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Abstract—Regression deep neural network (DNN) models have
been successfully utilized in numerous fields. In real-world
applications, large regression errors on individual samples may
result in severe consequences. Selective techniques, also known
as reject options, have been used to reject predictions with high
uncertainty. However, they have yet been mainly considered
in classification neural networks (NNs), in comparison to the
limited work in regression NNs. In this paper, we considered the
selective regression problem from a risk-coverage point of view,
and proposed a method to construct a selective regression model
given a trained regression DNN model and a desired regression
error risk. Then, we proposed to utilize blending variance to
quantify uncertainty in regression NNs. We evaluated both the
proposed uncertainty function and selective regression models for
two real-world applications, the tropical cyclone (TC) intensity
estimation problem and the apparent age estimation problem.
Our proposed methods achieved promising results. For example,
for the TC intensity estimation problem, our selective regression
model guaranteed a risk bound (in terms of the root mean
squared error (RMSE)) of 9.5 knots for 75% test coverage with a
guided confidence level of 0.05, whereas the RMSE value achieved
by the state-of-the-art model without selection was 10.5 knots.

Index Terms—selective prediction, regression, deep neural
networks, blending variance

I. INTRODUCTION

Deep neural networks (DNNs) have been widely used for
various regression problems, such as tropical cyclone (TC)
intensity estimation [1]–[3], age estimation [4], [5], wind
power prediction [6], pain intensity estimation [7], and so
on. Applying such models to real-world applications often
requires a control on regression errors on individual samples.
For example, TC intensity estimation uses satellite images
of TCs to estimate their intensities. When using regression
models for weather forecasting, a large regression error on a
single satellite image may result in underestimating the rank of
a TC and causing significant casualties and economic losses.
Hence, measuring model uncertainty is important and we do
not want to accept all prediction results without taking the
uncertainty of each prediction into account. Instead, we would
like to reject the predictions with high uncertainty (and consult
with domain experts). This method is called predicting with a
reject option or selective prediction [8].
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Most of the existing works on selective prediction focused
on selective classification problems and various uncertainty
functions for classifiers to construct selective models [9]–
[12]. Given a classification model and a function measur-
ing model uncertainty, selective classification models trade-
off between misclassification and rejection rates to achieve
higher classification accuracy on as many input samples as
possible. In particular, references [11] and [12] put forward a
risk-coverage framework, under which selective classification
models were constructed to maximize the selective coverage
with a guaranteed risk bound.

However, the existing selective prediction methods for clas-
sification problems cannot be used directly to solve regression
problems. We should first acknowledge that a regression
problem can be transferred to a classification problem and
solved by DNN models. For example, in the TC intensity
estimation problem, we can divide TC intensity into a num-
ber of categories (e.g., 18 TC ranks) and use classification
DNN models to solve it [13]. However, the evaluation of
classification performance is different from that of regression
performance. For classification problems, we commonly use
classification accuracy indicators, such as the misclassification
rate, to evaluate classification results, whereas for regression
tasks, we usually employ regression risk functions to measure
the magnitude of errors, such as the mean squared error (MSE)
or the mean absolute error (MAE). Since the existing selective
classification methods and theoretical bounds were derived
for optimizing classification accuracy, they could not be used
directly for optimizing regression risk functions.

In this paper, we focused on the selective prediction problem
for regression DNNs, and made the following contributions:
• For a given regression model f , a confidence level δ, and

a desired regression risk target r∗, we proposed a method
to construct a selective function g, such that the selective
regression model (f, g) can achieve maximum coverage
while keeping expected regression risk no larger than r∗

with probability 1− δ.
• We proposed a new uncertainty function for rejection,

Blend-Var, which measures the variance of multiple pre-
dictions of a single input sample (such as an image) when
blending with rotation, reflection, shifting and so on.

• We evaluated our selective regression models with the
proposed uncertainty function on two real-world applica-
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tions and achieved promising results. For example, for the
TC intensity estimation problem, our selective regression
model guaranteed a risk bound (in terms of the root
mean square error (RMSE)) of 9.5 knots (1 knots ≈
0.514 meter per second) for 75% test coverage with a
guided confidence level of 0.05, whereas the RMSE value
achieved by the state-of-the-art model without selection
was 10.5 knots.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 introduces the background
of the general selective model and Hoeffding’s Inequality.
Section 4 proposes the risk-controlled selective regression
model and the novel uncertainty function Blend-Var. Section 5
presents the experimental results on two real-world applica-
tions. Section 6 concludes the paper.

