces. In our work, we
treat color as a separate modality for image information and
instead of training images in different color spaces we extract
and train normalised color histogram of images by fusing them
with local and global features.

D. Scale-Invariant CNNs

In this space, studies have largely concentrated on creating
pyramid based CNN architectures to handle scale-invariant
classification such as image pyramids, feature pyramids and
filter pyramids. In image pyramid based CNN, copies of the
input image are generated at multiple scales forming a pyramid
of images. They are processed in the convolution layer using
the same filter, generating feature maps of different sizes
(feature pyramid). These feature maps are then normalised to
obtain the same spatial dimensions and pooled to obtain a lo-
cally scale-invariant representation. The work of Kanazawa et
al. [30] and Xu et al. [31] follow this process. We note scaling
images in this way is similar to applying scale augmentation
to datasets. In our work we apply no augmentation.

By default, deep CNNs generate a conical hierarchy of
feature maps (feature pyramid). However, in the simplest CNN
there are no connections between feature maps of different
layers. This property is studied in the work of Lin et al. [32]
where they show that by developing lateral connections from
each feature map in the pyramid makes them scale-invariant,
as a change in an object’s scale is offset by shifting its level
in the pyramid. Similar architectures are proposed in works of
[33]–[35].

Based on Google’s INCEPTION model [36], several other
similar models propose the use of kernels of different sizes
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Fig. 3: Histogram of Gradients (HOG) descriptor flowchart.

forming a pyramid of filters [37]–[41]. The models use multi-
scale filters to capture context from different spatial areas of
the input features to improve image classification. Based on
this concept, Kumar et al. [41] proposed a model in which
they used two feature extraction channels dedicated to local
and global processing of input data in parallel. They relied on
the concept of using large kernels [42] in a multi-scale kernel
setting in their global processing channel to extract features
from relatively larger spatial area of the image. For local
processing they used the LeNet5 [1] feature extraction layers.
The outcome (features) from each channel is processed using
a decentralised multisensory information integration model
[43]. That is, the local and global features are first processed
by a small neural network (local processor) separately and
their outcomes processed by another central processor neural
network for final classification. Their model showed promising
results when tested on classification of scaled images. We
follow a similar model architecture in our work but extend it to
contain three channels to accommodate color information as a
separate modality. In addition we remove the local processors
and simply apply concatenation of features from the three
channels for processing by a classifier.

Finally, Jaderberg et al. [2] introduced a trainable module

called Spatial Transformer that uses a set of parameters that
spatially transforms feature maps, and updates these param-
eters during the learning process, thus learning the spatial
transformation that should be applied to the feature map.
However, this technique limits the number of objects that can
be modelled.

In our work, we avoid complicated pyramid based methods
and adopt a standard CNN as our local feature extractor.
Further, despite the existence of local, global and color feature
extraction techniques, the fusion of outputs from these tech-
niques using a physiological model of vision as such as the one
proposed by Huang et al. [9] have not been tested for image
classification. These approaches combined have also not been
tested to ascertain the networks ability to be spatially invariant.
This paper attempts to fill this gap.

III. MODEL
The ensemble GCNN model comprises of six main parts

(A-F) as shown in Fig. 2. They are explained in the following
sub-sections.

A. GCNN

Given the localised patch-wise convolution by small sized
kernels (relative to the image size), CNNs lose the spatial



and geometry information from images which may prove
essential for learning invariance. To address this we focused on
combining global features from training data. To this end we
develop a novel model called global features improved CNN
(GCNN) that comprises of three pipelines in its architecture.
The pipelines are dedicated to extracting local, global features
and color information from the input data independently (Fig.
2 (B-D)). In the local feature extractor pipeline (Fig. 2 B)) we
deploy benchmark CNN. The function of the CNN is to form
key point descriptions of the input images in the form of local-
global features. We implement the HOG feature descriptor
in the global feature extractor pipeline (Fig. 2 C)) in order
to extract contour features from images. Color information
from images is extracted in the form of normalised histogram
(Fig. 2 D)). The latter two layers do not require any trainable
parameters.

B. GCNN Forward Propagation Process

To achieve the forward pass function, an input image is
processed in parallel in the local, global and color feature
extractor pipelines respectively. The operation of the CNN part
of the network remains standard filtering the image through
several successive convolution, ReLU and max pooling layers
and producing a set of final feature maps as output. The same
batch of input images meanwhile are processed by the HOG
descriptor generating a set of normalised gradient descriptors.
A normalised color histogram is produced for the batch of
input images. Output from all pipelines are combined and
reshaped into a vector form in the flatten layer (Fig. 2 (E)).
This vector forms the input to the fully connected neural
network classifier in GCNN (Fig. 2 (F)).

