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Abstract—Over the years the online gambling industry has
evolved into one of the most profitable industries on the Internet.
At the same time, new stringent regulations have required the
online industry to become a lot more vigilant. Although standards
have improved, the methods used to process finance from illicit
activities also evolved and became more sophisticated. Detecting
these fraudulent activities in real life with high accuracy requires
a learning system to be trained with balanced data sets of
fraudulent and normal transactions. However, in the real-world,
the number of fraudulent cases is significantly lower than
normal cases. In this paper, to deal with data imbalance, we
propose a novel generative adversarial framework based on semi-
supervised learning of sparse auto-encoders for the detection
of fraud in online gambling. Experimental results show that
the proposed framework outperforms mainstream discriminative
techniques such as logistic regression, random forest and multi-
layer perceptron. We validate further the approach by applying it
to other domains that suffer from the problem of class imbalance
obtaining promising results.

Index Terms—Fraud detection, Imbalanced data, Semi-
supervised Generative Adversarial Networks, Sparse Auto-
encoders.

I. INTRODUCTION

Fraud detection refers to the identification of illegal ac-
tivities occurring in numerous industries such as finance,
gambling, insurance or cybersecurity. If fraudulent behaviour
is not monitored and prevented then it can have catastrophic
consequences such as the financing of terrorism. Many orga-
nizations have been interested in the immediate detection of
illicit activities, aiming to prevent losses, while also ensuring
the safety of their customers [1].

This research is part of a collaboration with a major
gambling operator. The purpose of the research is to explore
the use of deep learning to strengthen processes used in
the detection of suspicious gambling behaviour, in particular
money laundering. In the UK, gambling firms have paid over
£40 million in fines and settlements since 2017 with all major
cases involving failings in detecting money laundering.

Until recently, the gambling industry has tackled the iden-
tification of money laundering in online gambling primarily
by using knowledge-based systems. Whilst capable of easily
embedding regulatory requirements which have focused on
simple thresholds, these systems are unable to adapt to new
requirements to proactively monitor the activity of millions of

online customers and a changing malicious behaviour related
to criminal activity online.

In fraud detection problems, the fraudulent cases tend to
be far fewer than the non-fraudulent ones (referred to in
the literature as an ’imbalanced data set’), which leads to
difficulties in the training of classification algorithms. In most
cases, such algorithms seek to maximize accuracy and as a
result become biased towards the majority class.

Classification models, such as logistic regression (LR), ran-
dom forest (RF), multi-layer perceptron (MLP), are typically
discriminative models, i.e. via the use of a certain feature set,
they try to select the most appropriate class. This is, essentially,
the root cause of the problem of the bias caused by the data
imbalance, as the algorithm does not have a notion of ’how’
the data are produced, yet it focuses on the objective measure
of discrimination (e.g. accuracy). A way of alleviating this
problem is to use models that aim to also understand the un-
derlying generative process, as done for example by generative
networks. Gaussian Mixture Models (GMMs) have formed
the backbone of a variety of generative models, including
Hidden Markov Models, employed with this objective [2], yet
they come with Gaussian distribution assumptions and require
much effort to be deployed in classification problems. Such
models have been used together with clustering techniques to
provide the required classification algorithm [3].

Recently, Generative Adversarial Networks (GANs) allowed
for a more generic approach with the advantages of combining
end-to-end both generative and discriminative techniques. By
extending the traditional framework of GANs to allow for
the discriminator to perform classification [4], semi-supervised
GANs (SSGANs) have shown potential in the recent literature
particularly at learning from unstructured data such as images
or sound [5]. Nevertheless, research regarding the application
of GANs to structured data has been very limited.

