
 

An Experiment in Morphological Development for 
Learning ANN Based Controllers 

 

M. Naya-Varela  
Integrated Group for Engineering Research 

CITIC (Centre for Information and 
Communications Technology 

Research)Universidade da Coruña 
A Coruña, Spain. 

martin.naya@udc.es 
 

A. Faina. 
Robotics, Evolution and Art Lab (REAL) 

Computer Science Department 
IT University of Copenhagen 

Copenhagen, Denmark 
anfv@itu.dk 

 
 

R. J. Duro 
Integrated Group for Engineering Research 

CITIC (Centre for Information and 
Communications Technology 

Research)Universidade da Coruña 
A Coruña, Spain. 
richard@udc.es 

Abstract— Morphological development is part of the way any 
human or animal learns. The learning processes starts with the 
morphology at birth and progresses through changing 
morphologies until adulthood is reached. Biologically, this seems 
to facilitate learning and make it more robust. However, when this 
approach is transferred to robotic systems, the results found in the 
literature are inconsistent: morphological development does not 
provide a learning advantage in every case. In fact, it can lead to 
poorer results than when learning with a fixed morphology. In this 
paper we analyze some of the issues involved by means of a simple, 
but very informative experiment in quadruped walking. From the 
results obtained an initial series of insights on when and under 
what conditions to apply morphological development for learning 
are presented.  

Keywords—cognitive robotics, morphological development, 
quadrupedal walking 

 

I. INTRODUCTION 

While control architectures and other information processing 
approaches are certainly important for robotic intelligence, our 
understanding of how this intelligence comes about has 
expanded in the last decades to include the morphology of the 
robot and its environment, as well as their mutual interactions 
[1]–[3], The field of Artificial Embodied Intelligence (AEI) [4], 
[5], which postulates robot intelligence as the result of the 
interaction between brain, morphology and the environment the 
robot must operate in, is growing. Currently, this view on the 
emergence of intelligence has expanded and now it tries to 
address the fact that intelligent systems must be able to operate 
in sequences of environments that are generally unknown at 
design time [6]. In other words, we are facing open-ended 
learning problems and, by definition, these types of problems 
imply that robots cannot be completely defined at design time, 
as, at that time, we do not know what skills the robot will require 
in order to achieve its purpose. In fact, not even the goals that 
need achieving are known. 

Developmental Robotics (DR) [7] is one of the approaches 
proposed to try to address these issues. It is based on the idea 
that robots can autonomously acquire an increasingly complex 
set of sensorimotor and mental capabilities through the 

interaction between its body and brain in the sequence of 
domains it is exposed to during its lifetime. Cangelosi defines 
this field as [8]: 

“Developmental robotics is the interdisciplinary approach to 
the autonomous design of behavioral and cognitive capabilities 
in artificial agents that takes direct inspiration from the 
developmental principles and mechanisms observed in the 
natural cognitive systems of children “ 

The field focuses on the development of experience and 
motor skills inspired by those of humans, that emerge and grow 
from childhood to adulthood. A very good survey has been 
published by Asada et al. [7] focusing on infant development of 
higher cognitive functions, such as empathy or imitation. The 
paper provides a description of how these functions emerge in 
humans and how they have been implemented in a robotic 
system, assuming a fixed morphology for the robot during its 
lifetime.  

On the other hand, lifelong learning in robotics is concerned 
with how to improve efficiency in open-ended learning through 
the reuse and adaptation of previously learnt knowledge. Thrun 
and Mitchel [9] postulated that lifelong learning should provide 
for faster and more robust learning than simply handling each 
learning process independently. This is obviously very 
compatible with the concept of Developmental Robotics. 
However most of the research that has been carried out in this 
field has focused on Cognitive Developmental Robotics (CDR) 
[10]. It has concentrated on the development of cognition [7], 
[11], within a fixed body and has mostly ignored the 
development of the body of the system as a complementary tool.  

In other words, there is a missing piece in this whole 
approach and that is the fact that in most living beings their 
bodies also undergo modifications during their lifetime. That is, 
it is not only the cognitive part of the system that changes during 
development but also the body and these modifications seem to 
provide an advantage to the individual for learning in complex 
open-ended settings.  

