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Abstract—Multi-class geospatial object detection in remote
sensing images suffer great challenges, such as large scales
variability and complex background. Although feature pyramid
network (FPN) can alleviate the problem of scale variation to
some extent, it causes the loss of spatial and semantic information
which is not conducive to object location. To address the above
problem, this paper proposes a discriminative feature pyramid
network (DFPN) by introducing a global guidance module
(GGM) and a feature aggregation module (FAM). Specifically,
the global guidance module delivers the high-level semantic
information to lower layers, so as to obtain feature maps
with stronger semantic information to eliminate the interference
caused by complex background. The feature aggregation module
enhances the interflow of information between different layers
and better captures the discrimination information at each layer.
We validate the effectiveness of our method on the NWPU VHR-
10 and RSOD datasets, the results outperform baseline by 2.06
and 3.88 points respectively.

Index Terms—Object detection, discriminative feature learn-
ing, global guidance module, feature aggregation module

I. INTRODUCTION

Object detection aims to obtain the spatial location of each
category object in given images which has a wide range
of applications [1] [2]. Thanks to the rapid development of
deep convolutional neural networks (CNN), object detection
has achieved significant improvements in recent years. Gen-
erally, object detection can be divided into two main streams:
the two-stage methods and single-stage methods. The two-
stage detectors [3]–[5] use the multiple stage regressions
to obtain the location of objects. To be specific, Faster R-
CNN [4] introduces the region proposal network (RPN) to
generate regional proposals and then uses the Region-CNN
(RCNN) [6] to obtain the final results. These methods can
obtain accurate prediction results but simultaneously leads to
increased model complexity and slow inference speed. To
accelerate the inference phase, the single-stage detectors [7]–
[9] are proposed, they completely eliminate the generation of
region proposals and encapsulate all calculations in a single
network, leading to faster speed and comparable results. Single
Shot MultiBox Detector (SSD) [8] employs feature maps of
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shallower layers to predict smaller objects whereas deeper
features to detect large objects. The performance of the single-
stage detection method is seriously hampered by the imbalance
between positive and negative samples. RetinaNet [9] solves
this problem by employing the focal loss to change the weight
of positive and negative samples.

Although many object detection architectures have achieved
remarkable performance, they are designed for the natural
scene. It is not effective to directly apply them to remote
sensing images (RSIs) because of the large margin between
RSIs and natural images. Compared to the nature images, the
RSIs generally have satisfactory spatial resolution and com-
plex background, which may cause false detection. Besides,
the large scale variation, the appearance ambiguous and the
complex distribution of objects further increase the difficulty
of object detection in RSIs.

To address the above problem, many researchers [10]–
[13] are committed to object detection in RSIs. Cheng et al.
[10] proposed a new rotation-invariant convolutional neural
networks (RICNN) model by introducing a rotation-invariant
layer based on the structure of AlexNet to learn the rotation-
invariant feature of the objects. Li et al. [11] added multi-angle
anchors on RPN, and adopted hybrid constrained Boltzmann
machine to fuse local context information. Zhong et al. [12]
introduced a position-sensitive balance (PSB) framework to
diminish the influence of translation-invariance of the con-
volutional neural network on object localization. Zhang et al.
[13] provided an Encoder-Decoder architecture, called Rotated
Feature Network (RFN), to produce rotation-sensitive feature
maps for regression and rotation-invariant feature maps for
classification. Deng et al. [14] adopted a multi-scale object
proposal network (MS-OPN) to generate object candidate
boxes which then are used to classification and regression
by a proposed accurate object detection network (AODN) to
achieve multi-class object detection.

However, these methods do not effectively deal with the
complicated background in RSIs. Inspired by [15], we in-
troduce a global guidance module (GGM) to deliver high-
level semantic information to low-level features, enriching the
semantic information of features to avoid mis-classification of
complex background. In order to fully integrate the features
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Fig. 1: The overview architecture of our method. We introduce the global guidance module (GGM) and the feature aggregation
module (FAM), in which the pyramid pooling module (PPM) and the global guidance flows (GGFs) constitute the GGM.