In this paper, we argue that semi-supervised GANs can
provide a powerful and versatile framework for tackling su-
pervised learning from imbalanced and sparse structured data.
We validate this claim empirically by applying SSGANs to
different domains suffering from the same data imbalance
difficulty. We conduct experiments on the benchmark data sets
for Credit Card Fraud, Breast Cancer Wisconsin and Pima
Diabetes. Finally, we apply the proposed semi-supervised
framework on a real-world Gambling Fraud Detection data
set which is related with money laundering. We compare
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our results with those of classical discriminative techniques,
namely random forest, logistic regression and multi-layer
perceptron, trained in conjunction with the synthetic minority
oversampling technique (SMOTE) [6] and adaptive synthetic
sampling technique (ADASYN) [7]. The results show that our
framework outperforms the other models even when these
are combined with elaborate oversampling methods such as
SMOTE and ADASYN. We also note that during training, our
model conveniently produces a generator for the production of
synthetic data for this type of problem. This is useful at cre-
ating simulations which may be essential for the development
and testing of automated systems such as a fraud detection
system.

More specifically, in this paper we introduce a system
architecture based on semi-supervised generative adversarial
networks and sparse auto-encoders (SAE) and we apply it to
a fraud detection system and other classification tasks with
imbalanced data. During the training phase our approach is
divided into two parts: first, the data are encoded into a
latent representation (vector space) using the sparse auto-
encoder. Then, that feature representation extracted from the
auto-encoder is used to train the semi-supervised GAN. The
contributions of this work are summarized as follows:
• We propose a new architecture for imbalanced data clas-

sification which does not require oversampling techniques
to produce good classification results.

• Our results on the benchmark data sets are promising; our
method outperforms logistic regression, random forest
and multi-layer perceptron with improvements on F1
score for all the data sets that were examined.

• We apply the proposed architecture to a real-world prob-
lem of money laundering in online gambling, obtaining
better classification results than an existing anti-money
laundering detection system. The F1 score is improved
by 3.64%.

The remainder of this paper is organised as follows: Section
2 discusses the related work. Section 3 describes the proposed
semi-supervised GAN model in detail. Section 4 presents the
experimental results. Section 5 discusses the application of the
model to money laundering detection in gambling. Section 6
concludes the paper and discusses directions for future work.

II. RELATED WORK

A. Fraud Detection and Imbalanced Data Classification

In recent years, there has been a considerable research effort
at handling imbalanced data classification for fraud detection.
In [8] the authors combined SMOTE and under-sampling to
solve the class imbalance problem. Wu, Shen and Zhang
[9] developed a fuzzy multi-class support vector machine
algorithm for imbalanced data. Shukla and Bhownick [10]
used K-Means algorithm to balance an imbalanced data set
and then use SVM to classify that data set. In [11], the authors
proposed different techniques to enhance the classification
performance of random forest and logistic regression when
dealing with imbalanced data sets. A more generative approach

is followed by [12], describing a Gaussian Mixture under-
sampling technique in order to solve the class imbalance
problem that exists in many real world applications.

Both supervised and unsupervised techniques have been ex-
amined to address fraud related problems. Niu, Wang and Yang
[13] conduct a comparison study for credit card fraud detection
by evaluating ten machine learning algorithms both supervised
and unsupervised. The research in [14] describes and reviews
the challenges and different techniques and evaluation criteria
that can be used in the mitigation of credit card fraud.

Zareapoor and Shamsolmoali [15] proposed a bagging clas-
sifier based on decision trees for the construction of a fraud
detection model. In [16], the authors use a Convolutional
Neural Network (CNN) to capture important patterns of fraud
behaviour. Saraswathi, Kulkarni, Khali and Nigam [17] devel-
oped a clustering mechanism based on Self-Organizing Maps
(SOM) for the detection of credit card extortion activities.
Srivastava, Kundu, Sular and Majumdar [18] utilized Hidden
Markov Models (HMM) to model the sequence of operations
in credit card transaction processing and fraud detection. Per-
haps closest to our model, Chen, Shen and Ali [19] combine
a sparse auto-encoder with one-class adversarial networks to
classify credit card transactions as fraudulent.

B. GANs for classification

Several studies have incorporated the concept of adver-
sarial training for semi-supervised learning. Salimans et al.
[4] introduced empirical techniques such as feature matching
for stabilizing the training process of GANs. In [20], the
author proposes categorical generative adversarial networks
(Cat-GAN) to substitute the binary discriminator in standard
GANs with a categorical classifier. Research in [5] proposed
a bad generator in order to improve the classification results
of semi-supervised GANs. The authors also showed that good
classification performance and a good generator cannot be ob-
tained together. Based on the work from [5], the study in [21]
introduces One-Class Adversarial Nets for fraud detection. In
their approach, the generator of the complementary GAN can
generate benign user representations, while the discriminator
is trained to distinguish the real and complementary benign
users. Finally, Zhou, Liu, C. Zhou and Chen [22] investigated
the application of SSGANs on structured imbalanced data sets.