In biological systems, the importance of morphology arises 
from the interaction between cognition, the body, the 
environment, and how this interaction can be harnessed to 
improve the survival chances of the individual. Like biological 
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systems, robots are physical entities operating in the real world. 
They have innate properties, such as mass, length, stiffness, etc., 
and they suffer the consequences of them: they are affected by 
friction, gravity, inertia, etc. Traditionally the effect of the body 
on cognition was deemed to be irrelevant. However, recent 
studies have demonstrated that the body and environmental 
interaction are necessary to develop communicative and 
cognitive skills, among others [12], [13]. In fact, as indicated by 
Lakoff and Núñez [14], a body is even required for activities that 
we take as very abstract, such as mathematical thinking.  

Pfeifer [15] already pointed out the very close relationship 
between the robot morphology, the environment and the task. In 
fact, the morphology of the robot determines the capabilities it 
may display in a given environment: an optimized morphology 
for a given task simplifies control, makes the task easier and thus 
permits improving performance, whereas an inadequate 
morphology will lead to an inefficient solution to the task with 
the consequent increase in control complexity and 
computational cost. 

Summarizing, there seems to be a close relationship between 
the physical design of a robot and that of its controller, as a 
function of the environment or environments and tasks to 
perform. This opens up a series of research questions of interest. 
The obvious one, which has been addressed by many authors 
such as [16]–[19], is how these relationships can be used in order 
to produce more efficient robots and controllers.  

However, a probably more interesting and subtle question, 
that has generated less attention, is whether this morphology-
control relationship or coupling can be used in developmental 
processes. That is, whether it makes sense to use it in order to 
improve the learning and adaptation capabilities of a robot that 
must address lifelong open-ended learning. In fact, it would be 
interesting to know whether this coupling provides any 
advantage when exploring complex behavioral spaces and, if so, 
under what circumstances.  

In this paper we address this issue. In section II we provide 
some general ideas on morphological development. Section III 
is devoted to the presentation of the background on the 
application of morphological development to learning in 
quadruped and other types of walkers and we introduce the 
experimental setup we are going to use. The results of the 
experiments carried out are presented in section IV. Finally, we 
discuss these results in section VI and provide some conclusions 
and future lines of work in section VII.  

II. MORPHOLOGICAL DEVELOPMENT 

In humans, morphological development encompasses 
cognitive development [20], motor development [21] and body 
maturation [22]. Cognitive development consists in the creation 
of new world representations and in the consolidation and 
adaptation of those already present. On the other hand, motor 
development implies the continuous acquisition of motor skills 
to gradually improve the effectiveness of the movements. 
Finally, growth and maturation involve more than an increase in 
body size and weight. They imply other subtler physical aspects 
such as increases in muscle tone, bone mass, extensions in the 
motion range of the limbs and improved sensory capacity, 
among others.  

Even though in psychology and biology these concepts have 
been addressed separately, different authors support that their 
interrelation and joint operation should be explored [23]. In fact, 
development is highly mediated not only by physical and 
cognitive changes within the body itself, but also by the 
influence that they have over the interaction with the 
environment and how this affects in the acquisition of new 
knowledge. Even though it is usually a continuous process, 
morphological development can be pictured as an evolution of 
the developmental process in a series of stages, from the 
simplest and starting stage, to the final and most complex one. 

Looking at this from a mathematical and computational 
point of view, one way to facilitate searching for a solution in a 
complex search space is to initially consider a simplified version 
of the problem, as defined by the solution search space it defines 
[24], [25], and progressively add complexity as the algorithm is 
searching. In other words, we are producing a stage based 
approach in which each stage presents the algorithm with a 
solution space that is progressively more complex and more 
complete. What is important here is that in this type of stage 
based or curricular learning processes we also provide the 
algorithm with a starting point given by the best solution 
obtained in the previous stage, thus simplifying the incremental 
complexity of the subsequent task and deploying simplified and 
less computational costly solutions [26].  