C. GCNN Backward Propagation Process

The flatten layer plays a key role in the implementation
of the backward function. It receives gradients from the
network and unstacks or slices the gradients in the exact same
dimensions and shape of the input feature maps it received
during the forward pass from the local, global and color
feature extractor pipelines. Since there are three pipelines in
GCNN, the flatten layer returns three sets of gradients - CNN
gradients, HOG gradients and color gradients. The gradients
corresponding to the CNN pipeline (CNN gradients) are back
propagated through the layers using chain rule derivative
algorithm. Since there are no trainable parameters in the HOG
and color pipelines they terminate in the flatten layer.

D. HOG Feature Descriptor

In an image, abrupt changes in colour intensities pack
a lot of useful information such as on edges and corners
which are used to describe shapes in computer vision. Using
colour intensities in a localised portion of an image, HOG
feature descriptor generates a distribution in the form of a
histogram of directions of gradients (oriented-gradients) of
every pixel as well as its magnitude. The HOG algorithm
requires three important parameters. First, number of gradient
orientations (B) which will represent the bins in the histogram.

Each bin represents an angle from 0◦−180◦ in increments of
(180◦/B)◦. Second, the number of pixels p which is used to
divide an input image into small connected square regions
called cells each containing (p× p) pixels. Also required is a
parameter called block-size (b) that groups number of adjacent
cells. Example, consider an image of size (32× 32) pixels,
p= 4, block-size b= 4 and B= 8. Using these numbers, for the
given image there are 64 cells, 4×4 = 16 pixels in a cell and
4×4 = 16 blocks with 4 cells in a block. For each pixel in a
cell HOG calculates its the gradient orientation and magnitude
and using these updates the counts in the bin representing
the angular orientation of the gradient. In our example this
results in a 8-bin histogram for all cells. Given b = 4, the
HOG algorithm combines 4 adjacent cells’ histograms by
normalising them. Finally the normalised group of histograms
from all blocks represent the HOG feature vector H. In our
example H = 128 which is B= 8 multiplied by the numbers of
blocks (16). Fig. 3 shows the flowchart of the HOG descriptor
method implemented in our work.

E. Color Histogram

A color histogram describes the distribution of colors for a
whole image or for a region of interest within an image. The
advantage of using a color histogram is that it is invariant
to rotation, translation and scaling of an object [44]. The
disadvantage is that it does not contain semantic and spatial
information causing two images with different contents but
similar histograms to be classified same. To overcome this, we
use HOG descriptor in our work to extract spatial information.
For a given image I, its color histogram C is defined as a
vector C = c[1],c[2],c[3], ...,c[i], ...,c[N] where i represents a
color in the histogram, c[i] is the number of pixels of color i,
and N is the number of color bins in the histogram. In order
to compare images of different scales, we normalise Vector C
in the range [−1,1] given by C′ = (C−µ{I})/max{I} where
µ{I} and max{I} are the mean and max value of all pixels in
an image respectively.

IV. THE EXPERIMENTS

We describe the datasets, GCNN component architectures
and selected parameters and our experimental design in the
following sub-sections.

A. Dataset Description

We test GCNN on color images having red, green and
blue (RGB) channels, on the basis that our vision system
normally perceives a scene in color. However, we also wish
to evaluate GCNN on grey-scale images and confirm whether
results on color and non-color images are comparable. As such
the following datasets were selected for the experiments.

a) Tiny ImageNet: A subset of the ImageNet dataset
designed for visual object recognition research [45], Tiny
ImageNet [15] consists of 100,000 training images, 10,000
validation images and 10,000 test images in color. The images
are cropped and resized to 64× 64 pixels in RGB color
channels and are divided into 200 mutually exclusive classes,



TABLE I: Architecture of VGG16 [14] and LeNet5 [1] networks used in our experiments.