III. SSGAN FOR FRAUD DETECTION

A. Framework Description

The structure of the proposed framework is illustrated
in Fig. 1. It consists of two parts: a sparse auto-encoder
and a complementary generative adversarial network. In this
architecture, the sparse auto-encoder includes two encoding
layers and two decoding layers. During the encoding phase
the input data are projected into a higher dimension, while in
the decoding phase the network tries to reconstruct the input
data from the sparse representations of the data. Mapping the
data onto a higher dimension during encoding seeks to increase
the distance between positive and negatives samples as Fig. 2a
and Fig. 2b illustrate.
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Fig. 1: Architecture of the proposed system (SSGAN) showing (on the left) a sparse auto-encoder mapping the data onto a
higher-dimensional vector space. The output of the encoder is used as input to the generative adversarial network (on the right).
After training, the discriminator of the GAN is able to classify the data as fraud or normal.

The data representations extracted from the SAE are used
as input to the generative adversarial network. Our GAN
adopts a complementary generator which tries to match the
data representations from a Gaussian random noise in order
to generate new complementary samples. Together with the
real representations the generated samples are used to train a
discriminator model. After training is complete, the discrimi-
nator is used to distinguish and detect the fraudulent cases.

B. Sparse Auto-encoders for Latent Representation

The framework’s sparse auto-encoder consists of a feedfor-
ward neural network whose hidden layer is larger than the
size of the input layer and whose target output is by definition
equal to the input vector [23]. The output of the hidden layer
within the auto-encoder represents the encoding of the input x
into a sparse latent feature representation. This type of neural
network tries to learn a function hW,b(x) ≈ x in order to
reproduce an output x′ that is similar to x [24].

Extending the idea of the original auto-encoder, a sparse
auto-encoder incorporates to the reconstruction error a sparse
penalty term Ω(h) w.r.t. the hidden layer h [25] [26]. This
penalty on the activations of the units of a neural network
seeks to make the representation sparse with the objective
of producing more robust and generalized features [27]. The
sparsity term can be imposed on the output layer of the encoder
or on a hidden layer or bottleneck. In our sparse auto-encoder,
we applied the L1 regularization which enforces sparsity by
allowing some activations to become zero. The loss function
of a sparse auto-encoder is defined in (1):

L(x, g(f(x))) + Ω(h) (1)

where g(h) is the output of the decoder and h = f(x) is the
output of the encoder. The penalty term Ω(h) can be further
expressed as Ω(h) = λ

∑
i

∣∣∣a(h)i

∣∣∣. The loss function penalizes
the absolute value of the vector of activation functions a in the
hidden layer for an observation i, scaled by a tuning parameter
λ.
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Fig. 2: Fig. 2a and Fig. 2b show the original and representation
training data distribution for the Credit Card Fraud data set in
2D space using t-SNE.

The choice of an sparse auto-encoder over the original
auto-encoder is supported by [25]. In that paper, the authors
suggest that using a sparse auto-encoder enables robust feature
extraction from the input. In addition, projecting the data to
higher dimensional spaces is more likely to result in an easier
classification task [28]. In this paper, the data representations
extracted from the hidden layers of the auto-encoder are
denoted by x̃.

C. Theoretical analysis of GANs

Generative adversarial networks are generative models
based on a game theoretic scenario in which a generator (G)
network is competing against a discriminator (D) [29]. The
generator having as input a noise variable Z, generates fake
samples with distribution pg which matches the true data
distribution p(data). On the other hand, the discriminator
network is trained to distinguish the real samples (drawn form
the training data) and fake samples generated from G.