II. RELATED WORK

Selective prediction, or prediction with a reject option, has
been studied for more than a half century. Early works tackled
the problem based on statistical decision theory to trade-off
between error and rejection rates in the recognition problem
[8], [14]. Later on, selective prediction models were proposed
for various hypothesis classes and learning algorithms, among
which selective models for neural networks (NNs) [9], [10]
and DNNs [11], [12] drew people’s attention lately. Most of
the existing works focused on selective classification problems
and various uncertainty functions for classifiers to construct
selective models. Recently, a DNN architecture called Selec-
tiveNet [15] with an integrated reject option was put forward,
which is trained to optimize both classification (or regression)
performance and rejection rate simultaneously.

There are basically two types of selection classification
models: from a cost-based point of view and from a risk-
coverage point of view. References [9] and [10] tackled the
problem from a cost-based point of view, which defines a
selection cost function including both misclassification and
rejection rates and searches for the selective classification
model that optimizes the cost function. The risk-coverage
point of view, applied in [12] and [11], also aims to trade-
off between the selective risk and coverage. However, in
this framework, selective classification models are constructed
(usually through constructing selection functions of classifiers)
to maximize the selective coverage, under the control of a
selective risk target.

The uncertainty functions of classifiers are used to reject
samples for which the risk of inaccurate prediction is judged
too high. In [9] and [10], a reject threshold was set on
the maximal neuronal response in the softmax layer. This
mechanism is known as softmax response (SR). In [12] and
[16], Monte-Carlo dropout (MC-dropout) was used to estimate
the predictive uncertainty in neural networks with dropout
layers [17]. Dropout could be interpreted as an ensemble
technique, approximately combining different networks with
shared weights. Reference [16] showed that a neural network
with dropout applied before every weight layer is approxi-
mately equivalent to the probabilistic deep Gaussian process.

The predictive uncertainty can then be seen as the variance
of sample predictions of multiple stochastic forward passes
through the network.

In recent years, DNNs have been widely used for regression
problems as well, such as TC intensity estimation [1], age
estimation [4], wind power prediction [6], remaining lifetime
estimation [18], and pain intensity estimation [7]. However,
the selective prediction problem for regression neural networks
was just discussed by [15] lately. Although SelectiveNet [15] is
a DNN architecture with an integrated reject option, it is chal-
lenging to apply such architecture to real-world applications.
Instead, we tackle this problem from a risk-coverage point of
view using the given regression DNNs and some uncertainty
functions associated with them to achieve the desired selective
risk and coverage.

III. BACKGROUND

Let X be some feature space (e.g., raw image data or d-
dimensional vectors in Rd ) and Y , the output space. We have
a prediction function f , f : X → Y . Although in the literature,
uncertainty driven selective models were mainly studied and
derived for classification problems, here we introduce the
selective model from a more general point of view, i.e., letting
f be either a classification function or a regression function,
and Y be either a set of categorical labels or a real-valued set.

A. General Selective Model

A selective model is a pair (f, g) [11], where f is a
prediction function, and g : X → {0, 1} is a selection function,
which serves as a binary qualifier as follows. For a given
sample x ∈ X , its output is:

(f, g)(x) ,

{
f(x) if g(x) = 1

reject if g(x) = 0
(1)

Note that (f, g)(x) , f(x), if ∀x, g(x) = 1, i.e., no sample is
rejected and the selective model is the function f itself. We
usually utilize an uncertainty function κf : X → R for f , to
measure how well a prediction fits the corresponding ground
truth [19]. Using an uncertainty function κf and a threshold
θ, we can form a selection function gθ(x) as follow,

gθ(x) = gθ(x|κf ) ,

{
1 if κf (x) ≤ θ
0 if κf (x) > θ

(2)

The idea of a selective model is to reject some badly
predicted samples so that f can achieve better performance
on the remaining ones. The performance of a selective model
can be considered from a risk-coverage point of view [11].
Formally, let P (X,Y ) be a distribution over X × Y , also
shorted as P . The selective coverage of (f, g), defined to be
Φ(f, g) , EP [g(x)], is the expectation of g(x) or the no-
reject-region-rate in X . The selective risk of (f, g) is defined
as

R(f, g) ,
EP [`(f(x), y)g(x)]

Φ(f, g)
, (3)

where ` is a loss function measuring the loss between f(x)
and the ground truth output y of x, ` : Y × Y → R.