Fig. 2: The construction of feature pyramid network.

of different levels, we propose a feature aggregation module
(FAM) to enhance the interflow of information at different
layers to obtain better feature maps, which is more conducive
to object location and classification. The major contributions
of this paper are summarized as follows.

(1) We introduce the GGM to enhance the semantic infor-
mation of feature maps.

(2) We propose the FAM to more availably merge the high-
level and low-level features.

(3) We conduct comprehensive experiments to verify the
effectiveness of the proposed module and achieve remarkable
performance.

II. OUR METHOD

The overall architecture of our proposed method is shown
in Fig. 1 and it can be regarded as an extension of RetinaNet
which better trade-off between detection accuracy and infer-
ence speed. As shown in Fig. 1, we first use CNN to extract
features from the given image. Then, a discriminative feature

Fig. 3: Detailed illustration of the pyramid pooling module
(PPM).

pyramid network with proposed GGM and FAM to obtain
multi-level feature maps. Finally, the multi-level feature maps
are fed into the detection head to generate detection results.

A. Review of Feature Pyramid Network

FPN [16] exploits an additional top-down pathway and the
lateral connections to combine higher-level and lower-level
features. Fig. 2 shows the construction of FPN, FPN first
obtains feature maps of different spatial resolutions from the
backbone network through a bottom-up pathway, these feature
maps are then upsampled through a top-down pathway to
progressively restore the spatial resolution, while the lateral
connection is to merge the feature maps of the same spatial
size from the top-down pathway and bottom-up pathway by an
element-wise sum operation and a 3× 3 convolutional layer.

B. Global Guidance Module

In the construction of FPN, the high-level semantic infor-
mation is gradually diluted in the process of transmission
from high-level layers to the shallow ones, leading to the lack
of semantic information in shallow feature maps. The above



phenomenon results in mis-classification in the complex back-
ground and influences the results of detection. In view of this,
we propose the GGM to enhance the semantic information of
shallower layers and avoid false predictions in the background
regions.

The GGM consists of a pyramid pooling module (PPM) and
global guidance flows (GGFs). As demonstrated in Fig. 3, the
PPM is composed of four sub-branches, the first sub-branch
adopts a global average pooling layer to capture the global
guidance semantic information of the input image. In the
second and the third branch, we utilize two adaptive average
pooling layers with different kernel size to generate feature
maps with 3 × 3 and 5 × 5 spatial resolution, respectively.
This is conducive to gather semantic information of different
respective filed. Besides, we apply the identity mapping layer
to combine the advanced semantic information from the above
three sub-branches with the original feature map.

After we collect global semantic information by the PPM,
GGFs is applied to transfer the global semantic information
to shallow layers of the pyramid. This operation covers the
shortage that the semantic information is progressively weak-
ened from the top-down pathway of FPN. The green arrow in
Fig. 1 indicates the GGFs.

C. Feature Aggregation Module

In the architecture of FPN, the low-resolution future map is
upsampled and then fused with the adjacent higher resolution
one by element-wise sum operation, which leads to the aliasing
effect. The FAM is proposed to address the above problem and
availably merges the high-level feature maps with the low-level
feature maps simultaneously. As depicted in Fig. 4, the FAM
contains four parallel branches. In the inference phase, We
apply the average pooling layers with different downsampling
rates to resize the input feature maps into different resolutions.
Then a 3 × 3 convolutional layer is employed to further
integrate futures of each downsample branch. The 3× 3 con-
volution kernel is sufficient to capture changes in features and
only brings a small amount of parameters. In order to ensure
that the resolution of the input feature map is unchanged,
we upsample the feature maps of different branches back to
the original resolution. These feature maps are merged by the
element-wise sum operation, following a 3× 3 convolutional
layer. By using different sampling rates (2,4,8), the FAM
enables each spatial position of the feature map to observe
the local context through different scale-spaces, which are 1,
0.5, 0.25, 0.125 ratios of the original feature map spatial size
respectively, thereby further expanding the receptive field of
the whole network.

