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Abstract—Consistency regularization methods have shown
great success in semi-supervised learning tasks. Most existing
methods focus on either the local neighborhood or in-between
neighborhood of training samples to enforce the consistency con-
straint. In this paper, we propose a novel generalized framework
called Adversarial Mixup (AdvMixup), which unifies the local
and in-between neighborhood approaches by defining a virtual
data distribution along the paths between the training samples
and adversarial samples. Experimental results on both synthetic
data and benchmark datasets exhibit that our AdvMixup can
achieve better performance and robustness than state-of-the-art
methods for semi-supervised learning.

Index Terms—semi-supervised learning, adversarial samples,
mixup

I. INTRODUCTION

Deep neural networks have achieved remarkable perfor-
mance in various areas, thanks to their excellent capability
on data representation learning. However, successful training
of deep learning models usually requires a large amount of
labeled data. Such property poses a challenge to many practical
tasks, in that labeling a large amount of data is not feasible
due to the high cost in time and finances. To address this
problem, semi-supervised learning (SSL) relieves the demand
for labeled data and improves the generalization performance
of the model by using more easily-obtained unlabeled data.

Cluster assumption [1] has been a basis for many suc-
cessful semi-supervised learning models, which states that
the data distribution forms discrete clusters, and samples in
the same cluster tend to share the same class label. This
assumption has motivated many traditional semi-supervised
learning approaches such as transductive support vector ma-
chines [2], entropy minimization [3], and pseudo-labeling [4].
Recently, the consistency regularization based methods [5]–[9]
have renewed the state-of-the-art results across many semi-
supervised learning tasks. Consistency regularization enforces
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the predictions of an unlabeled sample x and its neighborhood
sample x̂ to be consistent, thus encouraging the decision
boundary to lie in low-density regions. Different methods
concentrate on different types of neighborhood samples x̂.

One branch of the consistency regularization methods fo-
cuses on the local neighborhood around the training samples.
The Π model [6] obtained x̂ by adding a random noise to x.
However, models regularized with such isotropic noise have
shown vulnerabilities to the perturbations in the adversarial
direction [10], [11]. Inspired by this, Miyato et al. [8] proposed
the Virtual Adversarial Training (VAT) model, where x̂ is
selected as the adversarial example of x, thus regularizing the
model in the most non-smooth regions. These perturbation-
based methods can be visualized as in Fig. 1a, where the
possible areas for the selection of x̂ are centered around the
training samples.

Another branch of the consistency regularization meth-
ods considers the in-between neighborhood of two training
samples. The mixup model [12], proposed for supervised
learning, picked x̂ along the interpolation path between a pair
of training samples xi and xj , i.e., x̂ = λxi + (1 − λ)xj ,
and enforced a linear transition along this path by requiring
f(x̂) to approximate the interpolation between their ground-
truth labels λyi + (1 − λ)yj . The Interpolation Consistency
Training (ICT) model [9] generalized the mixup model to
semi-supervised learning by replacing the ground-truth labels
with the predicted labels of a teacher model [7]. These
interpolation-based methods can be visualized as in Fig. 1b,
where the possible areas for the selection of x̂ are along the
paths between pairs of training samples.

Both of the two branches are limited in terms of their
consistency regularization areas. On one hand, the perturbation
based methods pay attention to the neighborhood of single
data points while ignoring the space in-between them, leaving
the model unpredictable in these regions. On the other hand,
the interpolation-based methods only consider the convex
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Fig. 1: Visualization of the consistency regularization areas for (a) perturbation based methods, (b) interpolation based methods,
and (c) our AdvMixup. ‘A’,‘B’, and ‘C’ denote three training points, and the orange regions denote the regularization areas.

combination of available training samples without constraining
the points outside, thus losing control in extreme cases where
the model oscillates in a position near a training sample but
not covered by any interpolation path.

In this paper, we propose a novel consistency regularization
technique, called Adversarial Mixup (AdvMixup), by unifying
the local neighborhood and the in-between neighborhood.
In particular, we consider the neighborhood formed by the
samples lying along the paths between the real samples and
adversarial samples. For two random training samples xi and
xj , we sample x̂ along the interpolation path between xi and
the adversarial sample x

(adv)
j of xj , i.e., x̂ = λxi + (1 −

λ)x
(adv)
j . Then we enforce the consistency between f(x̂) and

λf(xi) + (1− λ)f(xj). By mixing up a training sample with
an adversarial sample, we fuse the benefits of both branches.
The regularization area for our AdvMixup can be visualized
as in Fig. 1c.