It is hard to obtain Φ(f, g) and R(f, g) from an unknown
distribution. Instead, we can construct a validation set con-
sisting of m labeled samples Sm = {(xi, yi)}mi=1, assumed
to be sampled i.i.d. from P (X,Y ), and estimate Φ(f, g) and
R(f, g) on Sm.

Now, given a confidence parameter δ > 0 and a desired risk
target r∗ > 0, the goal is to find a selection function g that
maximizes Φ(f, g) while its selective risk satisfies

Pr{R(f, g) > r∗} < δ. (4)

B. Measuring Model Risk with Hoeffding Bounds

Hoeffding’s inequality [20], Chernoff bound [21], and
Azuma’s inequality [22] are the main analytic tools to bound
the probability of a large discrepancy between sample and
population means. In machine learning, Hoeffding’s inequality
is often used to ensure the generalization of a prediction
function f by bounding the probability of the gap between the
expected risk over the distribution P (X,Y ) and the empirical
risk on a validation set of f .

For each data point (x, y) sampled i.i.d. from P (X,Y ), we
consider `(f(x), y) as a random variable, and use Hoeffding’s
inequality [20] directly as stated in the following lemma.

Lemma 1: Given a prediction function f , a distribu-
tion P (X,Y ), and a loss function `, assume that b =
maxP (X,Y )(`(f(x), y)) and a = minP (X,Y )(`(f(x), y)) are
finite and real-valued. If we sample n data points i.i.d. from
P (X,Y ) (i.e., (xi, yi) ∼ P (X,Y ), for each 1 ≤ i ≤ n), then
for t ≥ 0,

Pr{R(f)−Rn(f) ≥ t} ≤ e
−2nt2

(b−a)2 , (5)

where R(f) = EP (`(f(x), y)) is the expected model risk and
Rn(f) = 1

n

∑n
i=1 `(f(xi), yi) is the empirical risk over n

samples.
Hoeffding’s inequality provides loose bounds for estimating

model risks. In practice, b−a are often approximated by using
the maximum and minimum error observed on the validation
set [23], or by adding a few standard deviations to the average
error of f on the validation set to avoid the affection of
prediction outliers of f [24].

IV. METHOD

We formulate the selective regression problem following
the general selective model framework and propose a learning
algorithm to obtain selective regression models that are likely
to produce better regression performances for a large portion
of samples from the feature space X .

A. Problem Setting

For a regression model f , the output space Y is assumed
to be real-valued, R. The expected risk of f w.r.t. the
distribution over X × Y (i.e., P (X,Y )) is EP (`(f(x), y)),
where the loss function `(f(x), y) is usually the squared error
loss `(f(x), y) = (f(x) − y)2 or the absolute error loss
`(f(x), y) = |f(x)−y|. Thus, EP (`(f(x), y)) measures MSE
or MAE of the regression model f , assumed to be real-valued
and finite.

A selective regression model is a pair (f, g), where f is a
regression model and g is a selection function as defined in
(1). Similarly, we form a validation set consisting m labeled
samples Sm = {(xi, yi)}mi=1, assumed to be sampled i.i.d.
from P (X,Y ). We formulate the selective regression problem
as follows.

Definition 1: Selective Regression Problem. Given a fea-
ture space X , a real-valued output space Y , a distribution over
X ×Y P (X,Y ), a regression model f : X → Y , a validation
dataset Sm, a confidence parameter δ > 0, and a desired risk
target r∗ > 0, the selective regression problem is to find a
selective regression model (f, g) that maximizes Φ(f, g) while
its selective risk satisfies

Pr{R(f, g) > r∗} < δ, (6)

where Φ(f, g) = EP [g(x)] is the coverage of (f, g), R(f, g) =
EP [`(f(x),y)g(x)]

Φ(f,g) is the selective risk of (f, g) and evaluated
using regression risk functions, such as MSE or MAE.

Note that the nature of the MSE/MAE-based selective risk
reflects the essential difference between regression and classi-
fication problems, which also makes the method proposed in
[12] unsuitable for solving this problem.