D. Loss Function

The loss function consists of two parts: classification loss
and regression loss. We use the focal loss as classification
loss to solve the problem of imbalance between positive and
negative samples. It can be defined as follows:

FL (pt) = −αt (1− pt)γ log (pt) (1)

Fig. 4: Detailed illustration of the feature aggregation module
(FAM).

pt =

{
p if y = 1
1− p otherwise (2)

where p and y stands for the classification probability and the
ground-truth label of interested object, respectively. The α and
γ is the variable factor. In this paper, α and γ are 0.25 and 2
respectively.

As for the regression loss, we use the smooth L1 loss, which
is expressed as follows:

Lreg (ti, t
∗
i ) = smoothL1 (ti − t∗i ) (3)

smoothL1
(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise (4)

where t and t∗ are calculated by the following equation:
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where x, y, w, h represent the center coordinates, width, and
height of the box. Variables xa, x, and x∗ correspond to the
prediction box, anchor box and ground truth box, respectively.
(y, w, and h are the same.) Therefore, the loss function of the
whole network is:

L = λFL+ (1− λ)Lreg (6)

where λ is the weighting factor.

III. EXPERIMENTS

A. Datasets

We evaluate our proposed method on the NWPU VHR-10
dataset and the RSOD dataset. The details of these two datasets
are described as follow:

• NWPU VHR-10: The dataset contains 800 VHR optical
RSIs, of which 715 color images are obtained from
Google Earth with a spatial resolution range of 0.5 to
2 meters and 85 color infrared images are obtained
from Vaihingen data with a spatial resolution of 0.08
meters. The whole dataset consists of 10 categories,
including airplanes, ships, tanks, baseball fields, tennis
courts, basketball courts, ground track fields, harbors,
bridges, and vehicles. There are 650 positive image sets
and 150 negative image sets. In this experiment, we only



choose the 650 positive images and random select 80%
as the training set and 20% as the testing set.

• RSOD: The RSOD dataset comes from Google Earth
and Tianditu and is divided into four categories: oil
tank, aircraft, overpass, and playground. The annotated
bounding box contains a total of 4,993 aircraft, 191
playgrounds, 180 overpasses, and 1,586 tanks. In this
experiment, 561 images are used for the training set and
375 images are used for the testing set.

B. Implementation Details
In all the experiments, we keep the input image at least

608 in height and no more than 1024 in width. We adopt the
ResNet101 as our backbone network. Following RetinaNet,
we use the feature maps generated from P3 to P7 to predict
objects. On these pyramid levels, anchors with an area of 322

to 5122 are set. At each pyramid level, anchors have three
different aspect ratios {1: 2, 1: 1, 2: 1} and three different
sizes

{
20, 21/3, 22/3

}
. For the focal loss, we follow the default

setting in [9] (e.g. γ = 2, α = 0.25) and the weighting factor
of the loss function λ is set to 0.5. When the IoU of an anchor
and any ground truth box is greater than or equal to 0.5, we
divide the anchor into the positive class. Otherwise, we divide
the anchor into the negative class. In the training phase, we
train our model on per GPU with batch size 1 for 50 epoch and
use the Adam optimizer with the initial learning rate of 1e-5. In
the inference phase, we use a threshold of classification score
of 0.05 to filter out the background bounding boxes and only
preserve the first 1K bounding boxes. Then, we use the Non-
Maximum Suppression (NMS) with an IoU threshold value of
0.5 to obtain the top 100 bounding boxes for each image as
the final prediction box of the network. The IoU refers to the
ratio of the intersection and union of the areas of the ground
truth box and the prediction box.

C. Evaluation Metrics

TABLE I: Ablative study of our proposed modules

FAM GGM
mAP

NWPU RSOD

RetinaNet

89.91 92.35
X 91.18 94.46

X 91.31 93.16
X X 91.97 96.23

We evaluate the performance of the model by comparing the
values of average precision (AP) and mean average precision
(mAP). The AP calculates the mean of the Precision of the
Recall interval from 0 to 1. The mAP is the average of AP
values for all categories.