A division of the developmental process into stages also 
highlights an important difference between morphological 
development and cognitive development in the way how they 
handle the learning process. In cognitive development, the first 
units of knowledge to be learnt are basic features that will be 
used later as scaffolding to learn more complex knowledge 
nuggets that make use of them. This is not the case for 
morphological development. The cognitive structures created at 
each stage of morphological development are the starting point 
for learning the next stage. These structures are modified and 
adapted to the physical changes that occur during the 
morphological development process, giving rise to new 
cognitive systems that are better adapted to the new morphology 
(e.g. adult walking is not made up of different bits of baby 
walking and teenager walking). Thus the morphological 
development process steers a path through a series of solution 
spaces the system interacts with as it develops morphologically 
which lead to the final adult situation. The hypothesis here is that 
this path may simplify learning the final goal (infants have lower 
centers of mass, which facilitates learning to walk). 

III. EXPLORING THE APPLICATION OF MORPHOLOGICAL 

DEVELOPMENT 

After reviewing the main ideas underlying morphological 
development, we now want to focus on a particular robotic 
application in order to try to extract some conclusions on how 
morphological development can be applied. In particular, we are 
going to focus on a simple quadruped walking scenario over 
which we will carry out a series of experiments in order to test 
the effects of different parameters over learning using 
morphological development.  

To the best of our knowledge, there are no previous 
references on strict morphological development in learning 
quadrupedal motion. We have found only two papers that 



addresses quadrupedal motion taking into account 
morphological development, one is from Bongard [27] and the 
other by Vujovic et al. [28], but, in both cases, in the framework 
of evolutionary robotics and evolutionary developmental 
robotics (EvoDevo). However, the work presented in these two 
studies is the one that best reflects our idea of development for 
learning. The aim of  Bongard’s study is to reach a source of 
light as fast as possible. The study was divided into 5 different 
experiments; each one consisted of 4 phases of evolution and 
each phase was associated to a specific state of the robots. He 
showed that employing development together with evolution in 
each phase contributes to faster success. Furthermore, evolving 
the morphology jointly with the behavior has demonstrated a 
more robust performance under environmental perturbations. 
However, it has also been shown that a combined approach 
based on morphological development and evolution can be 
detrimental and offer worse results than a case in which 
morphological development is not sought.  

On the other hand, the objective of the study by Vujovic et 
al. is to compare the results obtained after applying an 
evolutionary or an EvoDevo sequence  to a robot which needs 
to walk over flat terrain. In order to do that, the length and 
thickness of the legs are modified. They claim that the 
combination of evolution and development results in an 
improvement of the fitness in the experiment in some cases. 
However, this depends on the choice of developmental system. 
In fact, poorly chosen developmental parameters seem to result 
in poorer results than considering only evolution. The 
hypothesis the authors make is that reducing the search space in 
the wrong direction eventually removes the good solution 
choices that development could have made along the way. 

We have found some papers, not many, on morphological 
development in the case of bipedal motion [29]–[31], and for 
hexapedal walking as we mentioned previously [27]. The results 
they present with respect to how morphological development 
influences learning are inconclusive. They provide examples 
where morphological development during the learning process 
improves over just learning with a fixed morphology, but in 
other examples the results are just the opposite. 

In this work we are going to use quadrupedal walking as a 
first test case in an exploration of how to harness morphological 
development in an attempt to provide design guidelines to be 

able to use it appropriately. The main objective of this paper is 
to try to elucidate whether morphological development actually 
improves ANN learning and whether there is a difference when 
learning an ANN based controller in this scenario between 
morphological development through growth, which is closer to 
biological development, and morphological development 
through the liberation of degrees of freedom, which is the case 
most often contemplated in the literature. We also address the 
issue of whether the morphological development rate affects 
learning and, finally, we will provide some indications on the 
robustness achieved by the solutions obtained in each case. 

IV. EXPERIMENTAL SETUP 

The basic design of the quadruped that is going to be used in 
all the experiments is presented in Fig 1. It is made up of a 
central body of dimensions 30cm*15cm*1cm and 2kg, and 4 
limbs, each one with two revolute joints and one prismatic joint. 
Each limb is composed of 3 segments, all of them present the 
same size and weight (5cm*2.5cm*0.5cm and 250g). The 
farthest segments of the robot's legs are joined by the prismatic 
joint. This joint has a maximum stroke of 7.5cm, which means 
that the length of the legs may vary from 10 to 17.5cm. The 
maximum rotation interval of the revolute joints is [-90, 90]. The 
controller of the robot is a neural network whose weights and 
structure are learnt using NEAT [32] specifically the 
MultiNEAT implementation [33]. It has one input and 8 outputs, 
each controlling the actuation of one joint. The NEAT neural 
network starts with a full connection between the input neurons 
and the output neurons without any hidden layers. The hidden 
layers and their corresponding connections are created by the 
NEAT as required during the neuroevolutionary processes. 
Therefore, there is no pre-set ANN structure, just pre-set inputs 
and outputs. The input, is a sinusoidal function of amplitude 2.0 
and frequency rad/s.  