Typically, the discriminative model D is trained to max-
imize its ability to distinguish the real input data from the
fake data. The generator tries to fool the discriminator by
producing better fake samples. Mathematically, the generator
and discriminator play a min-max two player game with value
function V(G,D) [29]:



min
G

max
D

V (G,D) = Ex∼pdata
[log(D(x))]

+Ez∼pz [1− log(D(G(z)))]
(2)

where E is the expectation, p(data) is the real data distribution
and p(z) is a noise distribution. The training of a generative
adversarial network could be characterised as an optimization
process for both generator and discriminator. The output of
the generator is defined as pg . As Eq. (2) suggests, GANs
aim to minimize the Jensen–Shannon divergence between
the data distribution pdata and the generative distribution pg
with perfect minimization reached when pg = pdata. The
optimization equations for the generator and the discriminator
are defined respectively as:

min
G

Ez∼pz
[1− log(D(G(z))) (3)

max
D

Ex∼pdata
[log(D(x))]

+Ez∼pz [1− log(D(G(z)))]
(4)

Although GANs are very promising for new data generation,
due to the vanishing gradient problem, training GANs could
be really unstable. However, this can be improved when the
model architecture and hyper-parameters are carefully selected
[30].

GANs can be extended to semi-supervised learning by
defining another output in the discriminator. The first output
of the discriminator only classifies data as real or fake, while
the second output classifies the data by the class that they
belong. The idea is that whether the data are real or fake, the
classifier has to determine whether it can be classified into the
true classes. if it can then the data are probably real.

D. Training the complementary Generator of SSGAN

Inspired by the work of [21] and [5], we implement a
complementary generator. Our generator is a two layer feed
forward neural network that tries to learn the distribution of
the representations (output of the encoder) and not the actual
data distribution. The new generated samples have the same
dimension as the latent representations and are defined by
n = G(z).

By following the approach of [5], the complementary gener-
ator with output pg tries to learn the distribution p∗(n) which
is defined as:

p∗(n) =


1
r ∗

1
p(n) if p(n) > τ and n ∈ Bx̃

C if p(n) ≤ τ and n ∈ Bx̃

(5)

where r is a normalization term, and Bx̃ is the feature space
of the extracted feature representations, C is a constant and
τ is the threshold for separating low and high density data.
As a result, the generator now is trained in order to converge
its distribution (pg) to the new complementary distribution p∗.
Using the definition of the KL divergence:

KL(pg || p∗
g)

= −H(pg) + En∼pg log p(n) I[p(n) > τ ]

+En∼pg
(I[p(n) > τ ] log r − I[p(n) ≤ τ ] log C)

(6)

In the above equation, I denotes the indicator function and
H the entropy function. As it is stressed by [5] the final
term of (6) would not add any further information and can
be ignored. The generator also adapts the feature matching
loss [4] in order to bring the generated representations closer
to the real representations. The final objective function of the
complementary generator is the following:

min
G
−H(pg) + En∼pg

log pdata(n)I[pdata(n) > τ ]

+
∥∥En∼pgf(n) − Ex̃∼pdata

f(x̃)
∥∥2
2

(7)

where the last term of (7) describes the feature matching
loss and f(x̃) is defined as the output of the hidden layer in
the discriminator.

One of the main disadvantages of training a generative
adversarial network is the mode collapse scenario. It is also
known as the problem that occurs when the generator learns to
map several different input z values to the same output point
[31]. This problem is directly related to the entropy distribution
of generated features and is a sign of low entropy. Therefore,
to improve further our generator, from [21] [5], we adopted
a pulling away term (PT) which was introduced in [32] to
increase the generator’s entropy, defined as:

LPT =
1

N − 1

N∑
i

N∑
j 6=i

(
f(ni)

T f(nj)

‖f(ni)‖ ‖f(nj)‖
)2 (8)

where N is the size of the mini-batch and f(n) is the output
of the hidden layer of the discriminator.