The definitions of Precision and Recall are as follows:

Precision =
TP

(TP + FP )
(7)

Recall =
TP

(TP + FN)
(8)

where TP and FN indicate the number of positive samples
that are correctly divided into positive samples and incorrectly
divided into negative samples, respectively. And FP indicates
the number of negative samples that are incorrectly divided
into positive samples.

D. Experiment Result and Analysis

1) Ablation Analysis: To evaluate the effectiveness of our
proposed two module, we report the ablation analysis in Table
I on both NWPU and RSOD dataset.

• GGM Only. First, global semantic information is intro-
duced into the current layer of the pyramid. The feature
maps of adjacent higher layers are upsampled and then
added to the current layer. Finally, a 3× 3 convolutional
layer is used to obtain the fused feature map. In this
case, the global semantic information is transmitted to the
lower layers, which enriches the semantic information of
the feature maps in the lower layers of the pyramid. As
shown in Table I, for the NWPU VHR-10 dataset, our
method increase mAP by 1.4%. For the RSOD dataset,
the mAP of our network increased by 1.02%.

• FAM Only. The feature map of the higher layer is up-
sampled and added to the feature map of the adjacent
lower layer, and the result of the addition is further
integrated through the FAM module. In this way, we
better integrate information from the upper and lower
layers and strengthen the information interflow between
different layers. On the NWPU VHR-10 dataset and the
RSOD dataset, the mAP of the model improved by 1.27%
and 2.32%, respectively.

• FAM & GGM. By combining the FAM and the GGM,
the high-level semantic information and the low-level
location information are adequately merged so that the
feature map of each layer contains more comprehensive
information. This allows our network to obtain discrim-
inative features for subsequent regression and classifi-
cation, reducing misclassification and precisely locating
in a complex background. On the NWPU VHR-10 and
RSOD datasets, the mAP improved by 2.06% and 3.88%,
respectively.

2) Comparisons to the State-of-the-Arts: Table II and Ta-
ble III demonstrate the overall comparison results on both
NWPU and RSOD datasets. For the NWPU dataset, our
proposed method achieves the best performance and increases
2.06% compared to the baseline. The visualization results
are shown in the Fig. 5. The AP of oil tanks, harbors,
and vehicles has been remarkably improved, increasing by
10.97%, 6.4%, and 3.22%, respectively. In Fig. 7(a), RetinaNet
mistakenly detects some objects on the water surface as
ships. The network notices its background but ignores low-
level information such as the outline of the ship. While our
network strengthens the fusion of low-level information and
high-level information through the application of the FAM,
which can reduce the mis-classification of such objects. The
low-level information such as contours and textures of oil
tanks are less than other categories. The original network did



TABLE II: Performance of our method and other methods on NWPU VHR-10 dataset.

Model airplane ship storage tanks baseball diamonds tennis courts basketball courts ground track fileds harbors bridges vehicles mAP

YOLOv1-448 [7] 69.85 42.74 11.04 86.58 42.74 67.63 88.72 55.44 76.46 42.75 58.39
YOLOv3-416 [17] 99.55 81.82 80.30 98.26 80.56 81.82 99.47 74.31 89.61 86.98 87.27

SSD-300 [8] 90.63 67.40 71.05 98.59 69.27 79.52 99.24 84.38 87.41 75.20 82.27
SSD-512 [8] 99.49 83.10 86.00 95.02 84.25 84.44 93.53 77.29 73.98 93.00 87.01

RFBNet-300 [18] 99.48 66.69 75.99 90.91 78.35 88.36 99.24 87.73 89.09 86.02 86.19
RFBNet-512 [18] 99.87 85.37 81.82 97.66 89.62 98.73 98.60 86.94 87.70 89.27 91.56

RetinaNet 99.84 91.20 64.96 99.80 96.96 98.52 98.92 80.12 93.86 74.92 89.91
Ours 99.37 91.91 75.93 99.96 98.33 95.81 98.90 86.52 94.79 78.14 91.97

(a) Oil Tanks (b) Harbors (c) Ground Track Fileds and
Baseball Diamonds

(d) Airplanes (e) Vehicles

(f) Basketball Courts (g) Ships (h) Bridges (i) Tennis Courts (j) Baseball Diamonds

Fig. 5: Qualitative visualization of our method on the NWPU VHR-10 dataset.