Although f can be any kind of regression models, in this
paper we focus on DNNs, where existing techniques (such
as softmax response [9], dropout layers [17], and ensemble
methods [1]) provide promising ways of measuring uncertainty
of f .

B. Selective Regression with Controlled Risk

Given a selective regression model (f, g), let Pg(X,Y )
be the projection of P (X,Y ) over g, i.e., Pg(X,Y ) ,
P (X,Y |g(X) = 1). The selective risk of (f, g) can be written
as

R(f, g) =
EP [`(f(x), y)g(x)]

EP [g(x)]
= EPg [`(f(x), y)].

We can use Hoeffding’s inequality [20] to establish the risk
bound of a selective regression model (f, g) using a validation
set Sm sampled i.i.d. from P (X,Y ).

Lemma 2: Given a selective regression model (f, g),
a projection distribution Pg(X,Y ), and a loss function
`, assume that b = maxPg(X,Y )(`(f(x), y)) and a =
minPg(X,Y )(`(f(x), y)) are finite and real-valued. If we
sample n data points i.i.d. from Pg(X,Y ) (i.e., (xi, yi) ∼
Pg(X,Y ), for each 1 ≤ i ≤ n), then for t ≥ 0,

Pr{EPg (`(f(x), y)) ≥ 1

n

n∑
i=1

`(f(xi), yi) + t} ≤ e
−2nt2

(b−a)2 .

(7)
The assumption that b = maxPg(X,Y )(`(f(x), y)) and a =

minPg(X,Y )(`(f(x), y)) are finite is true for many real-world
applications, such as tropical cyclone intensity estimation and
human age estimation, where the output space Y has natural
bounds and f(x) can follow the same bounds.

Suppose an uncertainty function κf is available for con-
structing selective regression models using (2). For a certain



selection function gθ and a validation set Sm, we can filter
Sm using gθ, i.e., keep samples with κf (x) ≤ θ. Note that
sampling from Pgθ (X,Y ) is equivalent to filtering Sm using
gθ, since Sm was drawn i.i.d. from P (X,Y ). Hence, we can
estimate the selective risk of (f, gθ), EPgθ [`(f(x), y)]. The
following theorem ensures this estimation with a guaranteed
bound.

Theorem 1: Given a selective regression model (f, gθ), a
projection distribution Pgθ (X,Y ), a loss function `, a valida-
tion set Sm, assume that b = maxPgθ (X,Y )(`(f(x), y)) and
a = minPgθ (X,Y )(`(f(x), y)) are finite and real-valued. Let
Sθ be the filtered sample set of Sm using gθ and z is the size
of Sθ. Then, for t ≥ 0,

Pr{EPgθ (`(f(x), y)) ≥ 1

z

∑
(x,y)∈Sθ

`(f(x), y) + t} ≤ e
−2zt2

(b−a)2 .

(8)
Now, given a regression risk target r∗, we need to search

for a uncertainty threshold θ for κf (x), such that the selection
function gθ maximizes the coverage while its selective risk
satisfies Pr(R(f, gθ) > r∗) < δ. Theorem 1 suggests that
the selective risk EPgθ (`(f(x), y)) can be estimated by the
empirical risk 1

z

∑
(x,y)∈Sθ `(f(x), y) plus a gap t. Given a

confidence level δ, we can obtain an analytic solution of t

from the right-hand side of (8) by setting e
−2zt2

(b−a)2 = δ, which

gives us t =
√
− (b−a)2 ln δ

2z .

If we have an ideal uncertainty function κf , i.e., for
(x1, y1) ∼ P (X,Y ) and (x2, y2) ∼ P (X,Y ), κf (x1) ≤
κf (x2) if and only if `(f(x1), y1) ≤ `(f(x2), y2), sorting
all samples in Sm w.r.t. κf also results in a monotonically
increasing sequence of `(f(x), y). Hence, by searching along
this sequence we can find the maximum number of samples
(thus the corresponding θ to make the split) whose empirical
risk is less than the desired risk target.

Noticing that b − a is bounded by the difference between
the maximum regression error and minimum regression error
of f over the data distribution, so t decreases rapidly as z
increases and becomes stable after z reaches a number (we
call it m0, the minimum number of samples needed), such
that (a) the change in z above this threshold would not bring
any significant change in t and (b) t would be small enough
compared with both the expected risk and empirical risk.