A series of learning experiments using NEAT have been run 
over implementations of the robot and environment using the 
VREP [34] simulator with the ODE [35] physical engine. Each 
NEAT learning run contemplates a population of 50 individuals 
and is trained for 300 generations. A total of 20 independent runs 
have been carried out for each experiment with the objective of 
gathering relevant statistical data. As the controller is obtained 
using NEAT, the learning strategy is based on a neuro-
evolutionary process, where the fitness is the distance travelled 

 

Fig 1. Snapshots of a motion sequence of the quadruped morphology used in the experiment with one of the controllers starting from a resting position. Each 
image has been taken at the specific simulation time (t) that is represented in seconds, in the lower left part of each frame. Each limb has three solid segments in 
a chain attached to the base by two revolute joints (red cylinders), which are actuated, and a linear joint (red rectangular cuboid), which is used for the 
morphological development. 



by the robot. Each individual is tested for 3s with a simulation 
time step of 50ms and physics engine time step of 5ms. 

In order to study the effects of development over a specific 
morphology we ran 3 different types of experiments: 

1) Reference experiment: this experiment is run with a fixed 
morphology (the same as the final morphology for the rest of the 
experiments) from the beginning to the end. The robot starts at 
generation 0 with the maximum length of the legs and the neuro-
evolutionary algorithm seeks a neural network based controller 
to achieve displacement. 

2) Leg growth experiment: the robot morphology starts 
with the shorter version of the legs. That is, at the beginning the 
prismatic joint is fully contracted, its extension is 0, and the 
length of the legs is thus 10cm. The leg length is grown linearly 
with the generations until it reaches the maximum length of 
17.5cms. This growth takes place in a set number of generations 
for each experiment. That is, the final morphology is reached at 
generation 20, 40, 60, 80, 100 and 120 depending on the 
experiment. This permits studying the relevance of the growth 
rate with regards to performance. In a way, we try to simulate 
the way knowledge is acquired by biological entities: their 
limbs grow until a certain age, and then learning continues with 
a fixed morphology.  

3) Motion range experiment (MR): the robot starts with the 
final morphology, which is fixed during the whole experiment. 
What  actually changes here is the motion range of each 
revolute joint, that is its maximum angle available. The angular 
development is applied on the denormalization of the output of 
the ANN, increasing gradually the maximum avaliable angle 
value.The ANN starts with a maximum available angle of half 
that of the final angle, and this maximum is increased linearly 
again, for a number of generations. In other words, in different 
runs the maximum possible motion range is reached at 
generation 20, 40, 60, 80, 100 and 120. This form of 
development is inspired on the DOF freeing mechanisms 
proposed in the literature [36]–[38], in which, at the beginning 
of development, the motion of the joints is locked or limited, 
progressively increasing their scope with time. 

In addition to studying how morphological development 
affects the learning process, we have performed some 
experiments to try to determine whether there is any difference 
in the robustness of the results when faced with small changes 
in the morphology or motion range of the quadruped. With this 
objective, we have taken the best controllers of each type of 
experiment and tested their behavior in a series of quadrupeds 
with morphologies that were slightly different from those for 
which they were trained. These morphologies are based on the 
reference morphology of the quadruped, but two types of 
modifications were made: 

1) Growth modification: The length of the legs was 
modified by 5% and 10% above and below the reference size. 

2) Angle modification: the maximum motion ranges were 
modified by 5% and 10% above and below the reference angles. 