We evaluate our AdvMixup on both synthetic data and
benchmark datasets, and the experimental results demonstrate
that AdvMixup outperforms the baseline methods which con-
sider only local neighborhood or in-between neighborhood,
especially when fewer labeled data are given. Furthermore, we
justify the robustness of our method under white-box attacks
and black-box attacks. In both scenarios, our AdvMixup show
significantly better robustness compared to the state-of-the-art.

II. RELATED WORK

With the aid of unlabeled data, SSL methods aim to design a
regularization term to encourage the model to comply with the
cluster assumption [1], which favors decision boundaries lying
in low-density regions and smooth model behaviors. In the
following, we briefly review the state-of-the-art consistency
regularization methods for SSL.

An important research line in consistency regularization
constrains the model to have consistent predictions in the
local neighborhood around training inputs, where the local
neighborhood is usually represented as variants of the input or
model parameters. The Π model from [5] and [6] constructed
different input variants with stochastic image transformation
and additive Gaussian noise, as well as different model variants
with dropout layers. Wei et al. [13] integrated the Π model

with the generative adversarial networks (GAN) based semi-
supervised learning approaches [14], where the classifier was
forced to correctly classify labeled samples and distinguish
real unlabeled samples and fake samples from a generator.
Laine et al. [6] proposed a Temporal Ensembling approach
by applying the consistency constraint between current model
prediction and the exponential moving average (EMA) of all
historical predictions for a given input. Tarvainen et al. [7]
further improved Temporal Ensembling by considering the
consistency between the predictions given by current model
parameters and the EMA of model parameters. Considering
the insufficient power of the isotropic perturbations, Miyato
et al. [8] proposed the VAT model by using adversarial
perturbations which point out the model’s most vulnerable
directions, to better represent the local neighborhood.

Another promising research line in consistency regulariza-
tion considers the consistency between pairs of training sam-
ples. Luo et al. [15] enhanced the local neighborhood based
methods by pulling similar sample pairs towards each other
while pushing the dissimilar pairs away in the low-dimensional
feature space. Under supervised setting, Zhang et al. [12]
proposed the mixup model which encourages the prediction
on the linear combination of two samples to approach the
linear combination of their labels. The mixup model has been
extended from different perspectives owing to its efficiency
and strong regularization ability. Verma et al. [16] extended the
mixup operation to the hidden layers. Guo et al. [17] proposed
to adaptively generate the mixing parameter for a specific pair,
to avoid overlapping between the mixed samples and the real
ones. Verma et al. [9] generalized the mixup model to the semi-
supervised setting where the labels are substituted by the soft
labels from a teacher model. The MixMatch [18] model further
generalized the mixup mechanism with several techniques
such as multiple data augmentation and label sharpening,
obtaining strong empirical results on semi-supervised learning.

Orthogonal to the consistency regularization methods, gen-
erative models based methods try to improve SSL by learning
better data representations with the aid of unlabeled data
and generative models like variational auto-encoders [19] or
GANs [14], [20]. We leave the integration of our model with
this research line for future work.
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Fig. 2: Overview of the proposed AdvMixup framework. The two gray rectangles, xi and xj , denote the entry point. The
dashed lines denote the computational paths where gradient back-propagation is disabled.

III. OUR APPROACH: ADVMIXUP

A. Problem Definition

In this paper, we focus on the standard semi-supervised
learning task. Formally, Let X denote the input feature space
and Y denote the target label space. Given a labeled dataset
Sl = {(xi, yi)|i = 1, . . . , Nl} and an unlabeled dataset
Su = {xi|i = 1, . . . , Nu} with xi ∈ X and yi ∈ Y , our
objective is to learn a mapping function f : X → Y which
can generalize to the unseen (x, y) data pairs sampled from
the joint probability distribution P (X ,Y).