E. Training the Discriminator

Following the architecture of [4], the output of the discrimi-
nator is mapped onto a softmax classifier. Assuming that there
are K possible classes in the data, semi-supervised learning
is performed by including the new (fake) samples from the
generator in our data and labeling them with a new class
K+1. The dimension of the discriminator output is increased to
K+1. Moreover, an additional output is added to the soft-max
classifier in order to distinguish the real and fake samples. Our
discriminator loss function can be described as follows:

L = Ex̃,y∼pdata(x̃,y) [log pmodel(y|x̃)]+

Ex̃∼G [log pmodel(y = K + 1|x̃)]
(9)

where pmodel(y = K+1|x̃) is defined as the probability that
x is fake and pmodel(y|x̃) as the probability that x belongs to
a real class. The loss function in (9) is divided into supervised
loss Lsupervised and unsupervised loss Lunsupervised:

Lsupervised = Ex̃,y∼p(x̃,y) [log pmodel(y|x̃, y < K + 1)]
(10)



LUnsupervised = Ex∼pdata(x̃) [1− log pmodel(y = K + 1|x̃)]

+Ex̃∼G[log pmodel(y = K + 1|x̃)]
(11)

where Lsupervised is the typical supervised loss and
Lunsupervised is the loss generated from the GAN.

A main contribution of this work is to highlight the clas-
sification ability of GANs in supervised learning tasks on
structured data, including the imbalanced class problem, as
discussed in the next section.

IV. EXPERIMENTAL RESULTS

This research performs three different sets of experiments:
(1) We compare the SSGAN framework with three popular
classification machine learning algorithms, namely logistic
regression (LR), random forest (RF) and multi-layer percep-
tron (MLP). We trained these methods with the imbalanced
data sets of Breast Cancer and Diabetes. In addition, we
generate results when these three algorithms are combined
with oversampling techniques. (2) We investigate the effect
of the sparse auto-encoder on the results by training the
benchmark algorithms and our framework with the original
data of Credit Card Fraud and with the latent representations.
We also compare our method with a semi-supervised GAN
trained with a regular generator. (3) We apply our framework
to real-world data on Gambling Fraud and we demonstrate
the value of the framework in that application domain with a
comparison of results.

A. Data sets

Table I shows the three imbalanced data sets that are
selected for the evaluation of the proposed method. The Breast
Cancer data set includes 569 samples: 212 benign and 357
malignant samples. The Diabetes data set contains 768 patient
samples, 268 of which have diabetes and 500 which do not.
Finally, the Credit Card Fraud data set consists of 2,492
transactions: 2000 normal transactions and 492 fraudulent
transactions.

TABLE I: Experimental Data sets

Data set Sample
Size

Positive
samples

Negative
Samples

Imbalance
Ratio

Breast Cancer 569 212 357 1:1.68
Diabetes 768 268 500 1:1.87

Credit Card Fraud 2,492 492 2,000 1:4.07

In this research the minority class is described as positive
while the majority class as negative. This scheme is consistent
across all experiments for all data sets. In the classification
of imbalanced data, the influence of the minority class on the
accuracy is significantly smaller than that of the majority class.
Due to the bias towards the majority class, using accuracy
as the main criterion could lead to a low minority class
identification rate. Therefore, alongside accuracy, we use other
evaluation criteria, such as precision, recall and F1 score.
The presented results illustrate the mean value and standard
deviation for accuracy, recall, precision and F1 score on 10
different runs. In all the experiments the training and testing
set ratio is set to 80% and 20% respectively.

B. Results and Comparison

Table II and Table III show the results obtained for the
Breast Cancer and Diabetes data sets. It is evident that our
framework achieves the best performance for both data sets
with F1 scores 92.27% and 69.04% for the Breast Cancer and
Diabetes data sets, respectively. Table II shows that the F1
value is increased by 3.88% when all the algorithms are trained
with an imbalanced data set. Although, the discriminative
models improved their performance when they were combined
with oversampling techniques (c.f. increase in their recall
score), still they are outperformed by our method by 2.92%
on the F1 score.