Model Layers

VGG16
(conv 3x3x64) → (conv 3x3x64) → (maxpool 2x2) → (conv 3x3x128) → (conv 3x3x128) → (maxpool 2x2) → (conv 3x3x256) →
(conv 3x3x256) → (conv 3x3x256) → (maxpool 2x2) → (conv 3x3x512) → (conv 3x3x512) → (conv 3x3x512) → (maxpool 2x2) →
(conv 3x3x512) → (conv 3x3x512) → (conv 3x3x512) → (maxpool 2x2) → (fc 4096) → (fc 4096) → softmax

LeNet5 (conv 5x5x6) → (maxpool 2x2) → (conv 5x5x16) → (maxpool 2x2) → (conv 5x5x120) → (fc 84) → (fc 10) → softmax

with 50 images in each class in the validation set. There are
no class labels provided for the test images, hence we use the
validation set as test images.

b) Fashion-MNIST: The Fashion-MNIST (FMNIST)
dataset [16] consists of 60,000 training images and 10,000 test
images of fashion products from 10 categories. The sample
images are grey-scale (1-channel) of size 28x28 pixels. The
training and test batches have equal distribution of the number
of samples from each class.

B. CNN Architectures and HOG Parameters

For benchmarking and local feature extractor part of GCNN
we use VGG16 and LeNet5 CNN models as described below.

a) VGG16 Network: Proposed by Simonyan & Zisser-
man [14], VGG16 is a popular CNN model used by researchers
in the computer vision field for image classification and
segmentation tasks. It was originally trained on ImageNet
dataset [45] that contains over 14 million images categorised
into 1000 classes. It achieved top-5 test accuracy of 92.7%
becoming the 1st runner-up in the ImageNet 2014 challenge
classification task behind GoogLeNet. Several configurations
of the VGG CNN exist, ranging from 11, 13, 16 and 19
weight layers. These configurations are labelled A-E and differ
only in the depth. In our work we use configuration D that
contains 16 weight layers comprising of 13 convolution and 3
hidden layers in the fully connected part of the network. All
convolution layers are configured with 3 x 3 filter sizes. The
network also uses maxpooling layers. Table I describes the
architecture of the VGG16 network. We train this network on
the Tiny ImageNet dataset. For each image, the final feature
map size is (512×2×2).

b) LeNet5 Network: Proposed by LeCun [1], the LeNet5
network in our work comprises of three sets of convolution
layers and two max pooling layers. The architecture is de-
scribed in Table I. We train LeNet5 on FMNIST dataset by
setting the hyper-parameter padding for the first and second
convolutional layers to 2 and 1 respectively. We use LeNet5 on
FMNIST dataset due to the relatively small sizes of the images
which are 28×28 pixels, and also research such as [46] show
the feasibility of using LeNet5 on small sized image datasets.
For each image, the final feature map size is (120×2×2).

c) HOG Parameters: We setup our HOG descriptor in
GCNN with 8 orientation bins, 4 pixels per cell and block-size
of 1. On Tiny ImageNet dataset this resulted in 2048 gradient
features per image and 392 features per image on FMNIST
dataset. We implemented our HOG using scikit-image image
processing library in Python.

d) Color Histogram Bins: Each pixel in our datasets
is normalised to a value in the range [0− 255] causing 256

TABLE II: Dimensions of the input components received by
the flatten layer and size of the final output vector for each
GCNN model.

Component
GCNN

(Tiny ImageNet)
GCNN

(FMNIST)
Feature

size
1D vector
conversion

Feature
size

1D vector
conversion

CNN features 512x2x2 2048 120x2x2 480
HOG features 2048 2048 392 392
Color features 256x3 768 256x1 256
Output vector 4864 1128

possible color values in each channel of the image. 256
therefore represents the number of bins for each channel in
the color histogram. For the 3-channel Tiny ImageNet dataset,
the normalised vector C′ from each channel is combined as a
single vector with length of 756 (256 ∗ 3). For the 1-channel
FMNIST dataset the length of C′ = 256.

e) Flatten layer: Table II summarises the number of
elements in the three input components feeding into the Flatten
layer and the size of the final output vector for each GCNN
trained on Tiny Imagnet and FMNIST datasets respectively.

C. Training Process

First we train the benchmark CNNs - VGG16 on Tiny
ImageNet and LeNet5 on FMNIST datasets separately. This
establishes our benchmark results against which we compare
results of GCNN networks. Then in a similar fashion we
establish results by combining the CNNs with HOG features
and color features. Hence we obtain a total of four trained
models for comparison (two models per dataset).