B. AdvMixup

Standing on the cluster assumption [1], we propose Adver-
sarial Mixup (AdvMixup), a new consistency regularization
approach for semi-supervised learning. AdvMixup implicitly
defines a virtual data distribution P̂ sampling along the in-
terpolation paths between pairs of points, where each pair is
composed of a real sample and an adversarial sample.

Formally, given two random unlabeled training samples xi

and xj , we first craft an adversarial sample x
(adv)
j for xj ,

then construct a virtual data sample (x̂i,j , ŷi,j) by using the
interpolation between xi and x

(adv)
j as the virtual input and

the interpolation between the soft labels of xi and xj as the
virtual target:

x̂i,j = λxi + (1− λ)x
(adv)
j ,

ŷi,j = λft(xi) + (1− λ)ft(xj),
(1)

where λ ∈ [0, 1] is sampled from the distribution Pλ =
Beta(α, α) with α ∈ [0,∞]. Following the ICT model [9],
we employ the predictions from the EMA model ft as the
soft labels for better target quality [7].

The goal of AdvMixup is to fit the contructed virtual data
samples by minimizing the divergence between the model
prediction on the virtual input f(x̂i,j) and the virtual target
ŷi,j , which can be formulated as

Lreg = Exi∼Su,xj∼Su

[
DY [f(x̂i,j), ŷi,j ]

]
, (2)

where DY is a divergence metric defined on the Y space. An
overview of our AdvMixup is shown in Fig. 2.

Finally, we arrive at the full objective function for Ad-
vMixup, namely, to minimize

Lnll + βLreg (3)

where Lnll = E(xi,yi)∼Sl

[
−y⊤i ln f(xi)

]
is the typical negative

log-likelihood loss for the labeded data, and β is a hyper-
parameter controlling the importance of regularization term
Lreg. We summarize the training procedure of AdvMixup in
Algorithm 1.

Adversarial Sample Generation. An adversarial sample is
a slightly and carefully perturbed variant of a real data sample,
with the aim of misleading a given classifier to make different
predictions from the original real data sample [10], [11]. In
this paper, we adopt the virtual adversarial example generation
method from [8], where “virtual” means no ground-truth target
labels are used to cater for the semi-supervised setting. Specif-
ically, we craft an adversarial sample x

(adv)
j = xj + r

(adv)
j for

xj by optimizing

r
(adv)
j = argmax

∥r∥2≤ϵ

DY
[
ft(xj), f(xj + r)

]
(4)

where ϵ > 0 is the norm constraint for the adversarial
perturbation. The maximization problem can be approximated
by the power iteration method. In practice, one step of iteration
is enough to achieve strong performance [8], which requires a
low additional computational cost to the basic mixup model.

Generality. The proposed AdvMixup can generalize to both
the perturbation-based regularization method VAT [8] and
the mixup-based regularization method ICT [9]. If λ → 0,
the constructed virtual data sample is (x

(adv)
j , ft(xj)) in (1),

reducing to the VAT model. If the adversarial perturbation
degenerate to zero, i.e., x(adv)

j = xj , (1) reduces to the ICT
model.

IV. WHY ADVMIXUP?

The AdvMixup model regularizes the classifier f along the
interpolation paths between training samples and adversarial
samples. In the following, we elaborate on the reasonableness
and advantages of this regularization scheme, and validate the
effectiveness of AdvMixup via a case study on synthetic data.



Algorithm 1 Minibatch training of AdvMixup for semi-
supervised learning

▷ REQUIRE: labeled training set Sl; unlabeled training set Su;
▷ classification model f with random parameters θ;
▷ f ’s EMA version ft with random parameters θt
▷ perturbation norm ϵ in (4)
▷ mixup parameter α for the Beta distribution;
▷ regularization weight β; ft’s update ratio γ
▷ FOR k = 1, . . . , num iterations DO
▷ Sample a labeled batch Bl = {(xi, yi)}nl

i=1 ∼ Sl

▷ Sample an unlabeled batch Bu = {xi}nu
i=1 ∼ Su

▷ Compute the negative log-likelihood loss using Bl:
Lnll =

1
nl

∑
(xi,yi)∈Bl

[
−y⊤

i ln f(xi)
]