For the Diabetes data set, the classifiers performed poorly
due to the high intersection between the negative and positive
samples. However, our method enhanced the F1 score by
5.65% on imbalanced training. Again, when ADASYN and
SMOTE were combined with LR, RF and MLP, the recall
value is increased significantly but precision is decreased.
This suggests that when oversampling is used, classification

TABLE II: Breast Cancer detection results (mean± std): accuracy, recall, precision and F1 measure

Breast Cancer
Method Accuracy Recall Precision F1

LR 0.8959± 0.0093 0.8053± 0.0345 0.9095± 0.0279 0.8534± 0.0185
LR + SMOTE 0.9114± 0.0175 0.8762± 0.0358 0.8813± 0.0387 0.8778± 0.0242

LR + ADASYN 0.9005± 0.0196 0.9448± 0.0300 0.8182± 0.0289 0.8766± 0.0238
RF 0.9134± 0.0110 0.8891± 0.0337 0.8802± 0.0230 0.8839± 0.0152

RF + SMOTE 0.9187± 0.0181 0.9232± 0.0353 0.8674± 0.0379 0.8935± 0.0239
RF + ADASYN 0.9052± 0.0245 0.9392± 0.0283 0.8230± 0.0316 0.8771± 0.0277

MLP 0.9157± 0.0309 0.8732± 0.0761 0.8889± 0.0528 0.8782± 0.0475
MLP + SMOTE 0.9093± 0.0294 0.9207± 0.0324 0.8468± 0.0599 0.8800± 0.0251

MLP + ADASYN 0.8871± 0.0264 0.8894± 0.0487 0.8361± 0.0739 0.8578± 0.0288
SSGAN-c+SAE 0.9227± 0.0193 0.9113± 0.0270 0.93485± 0.0238 0.9227± 0.0193



TABLE III: Diabetes detection results (mean± std): accuracy, recall, precision, F1 measure

Pima Diabetes
Methods Accuracy Recall Precision F1

LR 0.7656± 0.0204 0.5074± 0.0598 0.7455± 0.0483 0.6013± 0.0440
LR+SMOTE 0.7604± 0.0298 0.6685± 0.0315 0.6598± 0.0601 0.6626± 0.0333

LR+ADASYN 0.7370± 0.0335 0.7444± 0.0785 0.6006± 0.0385 0.6638± 0.0406
RF 0.7688± 0.0193 0.5741± 0.0603 0.7145± 0.0405 0.6339± 0.0386

RF+SMOTE 0.7442± 0.0236 0.7037± 0.0530 0.6203± 0.0339 0.6582± 0.0324
RF+ADASYN 0.7357± 0.0363 0.7741± 0.0567 0.5965± 0.0451 0.6727± 0.0420

MLP 0.7513± 0.0409 0.5741± 0.0824 0.6748± 0.0780 0.6166± 0.0679
MLP+SMOTE 0.7591± 0.03551 0.7435± 0.0725 0.6357± 0.0483 0.6834± 0.0467

MLP+ADASYN 0.7351± 0.0476 0.8000± 0.0880 0.5907± 0.0531 0.6786± 0.0610
SSGAN-c+SAE 0.79058± 0.0321 0.6515± 0.0535 0.7381± 0.0428 0.6904± 0.0210

algorithms are able to identify better the minority class, still
their performance related to the majority class is reduced.

We further evaluate the proposed method on the Credit
Card Fraud data set. The algorithms are trained with the
original data, data extracted using Principal Component Anal-
ysis (PCA) as a baseline, and representation data from the
sparse auto-encoder. The results are reported in Table IV. The
performance of SSGAN is improved significantly when the
representations from the auto-encoder are used to train the

model with an increase of 3.76% of recall and 2.31% of the
F1 score. This validates our choice to use the extracted features
from the sparse auto-encoder as input to the GAN framework.
Table V shows the results of the discriminative models in
combination with ADASYN and SMOTE for the Credit Card
data set. Importantly, the SSGAN framework continues to
achieve the best F1 score of 92.31%. In Table IV we also
show the results when we train the SSGAN with a regular
generator (SSGAN-r) as opposed to the complementary gen-

TABLE IV: Credit card fraud detection results (mean± std): accuracy, recall, precision and F1 measure

Credit Card Fraud
Input Method Accuracy Recall Precision F1

Original Data

SSGAN-c 0.9629± 0.0032 0.8297± 0.0230 0.9874± 0.0135 0.9005± 0.0096
SSGAN-r 0.9424± 0.0367 0.8109± 0.0627 0.9041± 0.1105 0.8538± 0.0829