When z ≥ m0, the sequence sorted by κf is also a
monotonically increasing sequence of `(f(x), y) plus t, and
we can find the maximum θ whose empirical risk is less
than the desired risk target. We speed up this process by
a binary search strategy shown in Algorithm 1. In line 2,
zmin is the starting index to begin the search with. We set
zmin to be m0. Lines 4 and 5 define a selection function gθ,
and the first z samples of Sm form the set Sθ for gθ. With

t =
√
− (b−a)2 ln δ

2z and r̂z = 1
z

∑z
i=1 `(f(xi), yi), by Theo-

rem 1 we have Pr{R(f, gθ) > (r̂z + t)} ≤ δ. Furthermore,
we require r̂z + t ≤ r∗ to lead the binary search shown in
Lines 9 to 12. When the search terminates and a solution

indeed exists, the algorithm finds the maximum θ such that
r̂z + t ≤ r∗, which also guarantees Pr{R(f, gθ) > r∗} ≤ δ.

Algorithm 1 Selection with Guided Regression Risk (SGRR)
Require: f, κf , δ, r∗, Sm
Ensure: gθ, r̂z + t

1: Sort Sm according to κf (x), x ∈ Sm;
2: zmin = m0; zmax = m;
3: while zmin ≤ zmax do
4: z = b(zmax + zmin)/2c;
5: θ = κf (xz); Sθ = {(xi, yi)}zi=1;
6: b− a = Approx(Sθ, f);

7: t =
√
−lnδ(b−a)2

2z ;
8: r̂z = 1

z

∑z
i=1 `(f(xi), yi);

9: if r̂z + t ≤ r∗ then
10: zmin = z + 1;
11: else
12: zmax = z − 1;
13: end if
14: end while
15: if zmax ≥ m0 then
16: z = zmax;
17: Update gθ and r̂z + t and Output;
18: end if
19: Return;

Note that not all input values of δ and r∗ lead to a feasible
solution. However, when such feasible solution does exist,
our SGRR algorithm guarantees to find the selection function
gθ that maximizes the coverage and satisfies the selective
risk requirement. In practice, an ideal uncertainty function κf
may not exist. However, with a proper choice of uncertainty
functions, SGRR still can satisfy desirable risk bounds well
as shown in our experiments. We also approximated b− a by
adding two standard deviations to the average error (f(x)−y)
of f on Sθ (as shown in Line 6 of Algorithm 1) as suggested in
[24] to avoid the affection of prediction outliers of f . Although
in this case, we cannot use Theorem 1 to guarantee the risk
bound strictly, it still can be used as a guideline for risk control
purposes. We call δ a guided confidence level, which was also
verified in our experiments.

C. Uncertainty Functions

In this section we discuss two uncertainty functions, Blend-
Var and MC-dropout for measuring the predictive uncertainty
of a regression function f .

1) Blend-Var: Blending is a wildly used technique in data
augmentation and ensemble models [1]. Unlike MC-dropout,
which changes a DNN model slightly and gets different
prediction results each time, blending transforms input x0 by
rotation, reflection, shifting and so on, and makes multiple
predictions using these transformations. Fig. 1 demonstrates
the regression prediction through blending for TC intensity
estimation.

Let xi0 denote the ith transformation of x0. For T trans-
formations, we can use f to calculate a prediction array
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Fig. 1. Regression prediction and Blend-Var calculation through blending for TC intensity estimation.

X0 = [f(x1
0), f(x2

0), ..., f(xT0 )]. We propose to use the vari-
ance of X0 (named as Blend-Var) to measure the predictive
uncertainty of x0, i.e., κf (x0) = var(X0). The mean of T
predictions is the final prediction, i.e., f(x0) = mean(X0).
For T = 10 as shown in Fig. 1, ten test samples were generated
through rotation and cropping from the original input. The
final averaged predicted intensity is 138.7 knots, which is
very close to the ground truth of 140.0 knots. The Blend-
Var uncertainty of x0, κf (x0), is 5.2, which suggests that
this prediction is reliable. Blend-Var can be used in NNs with
dropout layers or not. To the best of our knowledge, we are
the first one to put forward this uncertainty function.