▷ Associate the samples in Bu with soft labels
Bu+ = {(xi, ft(xi))}nu

i=1

▷ Craft an adversarial batch using (4)
B

(adv)

u+ = {(x(adv)
i = xi + r

(adv)
i , ft(xi))|xi = Bu[i]}nu

i=1

▷ Shuffle B
(adv)

u+ as B
(adv)

u+,s

▷ Sample λ ∼ Beta(α, α)

▷ Construct a virtual data batch B̂u+ = {(x̂i, ŷi)}nu
i=1 with

x̂i = λx1
i + (1− λ)x2

i ,
ŷi = λy1

i + (1− λ)y2
i

where (x1
i , y

1
i ) = Bu+ [i], (x2

i , y
2
i ) = B

(adv)

u+,s
[i]

▷ Compute the consistency regularization term
Lreg = 1

nu

∑
(x̂i,ŷi)∈B̂

u+
DY [f(x̂i), ŷi]

▷ Evaluate the full objective function L = Lnll + βLreg
▷ Update θ based on the gradient ∇θL
▷ Update θt = (1− γ)θt + γθ
▷ END FOR
▷ OUTPUT: θ and θt

Reasonableness. The mixup model [12] and ICT model [9]
encourage the classifier to have linear transition in-between
real samples, thus pushing the decision boundary to low-
density areas. Our AdvMixup takes one additional step by
creating an adversarial variant for one sample in each real
sample pair. The created adversarial sample is supposed to
share the same class label with its corresponding real sample.
Therefore, given a random real sample pair ⟨xi, xj⟩ as well
as the adversarial sample x

(adv)
j for xj , it is reasonable to

enforce the classifier’s predictions to linearly change from the
(soft) target label f(xi) of xi to the (soft) target label f(xj)

of x(adv)
j along the path from xi to x

(adv)
j .

Advantages. Consistency regularization approaches are ac-
tually fixing the classifier’s flaws which violate the cluster
assumption. An effective approach is expected to detect these
flaws more significantly and more comprehensively. Com-
pared with the methods seeking for the flaws in-between
neighborhood of training samples like ICT [9], our AdvMixup
can create the virtual samples that violate the cluster as-
sumption more significantly. To verify this, we first train a
supervised model without using any regularization techniques
on the CIFAR-10 and SVHN datasets, and then use it to
predict the virtual samples defined by ICT and AdvMixup. As
shown in Fig. 3, the supervised model exhibits much larger
error rates along the real-adversarial interpolation path of
AdvMixup (orange solid line) than the real-real interpolation
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Fig. 3: Prediction error rates of the supervised model (trained
with only labeled data) on the virtual samples along the real-
real interpolation paths (blue dashed line) defined by the ICT
model [9] and the real-adversarial interpolation paths (orange
solid line) defined by the proposed AdvMixup. (a) Results on
the CIFAR-10 dataset where 4000 labeled data samples are
used to train the supervised model. (b) Results on the SVHN
dataset where 1000 labeled data samples are used to train the
supervised model.

path of ICT (blue dashed line). Compared with the methods
seeking for flaws in the local neighborhood of training samples
like VAT [8], our AdvMixup explores a more comprehensive
searching area. In particular, AdvMixup incorporates the lo-
cal neighborhood based regularization as special cases when
λ → 0, while allowing regularization for the in-between
neighborhood when λ > 0. The usefulness of regularizing
the in-between neighborhood has been validated by [9], [12]
and also illustrated in Fig. 3 where the error rate reaches the
maximum when λ is around 0.5.

A. Case Study on Synthetic Data

We evaluate the proposed AdvMixup against VAT and ICT
on a synthetic dataset with two classes. As shown in Fig. 4a,
the training points form two concentric circles with different
radiuses, and the Gaussian noise (µ = 0, σ = 0.01) is applied
to these points. The task is to classify these two classes of
points, and each class contains 5 labeled samples and 100
unlabeled samples. Note that sometimes the distance between
neighbor points within the same class can be comparable to,
if not larger than, the distance between neighbor points from
different classes, making the problem a non-trivial task.

We utilize a neural network model as the classifier, which
includes two hidden layers with 100 and 50 hidden units
and ReLU activation functions. We fix the weight of the
regularization terms as 10 for different methods, and search the
optimal hyper-parameters specific to different methods (i.e.,
ϵ for VAT, α for ICT, and ϵ and α for AdvMixup) via a
validation set.