We perform end-to-end training of the VGG16 and VGG16
based GCNN networks on Tiny ImageNet dataset. We use
partial transfer learning on the VGG16 network whereby pre-
trained weights of the feature extractor part of the VGG16
network trained on the ImageNet [45] dataset are loaded in
the model for initial training. The last layer in the classifier is
replaced with a new layer containing 200 neurons to match the
number of classes in the Tiny ImageNet dataset. The weights
of the classifier layers are reinitialised. During training all
model weights are updated. The model is trained for 50 epochs
with a fixed learning rate of 10−4. For training LeNet5 and
LeNet5 based GCNN on FMNIST dataset, the learning was
adjusted to 10−1 for 2 epochs, 10−2 from epochs 3-50 and
decreasing it to 10−3 for the rest of training. These models
were trained from scratch for 100 epochs.

On all models, stochastic gradient decent and cross-entropy
are used as learning and loss functions respectively, weight
decay of 10−4 and momentum of 0.9. For training we use
batch size of 4 and 1 for testing. We implemented our models



Fig. 4: A sample scaled test image from datasets Tiny Im-
ageNet - n01910747 (jellyfish) (top) and FMNIST - bag
(bottom). The numbers above each image indicate the scale
factor (in %). Scale factor of 100 indicates no scaling.

using PyTorch version 1.2.0 on a Dell Optiplex i5 48GB RAM
computer with Cuda support using NVIDIA GeForce GTX
1050 Ti 4GB graphics card.

D. Preparing Scaled Images for Testing GCNN

We prepared scaled images for testing following the ap-
proach proposed in [41]. First, 7 scale categories are estab-
lished - [150,140,120,100,80,60,50]. Each number indicates
the scale factor (in percentage) applied to a test image.
Numbers > 100 indicate enlargement while < 100 indicate
reduction in the size of an image. We select at random 20
and 100 images per class from Tiny ImageNet and FMNIST
test datasets respectively. Each image is then scaled according
to the sizes defined in the scale category list, resulting in
an additional 6 scaled images per class in addition to the
original image (of scale 100%). In this way, for each class,
7 scale category folders are created and respective scaled
images stored in them accordingly. Using this process, 140
scaled images per class are sampled from Tiny ImageNet
dataset and 700 images per class from the FMNIST dataset.
Following the process defined in [41], we create an ensemble
dataset by combining all scaled images from all classes per
dataset. This resulted in a total of 28,000 scaled images for
testing on Tiny ImageNet (200classes×140), and 7000 scaled
images on FMNIST dataset (10classes×700). We analyse our
models on scaled images from each of these scale categories
independently as well as on the ensemble dataset (Section
V-B). Fig. 4 shows an example image from each dataset and
its corresponding scaled versions for testing.

E. Evaluation Metrics

We use accuracy as a performance measure to evaluate the
generalisation capability GCNN and the benchmark models
by finding out the total number of scaled images that were
correctly classified in the respective scale categories.

V. RESULTS AND DISCUSSION

A. Comparing Train and Test Statistics on Regular Images

Tables III and IV compare the train losses and test accuracy
for all the networks on Tiny ImageNet and FMNIST datasets
respectively. These statistics are the result of training the mod-
els using the training parameters outlined in Section IV-C and

TABLE III: Train losses and test accuracy on VGG16 based
models trained on Tiny ImageNet dataset.

Model train loss test acc difference
VGG16 0.018 0.576

GCNN (VGG16+HOG+Color) 0.012 0.586 -0.006 (loss)
+1.0% (acc)

TABLE IV: Train losses and test accuracy on LeNet5 based
models trained on FMNIST dataset.

Model train loss test acc difference
LeNet5 1.535 0.899

GCNN (LeNet5+HOG+Color) 1.491 0.903 -0.044 (loss)
+0.4% (acc)

on raw images without any form of scale transformations. Our
ensemble GCNN model outperforms the traditional benchmark
CNN networks on all train and test metrics (indicated in
bold). The highest test accuracy increase of 1.0% is recorded
on GCNN combining VGG16, HOG and color features on
Tiny ImageNet dataset. A similar trend is evident on the
performance of GCNN on grey-scale FMNIST dataset using
LeNet5 model.

From these results we derive two conclusions:
1) Combining local and global feature information in net-

work training is useful in improving the classification
accuracy of the models.

2) Applying HOG and color histogram on images that have
3-color channels and using that information in network
training show better results when compared to the same
on grey-scale images that have 1-color channel.

B. Robustness of GCNN on Different Scale Categories

Tables V and VI outline the classification results of our
models on different scale categories and on different datasets.
The statistics are obtained by testing the scaled images from
each scale category on each model as well as all the combined
images in the ensemble dataset. Similar to the analysis of [41],
we count the number of scale categories (excluding the results
of the ensemble dataset) where GCNN statistics are higher
than the benchmark results. We refer to this count as hit-rate.
For GCNN to show promise in classification of scaled images
we set a minimum threshold of 50%, that is GCNN should at
least perform better on 50% of the scale categories compared
to the benchmark models.