Logistic Regression 0.9577± 0.0110 0.7972± 0.0523 0.9954± 0.0046 0.8853± 0.0328
Random Forest 0.9667± 0.0013 0.8393± 0.0086 0.9924± 0.0032 0.9086± 0.0041

MLP 0.9629± 0.0014 0.8264± 0.0259 0.9888± 0.0159 0.9000± 0.0087

PCA

SSGAN-c 0.9381± 0.0298 0.8113± 0.0353 0.8426± 0.1209 0.8426± 0.0642
SSGAN-r 0.9577± 0.0054 0.8001± 0.0351 0.9821± 0.01380 0.8822± 0.0179

Logistic Regression 0.9409± 0.0275 0.7737± 0.0565 0.9224± 0.1003 0.8400± 0.0696
Random Forest 0.9519± 0.0102 0.7990± 0.0354 0.9513± 0.0319 0.8681± 0.0290

MLP 0.9152± 0.0444 0.8000± 0.0356 0.8081± 0.1540 0.7968± 0.0842

Latent Representations

SSGAN-c 0.9707± 0.0019 0.8673± 0.0125 0.9869± 0.0165 0.9231± 0.0047
SSGAN-r 0.9158± 0.0323 0.6404± 0.1886 0.9139± 0.0686 0.9158± 0.1551

Logistic Regression 0.9232± 0.0124 0.6230± 0.0571 0.9911± 0.0117 0.7633± 0.0416
Random Forest 0.9349± 0.0128 0.6970± 0.0682 0.9690± 0.0170 0.8089± 0.0488

MLP 0.9619± 0.0016 0.8334± 0.0058 0.9706± 0.0066 0.9151± 0.0331

TABLE V: Credit Card Fraud detection results in conjunction with oversampling (mean± std): accuracy, recall, precision, F1
measure. Comparing with the results of Table IV, our proposed architecture achieves the highest F1 measure.

Methods Accuracy Recall Precision F1
LR + SMOTE 0.9691± 0.0055 0.8837± 0.0286 0.9577± 0.0151 0.9189± 0.0156
RF + SMOTE 0.9826± 0.0043 0.8620± 0.0346 0.9521± 0.0184 0.9045± 0.0245

MLP + SMOTE 0.9682± 0.0086 0.8858± 0.0283 0.7956± 0.0778 0.8353± 0.0376
LR + ADASYN 0.9154± 0.0147 0.9172± 0.0210 0.7272± 0.0465 0.8103± 0.0285
RF + ADASYN 0.9677± 0.0042 0.8561± 0.0279 0.9769± 0.0200 0.9120± 0.0136

MLP + ADASYN 0.8760± 0.0168 0.9394± 0.0262 0.6269± 0.0365 0.7517± 0.0328



erator (SSGAN-c) used in our framework. A regular SSGAN
has the same architecture as the original GAN model with the
addition of an extra output in the discriminator. Our framework
improves consistently on the regular generator.

In order to tune the sparse auto-encoder in our experiments
we altered the hidden dimension size from 20 up to 80
neurons. Precision had a small variation throughout all the dif-
ferent experiments due to the large number of non-fraudulent
cases in the training set. On the other hand, recall had a
significant increase when the dimension changed from 20 to 30
(≈ 10%) and from 60 to 65 (≈ 2%). Then, when dimension
size changes from 65 to 80 a small decrease in recall was
observed. Mapping the original data to a higher dimension
allows data to be separated more easily. Nevertheless, if the
dimension is too high it can lead to overfitting and information
redundancy [19]. Finally, we also noted that the trend of F1
score follows the trend of recall as fluctuations occurred in the
same examples for both metrics.

Focusing on the semi-supervised GANs, the complementary
SSGAN has better performance compared to SSGAN-r as
already mentioned as shown in Table IV. The discriminator of
SSGAN-c, which is trained on real and complementary data,
can classify more effectively the positive and negative cases
since better recall and precision scores are achieved compare
to SSGAN-r.