V. RESULTS 

The results of the training process for each case can be 
observed in Fig. 2 and Fig. 3. Fig. 2 is related to the experiments 
in which the legs are grown. The top graph displays the median 
of the best fitness obtained for the 20 independent runs at each 
generation for 3 of the growth rates and the reference. The 
shaded areas in the graph represent the areas between percentiles 
75 and 25 for each experiment. Although we have carried out all 
of the experiments mentioned in section IV, for the sake of 
clarity in this graph, we only represent the experiments where 
the final morphology is reached at generations 20, 60 and 120 
which are very representative of what is generally happening. 
The experiments that reach the final morphology at generation 
20 obviously represent the fastest growth, whereas those that 
reach the final morphology at generation 120, the slowest one. 
In between, we included the experiment that reaches the final 
morphology at generation 60. It this particular case is also the 
one that produces the best results.  

It can be easily observed that this morphological 
development mechanism based on leg growth provides better 
results than when there is no development. In fact, it can be 
clearly seen that all the developmental processes produce a noisy 
fitness curve while growth takes place. This is due to the fact 
that as the morphology is changing and the ANN that is being 
evolved needs to adapt to a changing body. But after growth 
ends, the curves become less noisy (the morphology is now 
fixed) and the system continues to adapt to its final morphology, 
improving its control over it and reaching fitness values that are 
in the order of 50% better than in the no-developmental 
reference case.  

The statistical relevance of these results can be observed in  
the middle graph of Fig. 2. Each boxplot represents the median 
and the 75 and 25 quartile of each of the different types of 
experiments in the last generation. The whiskers are extended to 
1.5 of the interquartile range (IQR). Single points represent 
values that are out of the IQR. All developmental samples are 
compared to the no-development sample. The statistical analysis 
has been carried out using the two-tailored Mann-Whitney test. 
We want to test whether the null hypothesis (if both compared 
samples are equal) is true. We consider a p-value of 0.05 as the 
significant value for accepting or rejecting the null hypothesis. 
Asterisks and lines refer to the statistical difference between the 
samples represented and its change from numerical values to a 
graphic representation for simplicity can be seen in the legend 
of the figure itself. The most relevant result is obtained for 
growth until generation 60, obtaining a p-value 0.00195, which 
means a huge rejection of the null hypothesis. That is, in this 
case morphological development clearly improves learning with 
respect to no-development. Growth experiments up to 
generations 80 and 100 present p-values of 0.02227 and 0.01058 
respectively, showing that both cases of development offer 
statistically relevant better results than no development. In the 
case of growth up to generation 20 (p-value: 0.08103), 
generation 40 (p-value: 0.07205) and generation 120 (p-value: 
0.06787) it is considered that the null hypothesis cannot be 
rejected because their p-values surpass the reference p-value, 
even though they are very close to this limit. Consequently, they 
are not statistically different from no development. All of these 
results provide a first indication that the growing rate needs to 



be aligned with the learning time in order to be able to get better 
results over no development. This is probably because the 
system is generally changing too fast for the ANN controller to 
be able to follow it. On the other hand, growing too slowly 
probably allows the ANN to fall into deep local minima from 
which it is difficult to exit as the morphology changes. 

Fig. 2 bottom represents the evolution of the best individual 
for each kind of experiment. We can observe how the curve that 
shows the best learning process in the case of no development 
quickly stagnates in fitness from generation 50 onwards. This 
shows that, from that generation it is hard to find individuals that 
improve the existing ones and thus, improving performance is 
also difficult. A similar behavior can be observed in the best 
individual of the experiment that grows until generation 20. It 
shows a stagnation during most of the evolutionary process 
except in the interval approximately between generations 100 
and 170, where there is improvement in the performance of the 
controller. Development graph up to 120 also shows stagnation 
at the end, but shows more progressive learning both during the 
growth stage and with the final morphology onwards. 
Remarkable by the endo of the growing phase, the fitness value 
in all the cases has not significantly improved on the no 
development case. It is only after the morphology has stabilized 
that the relevant fitness improvements take place, hinting at the 
importance of the growth stage in order to avoid local minima 
and position the system in areas of the solution space that allow 
for improvement. This is, in fact, the case of growth until 
generation 60 for the best individual. The graph shows an erratic 
fitness improvement until reaching the final morphology, from 
where it stabilizes and begins progressive more stable learning 
process, being the fitness obtained at the end of the learning 
process (2.14m) much higher than the one obtained in the case 
of no growth (1.78m). 