2) MC-dropout: The predictive uncertainty of a prediction
by a neural network regression function f with dropout
layers can also be measured by the prediction variance
of T stochastic forward passes through the network [16].
For a given instance x0, we make T predictions with the
same dropout rate as used in the training step, denoted as
f1(x0), f2(x0), ..., fT (x0). The variance of these predictions
is used as the uncertainty function, i.e., κf (x0) = var(X0),
while X0 = [f1(x0), f2(x0), ..., fT (x0)]. MC-dropout tech-
nique could be used in both classification and regression neural
networks. It does not work for those neural networks without
dropout layers.

V. EXPERIMENTS

We evaluate the proposed selective regression method,
SGRR algorithm, and uncertainty functions on two regression
tasks, TC intensity estimation from satellite remote sensing
images and apparent age estimation from facial images. We
first introduce the network architecture, datasets, and other
experimental settings for each regression task, and then present
the evaluation results. All the code and datasets used in
the evaluation are available at https://github.com/Wenming-
Jiang/Selective-regression-model.

A. Two Case Studies

1) Tropical Cyclone Intensity Estimation: TC intensity esti-
mation from satellite imagery is a typical regression problem.
We chose the current state-of-the-art regression model for
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stride = 2, ReLU
No pooling & dropout

FC Layers

No dropout

Estimated Intensity

Convolution feature:
1152 dimension

4*4 conv, 16
3*3 conv, 32
3*3 conv, 64

3*3 conv, 128

fc, 256, ReLU
fc, 64, ReLU
fc, 1, ReLU

Fig. 2. Network architecture for TC intensity estimation [1].

individual TC images presented in [1], which is a convolu-
tional neural network (CNN) model based on AlexNet without
dropout layers as shown in Fig. 2. We re-produced this model
in TensorFlow using the same data pre-processing procedures,
data augmentation (rotating the images by arbitrary degrees
before training), and hyper parameters as the ones used in
[1] and achieved the same RMSE result on the same test
set reported in [1]. We also followed the blending procedure
presented in [1]. Given an input image, the image is rotated by
evenly-split angles to produce multiple inputs to the model and
the resultant predictions are averaged to be the final predicted
intensity. We used the the open benchmark dataset released
by [1], Tropical Cyclone for Image-to-intensity Regression
(TCIR) dataset, which can be downloaded from https://www.
csie.ntu.edu.tw/htlin/program/TCIR. We used 39811 satellite
images of TCs in 2003 ∼ 2014 as the training set for training
the regression CNN model. We randomly partitioned 11060
satellite images of TCs in 2015 ∼ 2017, and used one half
as the validation set for constructing the selective regression
model, and the other half as the test set. We used the squared
error loss as the loss function and MSE to measure the model
regression risk.

2) Apparent Age Estimation: Apparent age estimation,
which tries to estimate the age as perceived by other humans
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Fig. 3. Network architecture for apparent age estimation [26].

from a facial image, is different from the biological (real)
age prediction. References [25] and [26] built CNNs based on
VGG-16 and achieved the state-of-the-art results for both real
and apparent age estimation on the largest apparent age anno-
tation dataset, ChaLearn Looking At People (LAP) dataset [4].
We downloaded their apparent age estimation model trained
already on the LAP dataset from https://data.vision.ee.ethz.ch/
cvl/rrothe/imdb-wiki/. In their model, apparent age estimation
was treated as a multi-class classification of age bins, i.e., 101
age bins from 0 to 100, followed by a softmax layer to output
final estimated age, as shown in Fig. 3. The LAP dataset also
provided a validation set of 1043 images and a test set of 1003
images. We used the absolute error loss as the loss function
and MAE to measure the model regression risk.

B. Choice of κf
1) Blend-Var: For the CNN model shown in Fig. 2, we

cannot use MC-dropout as the uncertainty function, as it
does not have any dropout layers. It was reported in [1] that
dropout layers were harmful for prediction performance. We
adopt Blend-Var in this case as our choice of the uncertainty
function. Suppose we blend predictions from T = 10 rotations
for each input image, which means we rotate an image by 0,
36, 72, ... , 288, 324 degrees, then treat them as inputs to the
model to obtain ten predictions. The Blend-Var uncertainty
function calculates the variance of those predictions.