On the basis of classification accuracy results of the models
trialled in our work over various scale categories, we are able
to demonstrate a superior performance of GCNN compared
to the respective benchmark VGG16 and LeNet5 networks on
both datasets. GCNN performed better on all scale categories
on Tiny ImageNet dataset, where hit rate is equal to 100%,
meaning the model was able to identify a high number of
samples in its correct class in each scale category despite
the images being scale transformed. We also observe that
on Tiny ImageNet dataset, GCNN performance is better on
both enlarged and reduced scaled images. Upon comparing
classification accuracies of GCNN over LeNet5 on FMNIST



TABLE V: Performance summarization of VGG16 and GCNN networks on all the scale categories on Tiny ImageNet dataset.

scale categories
Model metric ensemble 150 140 120 100 80 60 50 hit rate
VGG16 acc 0.351 0.398 0.450 0.534 0.580 0.307 0.114 0.055
GCNN
(VGG16+HOG+Color) 0.367 0.425 0.479 0.548 0.594 0.320 0.139 0.069 1.000

(7/7)

TABLE VI: Performance summarization of LeNet5 and GCNN networks on all the scale categories on FMNIST dataset.

scale categories
Model metric ensemble 150 140 120 100 80 60 50 hit rate
LeNet5 acc 0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295
GCNN
(LeNet5+HOG+Color) 0.632 0.570 0.640 0.772 0.910 0.726 0.441 0.362 0.571

(4/7)

dataset, we note the model only performed better on reduced
scaled images. A probable explanation we present is that color
in an image provides more contour and edge information that
are useful for learning. Therefore the only useful information
to learn from grey-scale images are the edges of objects
(boundary between the light and dark pixels). The presence
of the entire object in the reduced grey-scale images allowed
the model to classify them with higher accuracy. On the other
hand, the scaled-up grey-scale images lost parts of the object
due to truncation and hence losing edge information causing
the model to fail classifying them correctly. In contrast, in
color images, despite truncation of parts of the object due to
scaling up, enough detail still remains due to color variation
for possible accurate classification. Here we also, relate that
HOG extracts gradients from pixel intensities. RGB channels
in color images allows HOG to extract more discriminatory
features than 1-channel grey-scale images hence contributing
to better results. Similarly, RGB channels in color images
contributes to more information in the color histogram than
grey-scale images. Further, GCNN outperformed the bench-
mark models on the ensemble test dataset, with a difference
of 1.6% and 2.1% on Tiny ImageNet and FMNIST datasets
respectively. This equates to 448 and 147 more scaled images
classified correctly from the Tiny ImageNet and FMNIST
ensemble test datasets respectively.

From the above analysis, we arrive at three conclusions:

1) The generalisation capability of CNNs can be improved
by combining global features and color information
with CNN local features. The same can be inferred
on classification of scaled images whereby combined
information from all 3 modalities as suggested by Huang
et al. [9] prove beneficial.

2) Global features such as HOG as well as color informa-
tion prove more useful when applied on 3-channel color
images than on grey-scale images.

3) The statistics show models perform maximum best when
processing images with no scale transformation applied.
The accuracy progressively drops as higher degree of
scaling is applied from the base scale category of
100%. This indicates the models are only view-specific
and are highly tuned on the training dataset images.
Although the proposed GCNN model performs better

than the benchmark CNNs, the models still lack learning
invariant features.

VI. CONCLUSION
In this work we develop a computational model based on

a plausible model of the vision system proposed by Huang
et al. [9]. Their model indicates the vision system uses
global and color features alongside local features for object
recognition tasks. Based on this architecture we propose a
model called GCNN. We compared the performance of GCNN
with benchmark CNN models and benchmark datasets. Also
in this work we investigated whether global and color feature
information can be used during network training to make
CNNs handle spatial invariance problems better. As such we
developed a case study of evaluating GCNN on scaled images.
From our experimental results we conclude the generalisation
capability of CNNs improve by fusing spatial information from
images in the form of global and color information. There
are also improvements observed on the networks ability in
handling scaled images.

Problems and opportunities identified from the current
project that require further investigation include a) to test other
global feature descriptors with CNNs such as image moments,
b) experiment with other color spaces in combination with
RGB color space, c) test this technique to evaluate other forms
of transformations such as rotations and translations and d) to
generalise the proposed approach for other data sets.
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