Fig. 3 corresponds to the experiments that use angular 
motion range variation as morphological development. As can 
be seen, although the method of liberating of degrees of freedom 
is the morphological development method most often used in the 

 

Fig 3. Statistical representation of the performance obtained from the 20 
independent experiments at the end of the 300 generations considering 
morphological development as increasing the maximum motion range.
“Development up to generation” is abbreviated by a D, in order to make the 
figure clear. 

 

Fig 2. Top: Statistical representation of the neuroevolution of the 20 
independent experiments for the growth of the legs until generation 20, 
60, 120 and for the case of no-development. Middle: Statistical 
representation of the performance obtained from the 20 independent 
experiments at the end of the neuroevolutionary process. “Growth up 
to generation” is abbreviated by a G, in order to make the figures clear. 
Bottom: Behavior of the best individual for each type of experiment. 



studies found in the robotic literature (see [38], [39]), in this case 
there was no statistically relevant improvement in the 
experiments that used this type of morphological development 
when compared to the reference case. Although, there are 
isolated individuals which appear to offer better performance 
than individuals in the case of no-development, they general 
results are statistically similar. Development up to generation 60 
results in the best performance, with a p-value of 0.42488 which 
is far from the 0.05 necessary to be considered a significant 
difference.  

In order to analyze the robustness of the selected approach 
to morphological development, the 20 best independent 
individuals obtained from each experiment were tested over the 
morphological variations indicated in section IV. Other authors 
have also studied the concept of robustness, although, it is not 
clear how the concept of robustness is defined. It is usually 
addressed as the performance under a novel environment, 

however this is a vague definition that makes it difficult to 
compare the term robustness between experiments. In [27], 
where the task objective consisted in reaching a source of light 
as fast as possible, robustness is defined as the relative 
performance of the controller under slight random perturbations 
during its movement. In [40] the task objective consists in 
grasping objects of different sizes. Robustness, in this case, is 
defined as the relative performance of the controller versus 
grasping objects that present small differences in dimensions 
compared to the objects considered during learning.  

Thus, given that there is no clear universally accepted 
definition of robustness, in our case, we have applied a definition 
related to the processes involved. As a consequence, we have 
defined robustness as the relative performance of the controller 
under small variations in the dimensions of the legs and 
variations in the maximum motion range that a joint can reach. 
The selected controllers for testing robustness are the ones that 
offered the best results for each kind of morphological 
development process (growth up to generation 60 and angular 
development up to generation 60) and the no-development case 
as a reference.  

Fig. 4 displays the results of these experiments. To produce 
these results, the best controller obtained for each case in each 
of the runs was tested over the morphological and motion range 
variations. The fitness of each individual was normalized using 
the fitness achieved during the learning stage. A statistical 
representation of these relative fitness values for 20 runs in each 
of the three cases (NoDev, Growth up to 60 generations and 
motion range up to 60 generations) for the two morphological 
variations are presented. The normalization explains why the 
central case in each case presents a constant value of 1. The top 
graph represents the statistical results considering a 5% and 10% 
increment and decrement in the percentage of the maximum 
range of joint angle available. The reference performance 
obtained in the neuroevolutionary process is shown in the 
middle of each group and described with a dash in the label, 
indicating that there are not modifications to the final 
morphology the controller was adapted to. Fig. 4 bottom 
displays the statistical results considering a 5% and 10% 
increment and decrement in the leg length with respect to the 
final length. Visually analyzing the results presented in Fig. 4, 
in the case of morphological variations that involve both an 
increase in the extension of the legs and modifications in the 
motion range available, we cannot say that one case of 
morphological development is more robust than another or 
better than the no-development case for the definition of 
robustness we have chosen. In fact, practically all the medians, 
are within the range from 1 (reference value) to 0.8 of the 
normalized value, presenting the obvious behavior whereby the 
larger the morphological difference with respect to the reference 
morphology, the worse the results obtained.  