We plot the regression error f(x) − y for each sample in
the validation set in the ascending order of κf with T = 10 in
Fig. 4. We can see that as the Blend-Var uncertainty increases,
the regression errors indeed tend to increase as well, which
means that our choice of κf here is a good estimation of the
model uncertainty.

2) MC-dropout: The architecture of the apparent age esti-
mation model, as shown in Fig. 3, contains dropout layers.
Since no other ensemble method was applied in [25] and
[26], we adopt MC-dropout as the uncertainty function κf
and performed T = 20 stochastic forward passes through the
network to calculate the MC-dropout uncertainty.

We plot the regression error f(x) − y for each sample in
the validation set in the ascending order of κf in Fig. 5.
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Fig. 4. Regression errors in order of κf for TC intensity estimation.
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Fig. 5. Regression errors in order of κf for apparent age estimation.

Similarly, the MC-dropout uncertainty function estimates the
model uncertainty well in this case.

C. Varying T

Noticing that the number of predictions T used in calculat-
ing both the Blend-Var and MC-dropout uncertainty functions
is a parameter of the regression model. We tried various T
values to obtain various regression models and examined their
regression performance and the effectiveness of our SGRR
algorithm. Using the Blend-Var and MC-dropout uncertainty
functions discussed above, we applied our SGRR algorithm
on those models and showed their risk-coverage performance
in Fig. 6(a) and (b), where the selective risk was evaluated
using MSE and MAE for TCIR and LAP, respectively.

As shown in Fig. 6(a) and Fig. 6(b), the dashed line is the
original regression risk without blending and selection. When
T increases, the performance shows remarkable improvements
for both Blend-Var and MC-dropout. The improvements be-
come subtle after T ≥ 10. Meanwhile, with a larger T value,
we need to calculate more predictions, which takes more
computing time. Hence, in the rest of the experiments, we set
T = 10 for TC intensity estimation and T = 20 for apparent
age estimation, respectively.

D. Confidence Level

Since we used an approximated b − a in our SGRR al-
gorithm, in this set of experiments we verify whether the
empirical risk r̂z is indeed less than the desired risk bound r∗

on the test set with the given confidence level. For both TCIR
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(a) The influence of T on TCIR.
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(b) The influence of T on LAP.
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(c) Risk-Coverage curve on TCIR.
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Fig. 6. Selection results.

TABLE I
PERCENTAGE OF EMPIRICAL RISK ≤ RISK BOUND ON THE TEST SET

OVER 1,000 RUNS.

TCIR MSE* (r*) 73 81 91 101 109
Percentage 97.6% 98.3% 98.3% 97.7% 98.1%

LAP MAE* (r*) 4 4.5 5 5.2 5.5
Percentage 98.7% 98.2% 98.9% 99.2% 99.7%

and LAP, we split the dataset into two random halves, one for
validation and one for testing, for 1,000 times. We then applied
the SGRR algorithm on each validation set with a range of
desired risk bound r∗ values and a confidence level δ = 0.05.
For each r∗ value, we constructed a selective regression model
gθ on each validation set, applied it to the corresponding test
set, and calculated the percentage of r̂z ≤ r∗ on the test set
over the 1,000 runs. The percentages are shown in Table I.
We can see that although we used an approximated b− a, the
actual percentages are greater than 95% for all desired risk
bound values for both TCIR and LAP, which suggests that the
Hoeffding bound with a confidence level can provide a good
guidance for constructing selective regression models.

E. Selection Results

In this set of experiments, we examined the selection
performance of our SGRR algorithm in more details. For
TCIR, we chose one random split of the validation and test
sets and evaluated the risk-coverage curve on the validation
set and the selection performance on the test set. For LAP,
we used the original split of the validation and test sets
from the LAP website. Our SGRR algorithm employed both
the proposed uncertainty functions and an ideal uncertainty
function κf (x) = `(f(x), y), which ranks each sample in the
order of its regression error.