The learned decision boundaries are shown in Fig. 4, and
we have the following major observations. First, VAT can not
successfully classify the two classes: it mistakenly predicts
a proportion of blue points as red points. Since these blue
points have a relatively larger distance to other surrounding
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Fig. 4: Comparison between VAT, ICT, and proposed AdvMixup on the concentric circles dataset. Red and blue points denote
unlabeled samples from the two classes, i.e., inner circle and outter circle. Labeled data are marked with black triangles. (a)
The concentric circles dataset. (b-d) The contour plot and the decision boundaries (green curve) learned by VAT (b), ICT (c),
and AdvMixup (d). Best viewed in color.

blue points and no labeled data lie in this region, it is possible
for VAT to fail as the result has almost no objections to
their local neighborhood based constraint. However, with the
local neighborhood based constraint, the decision boundary of
VAT desirably keeps a safe distance with the training samples.
Second, ICT roughly achieves to distinguish the two classes.
However, the decision boundary stays too close to some data
points, making the model vulnerable to even small noises.
Note that the points next to the decision boundary lie in a
lighter area of the contour and thus have lower confidence
scores. ICT regards this result as a feasible solution since it
complies with their constraint for in-between training samples.
Third, our proposed AdvMixup, considering both local and
in-between neighborhood, is capable of learning a decision
boundary which can both differentiate points from the two
classes and stay a certain distance with the training samples.

V. EXPERIMENTS

In this section, we evaluate the proposed AdvMixup against
various strong baselines for semi-supervised learning on
benchmark datasets. We also conduct an ablation study,
robustness analysis, and parameter analysis to validate the
effectiveness of our model.

A. Datasets

We conduct experiments on the widely-used CIFAR-10 and
SVHN datasets. The CIFAR-10 dataset is composed of 32×32
colored images drawn from 10 natural classes, with a split of
50,000 training samples and 10,000 test samples. The SVHN
dataset is composed of 32 × 32 colored images drawn from
10 digit classes, with a split of 73,257 training samples and
26,032 test samples. Following common practice [5]–[9], [21],
we randomly select a small ratio of training samples as labeled
data and use the rest as unlabeled data for semi-supervised
learning. In particular, we provide results with 1000, 2000, and
4000 labeled samples on the CIFAR-10 dataset, and 250, 500,
and 1000 labeled samples on the SVHN dataset. The hyper-
parameters are tuned on a validation set with 5000 samples
on CIFAR-10 and 1000 samples on SVHN, respectively.

B. Implementation Details

Data preprocessing. Unless otherwise stated, we adopt
standard data augmentation and data normalization in the
preprocessing phase following our baselines. On the CIFAR-
10 dataset, we first augment the training data by random
horizontal flipping and random translation (in the range of [-
2,2] pixels), and then apply global contrast normalization and
ZCA normalization based on statistics of all training samples.
On the SVHN dataset, we first augment the training data by
random translation (in the range of [-2,2] pixels), and then
apply zero-mean and unit-variance normalization.

Model architecture. We adopt the exactly same 13-
layer convoluation neural network architecture as in the ICT
model [9], which eliminates the dropout layers compared to
the variants in [5]–[8], [15].

Hyper-parameters. We directly use the perturbation norm
ϵ following the code1 of the VAT model [8], 8.0 for the
CIFAR-10 dataset and 3.5 for the SVHN dataset, respectively.
The update ratio γ of the EMA model is set to 0.001
following [9]. We search the optimal mixup parameter α in
the beta distribution and the regularization weight β in (3)
via the validation performance. As a result, α is set as 2.0
on CIFAR-10 and 0.1 on SVHN, respectively; β is set as 50,
100, and 100 on CIFAR-10 for 1000, 2000, and 4000 labeled
samples correspondingly, and as 50, 100, and 100 on SVHN
for 250, 500, and 1000 labeled samples correspondingly.