VI. DISCUSSION 

We hypothesize that the learning improvement obtained 
with morphological development is due to three main factors:  

1) By reducing the space of possible solutions that allow the 
robot to move, it is easier to find solutions that allow it to move. 
This does not mean that the solutions found must necessarily be 
valid in the final morphology, but they are solutions for the 

 

Fig 4. Robustness analysis. Top: relative performance considering a 
proportional variation of the maximum motion range available. Bottom: 
relative performance considering a proportional variation of the leg 
length. 



morphological situation of the moment that allow the 
development of a stepped and progressive learning sequence.  

2) In this particular case, considering the quadruped, we 
believe that morphological development offers a second 
advantage for the morphology, and that is that the initial 
configurations offer greater stability to the quadruped at the 
beginning of learning, allowing it to remain on its 4 legs without 
falling. This favours a larger number of valid solutions at the 
beginning and as growth occurs, those solutions that best adapt 
to the learning process are selected.  

3) It increases exploratory behavior. As can be seen in the 
best execution for the case of no-development in Fig. 2 bottom, 
the evolution converges rapidly to a suboptimal solution, 
becoming quickly stagnated. This shows the existence of local 
optima in the solution space of the problem that are far from 
being the best solution that can be achieved. The best executions 
obtained considering morphological development up to 60 and 
120 generation show a radically different behavior. Both show 
an erratic behavior at the beginning, with ups and downs in the 
value of fitness, typical of exploratory behavior, but once the 
final morphology is reached, the behavior improves 
progressively and favourably, until in surpasses the maximum 
no-development fitness. This highlights the benefits of this 
initial exploration as compared to the rapid convergence in the 
case of no-development or even in the cases of very fast growth 
(the cases where growth takes place up to 20 or 40 generations). 

On the other hand, as shown in Fig. 3, morphological 
development through the release of angle constraints has not 
been shown to offer better results than the case of no-
development. Indicating that not any type of morphological 
development is valid for a given morphology. Something that is 
also observed in development through growth, as no relevant 
improvement over the no development case can be observed for 
growth rates up to generation 40. 

These results show the need to study in greater depth the 
underlying mechanisms in morphological development applied 
to robotics, in order to find out in which cases it favours learning 
or in which it is irrelevant, as we can see in Fig. 3, or even 
harmful.  

VII. CONCLUSIONS 

In this paper, we have shown that ontogenetic morphological 
development while a robotic quadruped is learning a locomotion 
task may help to find better solutions when compared to a robot 
that does not follow any kind of development. Specifically, we 
have found that the morphological growth of the limbs helps to 
learn better controllers if the growth rate is chosen correctly. On 
the other hand, while the angular development of the joints has 
not improved the learning, it did not present a negative effect.  

Regarding the robustness of controllers when handling 
morphological perturbations, the morphological development 
shows an equivalent reduction in performance to that of the no 
development experiment. However, due the fact that the 
morphological development controllers present higher 
performance, the controllers obtained by morphological 
development still behave better in the cases for which they were 
not designed that than those where no development was used. 

Summarizing, from these results it seems that certain types 
of morphological development within certain development rates 
can really help in learning better controllers for complex tasks. 
Nonetheless, much more work is needed over many other tasks 
to really be able to provide effective engineering indications on 
how to apply morphological development. We are currently 
extending the range of cases and complexity in order to study 
this issue. 

ACKNOWLEDGMENT 

This work has been partially funded by the Ministerio de 
Ciencia, Innovación y Universidades of Spain/FEDER (grant 
RTI2018-101114-B-I00), Xunta de Galicia and FEDER (grant 
ED431C 2017/12) and M. Naya-Varela is very grateful for the 
support of the UDC-Inditex 2019 grant for international 
mobility. We also want to thank CESGA (Centro de 
Supercomputación de Galicia. https://www.cesga.es/) for the 
possibility of using its resources. 

REFERENCES 

[1] R. Pfeifer and J. Bongard, How the body shapes the way we think: a new 
view of intelligence. MIT press, 2006. 

[2] R. Pfeifer, “Dynamics, morphology, and materials in the emergence of 
cognition,” in Annual Conference on Artificial Intelligence, 1999, pp. 27–
44. 

[3] R. Chrisley, “Embodied artificial intelligence,” Artif. Intell., vol. 149, no. 
1, pp. 131–150, 2003. 

[4] R. Pfeifer and F. Iida, “Embodied artificial intelligence: Trends and 
challenges,” in Embodied artificial intelligence, Springer, 2004, pp. 1–26. 