1) TC Intensity Estimation: We first show the risk-coverage
curve obtained by the selective regression model on the
validation set for both the Blend-Var and ideal uncertainty
functions in Fig. 6(c). For the selective regression model using
the Blend-Var uncertainty function, we drew two curves of
the risk bound r∗ and the empirical risk r̂z in terms of MSE
with increasing coverage. We drew a curve of the empirical
risk r̂ for the one using the ideal uncertainty function. Here

we started the curves from the coverage value of 0.01. We
also drew a dashed line to show the original regression risk
without selection. There are several observations we can make
from for Fig. 6(c). Firstly, for both the Blend-Var and ideal
uncertainty functions, we can see that the empirical risk r̂z
bounded by r∗ increases when the coverage increases as we
expected. Secondly, the gap t between r∗ and r̂z is large
when the coverage is small, because small z values make

t =
√
− (b−a)2 ln δ

2z large. When the coverage increases, the
gap t becomes stable and relatively small w.r.t. both r∗ and
r̂z . Therefore, we can use our SGRR algorithm to search
for gθ only when gθ selects more than m0 (the minimum
number of samples needed) samples on the validation set. Fi-
nally, compared with the perfect empirical risk-coverage curve
achieved by the ideal uncertainty function, Blend-Var achieved
a worse empirical risk-coverage curve. However, as suggested
by Fig. 6(c), Blend-Var can still construct selective regression
models that decrease the regression risk significantly while
covering most of the samples.

Given a risk bound r∗, we used the SGRR algorithm to
search for gθ on the validation set. gθ was then applied to
the test set. We calculated the empirical risk (in terms of
MSE) and coverage on both validation and test sets for TCIR,
which are shown in Table II. The original model f achieved
a RMSE value of 10.496 knots (equivalent to an MSE value
of 110.16) and 10.486 knots (equivalent to an MSE value of
109.95) on the validation and test sets, respectively. As shown
in Table II, the MSE and coverage values are very similar on
the validation and test sets. Both val-MSE and test-MSE values
are bounded by r∗ with a gap introduced by the Hoeffding’s
inequality. Finally, our SGRR algorithm with Blend-Var as the
uncertainty function constructed a selective regression model
that guaranteed a risk bound (in terms of MSE) of 90.25 while
covering more than 75% test samples with a guided confidence
level of 0.05.

2) Apparent Age Estimation: The risk-coverage curves of
the risk bound r∗ using MC-dropout, the empirical risk r̂z
using MC-dropout, and the empirical risk r̂ using the ideal
uncertainty function in terms of MAE with increasing coverage
for LAP are shown in Fig. 6(d). Trends are similar for this case
to those for TCIR as well. Because the size of the validation



TABLE II
SELECTION RESULTS ON TCIR WITH δ = 0.05.

MSE*(r*) val-MSE val-Coverage test-MSE test-Coverage
72.25 65.81 45.82 64.94 46.84

81 74.47 60.51 76.47 61.03
90.25 83.82 75.37 85.28 75.90
100 93.33 88.57 97.08 89.42
105 98.18 91.74 99.87 92.48
109 102.02 95.57 103.19 96.24

- 110.16 100 109.95 100

TABLE III
SELECTION RESULTS ON LAP WITH δ = 0.05.

MAE* (r*) val-MAE val-Coverage test-MAE test-Coverage
4 3.19 42.95 3.46 43.27

4.5 3.88 70.47 4.03 66.54
5 4.40 82.65 4.36 79.48

5.2 4.64 86.67 4.53 86.54
5.5 4.96 93.10 4.86 93.22
- 5.37 100 5.22 100

set is smaller (around 1,000) for LAP, the gap between r∗ and
r̂z using the MC-dropout uncertainty function is larger, which
means the risk bound is looser. Nevertheless, MC-dropout can
be used to construct selective regression models that decrease
the regression risk significantly while covering most of the
samples. Similarly, we applied the found selective regression
model to the test set, and calculated the empirical risk (in terms
of MAE) and coverage on both validation and test sets, which
are shown in Table III. The original model f achieved a MAE
value of 5.37 and 5.22 on the LAP validation set and the LAP
test set, respectively. Our SGRR algorithm with MC-dropout
as the uncertainty function constructed a selective regression
model that guaranteed a risk bound (in terms of MAE) of
4.5 while covering more than 66% test samples with a guided
confidence level of 0.05.

VI. CONCLUSION

We presented a general method to construct selective re-
gression DNN models that can minimize reject rates under the
control of regression risk bounds. We proposed an uncertainty
estimation function, Blend-Var, which could be used in both
classification and regression DNNs with blending. We eval-
uated our proposed method with two real-world applications
and achieved promising results, which suggests that selective
regression models are promising solutions to the real-world
applications where predictions with large regression errors
need to be avoided.
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