Model training. We adopt the mean squared error as the
divergence metric in (2) and (4). The batch size is 32 for
labeled data and 128 for unlabeled data. We follow the rest
of settings as in [9]: the model is trained for 400 epochs, and
optimized using the SGD algorithm with a momentum factor
0.9 and weight decay factor 1× 10−4; the learning rate is set
to 0.1 initially and then decayed using the cosine annealing
strategy [22]; a sigmoid warm-up schedule is utilized to
increase the regularization weight β from 0 to its maximum
value within the first 100 epochs. Our code will be made
publicly available soon.

1https://github.com/takerum/vat tf



TABLE I: Test error rates (%) of different methods on CIFAR-
10. Results for the Supervised method in the first block are
duplicated from [9]. Results of AdvMixup are averaged over
3 runs.

Method Test error rates (%)
1000 labels 2000 labels 4000 labels

Supervised 39.95± 0.75 31.16± 0.66 21.75± 0.46

Π model [6] 31.65± 1.20 17.57± 0.44 12.36± 0.31
TempEns [6] 23.31± 1.01 15.64± 0.39 12.16± 0.24
MT [7] 21.55± 1.48 15.73± 0.31 12.31± 0.28
VAT [8] – – 11.36± 0.34
VAT+EntMin [8] – – 10.55± 0.05
VAdD [23] – – 11.32± 0.11
VAdD + VAT [23] – – 9.22± 0.10
TempEns+SNTG [15] 18.41± 0.52 13.64± 0.32 10.93± 0.14
VAT+EntMin+SNTG [15] – – 9.89± 0.34
CT-GAN [13] – – 9.98± 0.21
CVT [24] – – 10.11± 0.15
MT+ fast-SWA [25] 15.58± 0.12 11.02± 0.23 9.05± 0.21
ICT [9] 15.48± 0.78 9.26± 0.09 7.29± 0.02

AdvMixup 9.67± 0.08 8.04± 0.12 7.13± 0.08

TABLE II: Test error rates (%) of different methods on SVHN.
Results for the Supervised method in the first block are
duplicated from [9]. Results for AdvMixup are averaged over
3 runs.

Method Test error rates (%)
250 labels 500 labels 1000 labels

Supervised 40.62± 0.95 22.93± 0.67 15.54± 0.61

Π model [6] 9.93± 1.15 6.65± 0.53 4.82± 0.17
TempEns [6] 12.62± 2.91 5.12± 0.13 4.42± 0.16
MT [7] 4.35± 0.50 4.18± 0.27 3.95± 0.19
VAT [8] – – 5.42± 0.22
VAT+EntMin [8] – – 3.86± 0.11
VAdD [23] – – 4.16± 0.08
VAdD + VAT [23] – – 3.55± 0.05
Π+SNTG [15] 5.07± 0.25 4.52± 0.30 3.82± 0.25
MT+SNTG [15] 4.29± 0.23 3.99± 0.24 3.86± 0.27
ICT [9] 4.78± 0.68 4.23± 0.15 3.89± 0.04

AdvMixup 3.95± 0.70 3.37± 0.09 3.07± 0.18

C. Results

The evaluation results of our proposed AdvMixup against
several state-of-the-art methods on CIFAR-10 and SVHN are
shown in Table I and Table II, respectively. The baseline
semi-supervised learning methods encompass consistency reg-
ularization methods based on local neighborhoods [6]–[8],
[23]–[25], in-between neighborhoods [9], and those combining
them [15]. From Table I and Table II, we have the following
observations.

Firstly, for CIFAR-10, AdvMixup outperforms all the base-
lines across different numbers of labeled data. In particular,
AdvMixup improves the second-best method ICT by nearly
6% when only 1000 labeled samples are given.

Secondly, for SVHN, it is much easier than the task on
CIFAR-10 as the house number images of SVHN have smaller
variance compared to the natural images of CIFAR-10, and the
baselines already achieve pretty high accuracy. Nevertheless,

TABLE III: Test error rates (%) of different ablated versions
on CIFAR-10. Results are averaged over 3 runs.

Method Test error rates (%)
1000 labels 2000 labels 4000 labels

AdvMixup 9.67± 0.08 8.04± 0.12 7.13± 0.08

Adv-Adv Mixup 10.90± 0.11 8.99± 0.14 8.22± 0.09
AdvMixup w/o

11.64± 0.41 9.78± 0.11 8.20± 0.17teacher model

AdvMixup still demonstrates a clear improvement over all
the baselines across different numbers of labeled data. In
particular, AdvMixup achieves an error rate of 3.95% for
250 labeled samples, which already beats the results of all
baselines with 500 labeled samples.