TABLE III: Performance of our method and other methods on
RSOD dataset

Method Aircraft Playground Oil tank Overpass mAP

Faster R-CNN ResNet101 [4] 83.54 97.81 98.11 88.62 92.02
SSD300 VGG16 [8] 71.89 98.58 90.72 90.21 87.85

RFCN ResNet101 [5] 83.69 99.54 98.44 94.42 94.03
YOLOv3 DarkNet53 [17] 88.38 99.65 98.91 96.64 95.97
NAS-FPN ResNet101 [19] 89.88 97.88 92.50 89.37 92.41

RetinaNet ResNet101 81.34 98.69 97.03 92.32 92.35
Ours 93.72 99.80 97.38 94.05 96.23

not perform well in detecting such simple categories when
learning other categories with obvious details. In Fig. 7(a),
RetinaNet caused a lot of missed detections of tanks due to
the lack of feature information, and our network can effectively
alleviate this deficiency by introducing higher-level semantic
information through the application of the GGM. In Fig. 7(d),
the interference of shadow occlusion and dim color makes
RetinaNet fail to recognize these vehicles, and our network is
capable of learning the general feature of vehicles because of
introducing global semantic information. Compared to ground
truth, our network does not detect the square vehicle in Fig.
7(e) because such sample are too rare in the training set. In Fig.
7(g), RetinaNet mistakes the highway as a bridge, the FAM
enlarges the receptive field of the network to enhance context
information, which can reduce such misdetection problems.

As for the RSOD dataset, our method surpasses these

(a) Aircraft (b) Oil tank

(c) Playground (d) Overpass

Fig. 6: Qualitative visualization of our method on RSOD
dataset.

famous high-performance detectors such as Faster-RCNN,
SSD, NAS-FPN, etc., and reaches the highest mAP of 96.23%,
which is 3.88% higher than the RetinaNet. We demonstrate
the detection results in Fig. 6. It is apparent from Table III



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: The comparison results of RetinaNet and our method
with proposed DFPN on NWPU VHR-10 dataset. The three
columns are detection results of RetinaNet, our method, and
the ground-truth, respectively. Yellow boxes indicate false
detections, and blue boxes indicate missed detections.

(a) (b) (c)

(d) (e) (f)

Fig. 8: The comparison of aircraft detection results of Reti-
naNet and our method with proposed DFPN on RSOD dataset.
The three columns are detection results of RetinaNet, our
method, and the ground-truth, respectively. The blue boxes
indicate missed detections.

that our method has made definite improvements in almost all
categories. Notably, the improvement of the aircraft is very
significant and it increases more than 10%. We consider the
background of the aircraft in the RSOD dataset is more com-
plicated, indicating the superior performance of our method for
complex backgrounds. In Fig. 8(a), interference from similar
objects in the vicinity of the aircraft and the blur caused by the

small size make the RetinaNet fail to detect these aircraft. . In
Fig. 8(b), there are houses and highways near the aircraft. In
such a messy background, RetinaNet dose not recognize these
aircraft. By applying the GGM, our network introduces global
semantic information to each layer of the pyramid and then
uses the FAM to seamlessly combine high-level information
with low-level information to obtain discriminative features, so
that our network can distinguish the objects from the complex
background to reduce missed and false detections caused by
background mis-classification.

IV. CONCLUSION

In this paper, we propose a discriminative feature pyramid
network for RSIs object detection by introducing a GGM and a
FAM, the GGM captures and processes the global semantic in-
formation from high-level, and delivers it to shallower layers to
enhance the semantic information of feature maps. The FAM
adequately merges high-level semantic information and shal-
low location information. By applying these two modules, the
feature map integrates comprehensive information to obtain
discriminative features and effectively mitigate interference of
complex backgrounds in remote sensing images. Experiments
on the NWPU and RSOD datasets prove the effectiveness of
our discriminative feature pyramid network.
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