The training behaviour of the two models was further
investigated and the progress of the F1 score on the Credit
Card data set is presented in Fig. 3a and Fig. 3b. In Fig. 3, the
regular SSGAN shows an inability to converge during training,
while the SSGAN-c framework converges. The reason for this
is that during the training phase the complementary GAN
focuses on the classification task of predicting the correct
class whilst the regular GAN focuses on generating better fake
samples [21].

V. APPLICATION OF SSGAN TO THE DETECTION OF
MONEY LAUNDERING IN ONLINE GAMBLING

We tested SSGAN-c on a real-world Gambling Fraud data
set. Anonymized gambling data were collected over the period
of one year starting 1st April 2018. The current anti-money
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Fig. 3: Fig. 3a and Fig. 3b show the F1 score progress during
training of a regular SSGAN and our complementary SSGAN
framework.

laundering practice is composed of different monitoring levels.
Our system targets to improve the first level of monitoring
(identification rate of knowledge-based system). The labels
provided in the data set represent the Internal Risk Reports
(IRR) that were raised for high risk money laundering cases
during the monitoring process.

The data set that is used in this experiment incorporates
information about transactions and betting history of cus-
tomers. It contains 4,700 samples, 3,500 of which are non-
fraudulent players and the remaining 1,200 players are flagged
for potential money laundering and further investigation. The
F1 value of the knowledge-based system as this is calculated
using the IRR labels and the detection flags of the system is
86.21%.

Table VI outlines the comparative results obtained for the
Gambling Fraud data set. The SSGAN-c framework achieves
F1 score of 89.85%, which yields a 3.64% (≈ 20 cases)
improvement on the company’s current detection system and
an 0.52% (≈ 3 cases) improvement in comparison with the
other methods. This is an indication that our fraud detection
system can be applied to the detection of fraudulent behaviour
in online gambling and improve the overall identification rate.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a GAN-based system archi-
tecture for detecting fraud in online gambling. Our imple-
mentation consists of a complementary generative adversarial

TABLE VI: Gambling Fraud detection results (mean± std): accuracy, recall, precision, F1 measure

Gambling Fraud
Methods Accuracy Recall Precision F1

LR 0.8733± 0.0091 0.6103± 0.0296 0.8751± 0.0224 0.7187± 0.0234
LR+SMOTE 0.9089± 0.0103 0.8482± 0.0206 0.8164± 0.0225 0.8318± 0.0185

LR+ADASYN 0.9000± 0.0068 0.8960± 0.0152 0.7671± 0.0171 0.8264± 0.0104
RF 0.9424± 0.0059 0.9095± 0.0212 0.8781± 0.0115 0.8933± 0.0116

RF+SMOTE 0.9361± 0.0071 0.9458± 0.0062 0.8355± 0.0146 0.8872± 0.0106
RF+ADASYN 0.9347± 0.0057 0.9569± 0.0139 0.8256± 0.0165 0.8862± 0.0091

MLP 0.9194± 0.0100 0.8419± 0.0289 0.8534± 0.0245 0.8472± 0.0195
MLP+SMOTE 0.9203± 0.0060 0.9372± 0.0248 0.7984± 0.0167 0.8618± 0.0103

MLP+ADASYN 0.9219± 0.0039 0.9526± 0.0133 0.7946± 0.0118 0.8663± 0.0060
SSGAN-c+SAE 0.9437± 0.0051 0.9308± 0.0157 0.8672± 0.0170 0.8985± 0.0088



network and a sparse auto-encoder. First, we used the auto-
encoder to extract new data representations which were then
used to train our GAN model.

A series of experiments were performed to evaluate the
proposed system architecture against popular discriminative
models such as logistic regression and random forest, both
on their own and in conjunction with data balancing SMOTE
and ADASYN. Experiments were performed on three pub-
licly available data sets and on a real-world gambling data
set. We demonstrated that our system outperforms the other
classification methods by achieving a higher F1 score. Overall,
the results showed that complementary semi-supervised GANs
can be a useful versatile framework for tackling supervised
problems with imbalanced and sparse structured data. In
future, results will be compared with other deep network
models including with the use of sparse coding [33]. Further,
we plan to test different sparse coding methods as well as use
the generator of the SSGAN to produce synthetic data which
we will use as part of a more extensive experiment with the
objective of further improving system performance ahead of
deployment.
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