Thirdly, following [9], we also compare with the supervised
method (the method in the first block of Table I and Table II),
where only the labeled samples are used. For both CIFAR-10
and SVHN, AdvMixup exhibits significant improvement over
the supervised baseline across different numbers of labeled
data.

D. Ablation Study

To provide more insights, we present the performance of
two variants of our model on the CIFAR-10 dataset:

• Adv-Adv Mixup as an alternative of integrating the local
and in-between neighborhood approaches, by defining the
interpolation paths between two adversarial samples, i.e.,
replacing xi with x

(adv)
i in (1).

• AdvMixup w/o teacher model, which uses the pre-
diction of current model instead of the EMA model to
compute the soft labels for the samples, i.e., replacing
ft(xi) and ft(xj) with f(xi) and f(xj) in (1).

The results of these ablated variants are shown in Table
III. Firstly, interpolating between adversarial examples clearly
degrades the performance across different numbers of labeled
samples. One possible explanation is that there can be a
gap between the true data distribution and the virtual data
distribution defined by this interpolation scheme where real
samples are not utilized, thus increasing the prediction errors
on the test samples lying in the true data distribution. Secondly,
eliminating the teacher model degrades the performance by
1%-2% across different numbers of labeled samples. However,
this difference resulted from the teacher model is smaller than
the difference between ICT and ICT w/o teacher model, which
is about 4% as reported in [9].

E. Robustness Analysis

Deep models have been discovered to be particularly vul-
nerable to adversarial perturbations [10], [11]. To investigate
the robustness of our proposed AdvMixup in semi-supervised
learning, we compare our AdvMixup with the strongest and
most related baseline ICT as well as a simple supervised model
under white-box attacks and black-box attacks on CIFAR-10
and SVHN. Models are learned with 4000 labeled samples on
CIFAR-10 and 1000 labeled samples on SVHN, respectively.



TABLE IV: Test error rates (%) of different methods on CIFAR-10 and SVHN under white-box attacks. The white-box attacks
are generated using the fast gradient method with the perturbation norm ϵw.

Method CIFAR-10 SVHN
ϵw = 1.0 ϵw = 2.0 ϵw = 3.0 ϵw = 5.0 ϵw = 8.0 ϵw = 0.1 ϵw = 0.5 ϵw = 1.0 ϵw = 2.0 ϵw = 3.0

Supervised 58.50 77.73 86.73 94.2 96.91 19.81 51.71 69.94 82.28 86.46
ICT [9] 24.77 43.28 56.24 69.42 78.38 7.72 28.57 41.87 52.35 58.00
AdvMixup 17.40 30.91 42.52 58.59 70.82 5.11 14.59 24.39 37.84 47.63

TABLE V: Test error rates (%) of different methods on CIFAR-10 and SVHN under black-box attacks. The black-box attacks
are generated using the fast gradient method with the perturbation norm ϵb.

Method CIFAR-10 SVHN
ϵb = 1.0 ϵb = 2.0 ϵb = 3.0 ϵb = 5.0 ϵb = 8.0 ϵb = 0.1 ϵb = 0.5 ϵb = 1.0 ϵb = 2.0 ϵb = 3.0

Supervised 29.25 39.38 48.83 63.06 75.75 14.37 24.76 36.92 52.91 62.05
ICT [9] 9.78 12.68 16.03 24.85 37.83 4.19 8.17 15.59 30.43 41.29
AdvMixup 8.62 10.17 12.34 17.34 25.77 3.47 6.62 12.31 24.92 35.39

We attack each model with adversarial perturbations
crafted towards a source model by using the Fast Gradient
Method [11]. In the white-box setting, the source model is the
same as the target model for testing. In the black-box setting,
the source model is different from the target model. In our
experiments, we independently train another supervised model
(only using the labeled samples) as the source model for the
black-box setting.

Table IV and Table V show the results of different models
against white-box attacks and black-box attacks with different
values of perturbation norm. Firstly, by regularizing the model
using unlabeled data, both ICT and AdvMixup significantly
improve the supervised model. Secondly, with 4000 labeled
samples for CIFAR-10 and 1000 labeled samples for SVHN,
while the difference between AdvMixup and ICT is not quite
significant for classifying real images (as shown in Table I
and II), AdvMixup shows a clear advantage over ICT for
predicting the adversarial images. Specifically, in the white-
box setting, AdvMixup reduces the error rate by 7%-13% on
CIFAR-10 and by 2%-17% on SVHN; in the black-box setting,
AdvMixup reduces the error rate by 1%-12% on CIFAR-
10 and by 1%-6% on SVHN. Therefore, we can conclude
that the integration of local neighborhood with in-between
neighborhood gives AdvMixup an edge in robustness against
adversarial perturbations.

F. Parameter Analysis

We investigate the effects of three hyper-parameters, the
perturbation norm ϵ, the mixup parameter α, and the regular-
ization weight β. The proposed AdvMixup is compared with
VAT (for ϵ and β) and ICT (for α and β), which are most
related to our work from the viewpoint of the local neighbor-
hood and the in-between neighborhood, across different values
of the hyper-parameters. To make the comparison more direct,
no data augmentation is utilized.

The perturbation norm ϵ controls our model from the
local neighborhood perspective. Fig. 5a presents the test
performance of our AdvMixup against VAT as a function
of ϵ on CIFAR-10 with 4000 labeled samples. We observe

that AdvMixup consistently outperforms VAT across different
values of ϵ. Besides, the test error rates for ϵ ≥ 4 vary
in a smaller range in our model than in VAT, showing that
AdvMixup is less sensitive to ϵ by incorporating the in-
between neighborhood as well.

The mixup parameter α controls our model from the in-
between neighborhood perspective. Fig. 5b presents the test
performance of AdvMixup against ICT as a function of α on
SVHN with 250 labeled samples. We observe that AdvMixup
consistently outperforms ICT and shows better stability with
smaller variances across different values of α. We notice that
the benefits of AdvMixup over ICT is more obvious when
no data augmentation is used. This result demonstrates, by
considering the local neighborhood, that our AdvMixup can
better generalize to different model settings.

The regularization weight β balances the model between fit-
ting the labeled data and satisfying the consistency constraint.
Fig. 5c presents the test performance of AdvMixup against
VAT and ICT as a function of β on SVHN with 250 labeled
samples. We observe that AdvMixup consistently outperforms
both VAT and ICT across different values of β, verifying
the strength by unifying the local neighborhood and the in-
between neighborhood.

VI. CONCLUSION

In this paper, we propose a new consistency regularization
method, AdvMixup, for semi-supervised learning. AdvMixup
enforces the model to fit the virtual data points sampled from
the interpolation paths between adversarial samples and real
samples. Such an interpolation scheme integrates the local
neighborhood around training samples and the neighborhood
in-between the training samples for regularization, thus em-
powering the model with better generalization ability and
robustness. Our experiments demonstrate that the proposed
AdvMixup constantly outperforms the baselines in terms of
both predictions on real samples and on adversarial samples.
For further performance improvement, promising directions
include fitting AdvMixup into the MixMatch framework [18]
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Fig. 5: Effects of different hyper-parameters. (a) Test error rate (%) of VAT and AdvMixup as a function of ϵ on CIFAR-10
with 4000 labeled samples; (b) Test error rate (%) of ICT and AdvMixup as a function of α on SVHN with 250 labeled
samples; (c) Test error rate (%) of VAT, ICT and AdvMixup as a function of β on SVHN with 250 labeled samples. Results
are averaged over three runs, with the standard deviations indicated by the shaded regions. No data augmentation is utilized.

and integrating AdvMixup with generative models based semi-
supervised learning methods [14], [20].

The main limitation of the proposed AdvMixup is the com-
putational overhead brought by the adversarial sample genera-
tion, which requires an additional forward-backward pass. For
our future work, we plan to evaluate AdvMixup with different
adversarial sample generation strategies, study the trade-off
between model efficiency and classification performance, and
explore the possibility of generating adversarial samples with
neglectable cost and without sacrificing performance.
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