[5] M. Hoffmann and R. Pfeifer, “Robots as powerful allies for the study of 
embodied cognition from the bottom up,” pp. 1–22, 2018. 

[6] S. Doncieux et al., “Open-Ended Learning: A Conceptual Framework 
Based on Representational Redescription,” Front. Neurorobot., vol. 12, 
2018. 

[7] M. Asada et al., “Cognitive Developmental Robotics: A Survey,” IEEE 
Trans. Auton. Ment. Dev., vol. 1, no. 1, pp. 12–34, 2009. 

[8] A. Cangelosi and M. Schlesinger, Developmental robotics: From babies 
to robots. MIT Press, 2015. 

[9] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Rob. Auton. 
Syst., vol. 15, no. 1–2, pp. 25–46, 1995. 

[10] J. Zlatev and C. Balkenius, “Introduction: Why epigenetic robotics?,” 1st 
International Workshop on Epigenetic Robotics, 2001. 

[11] J. Weng et al., “Autonomous mental development by robots and animals,” 
Science (80-. )., vol. 291, no. 5504, pp. 599–600, 2001. 

[12] K. Weigmann, “Does intelligence require a body?: The growing 
discipline of embodied cognition suggests that to understand the world, 
we must experience the world,” EMBO Rep., vol. 13, no. 12, pp. 1066–
1069, 2012. 

[13] R. J. Sternberg, “The concept of intelligence and its role in lifelong 
learning and success.,” Am. Psychol., vol. 52, no. 10, p. 1030, 1997. 

[14] G. Lakoff and R. E. Núñez, “Where mathematics comes from: How the 
embodied mind brings mathematics into being,” AMC, vol. 10, no. 12, 
pp. 720–733, 2000. 

[15] R. Pfeifer and F. Iida, “Morphological computation: Connecting body, 
brain and environment,” Japanese Sci. Mon., vol. 58, pp. 48–54, 2005. 

[16] M. Matarić and D. Cliff, “Challenges in evolving controllers for physical 
robots,” Rob. Auton. Syst., vol. 19, no. 1, pp. 67–83, 1996. 

[17] H. Lipson and J. B. Pollack, “Automatic design and manufacture of 
robotic lifeforms.,” Nature, vol. 406, no. 6799, pp. 974–8, Aug. 2000. 

[18] N. Cheney, J. Bongard, and H. Lipson, “Evolving soft robots in tight 
spaces,” in Proceedings of the 2015 annual conference on Genetic and 
Evolutionary Computation, 2015, pp. 935–942. 

[19] V. Trianni, “Evolutionary robotics: model or design?,” Front. Robot. AI, 
vol. 1, p. 13, 2014. 



[20] K. W. Fischer, “A theory of cognitive development: The control and 
construction of hierarchies of skills.,” Psychol. Rev., vol. 87, no. 6, p. 477, 
1980. 

[21] J. E. Clark and J. Whitall, “What is motor development? The lessons of 
history,” Quest, vol. 41, no. 3, pp. 183–202, 1989. 

[22] A. F. Roche, Growth, maturation, and body composition: the Fels 
Longitudinal Study 1929-1991. Cambridge University Press, 1992. 

[23] A. Diamond, “Close interrelation of motor development and cognitive 
development and of the cerebellum and prefrontal cortex,” Child Dev., 
vol. 71, no. 1, pp. 44–56, 2000. 

[24] J. L. Elman, “Learning and development in neural networks: The 
importance of starting small,” Cognition, vol. 48, no. 1, pp. 71–99, 1993. 

[25] G. Turkewitz and P. A. Kenny, “Limitations on input as a basis for neural 
organization and perceptual development: A preliminary theoretical 
statement,” Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol., vol. 15, no. 4, 
pp. 357–368, 1982. 

[26] J. Bongard, “Why morphology matters,” horizons Evol. Robot., vol. 6, 
pp. 125–152, 2014. 

[27] J. Bongard, “Morphological change in machines accelerates the evolution 
of robust behavior,” Proc. Natl. Acad. Sci., vol. 108, no. 4, pp. 1234–
1239, 2011. 

[28] V. Vujovic, A. Rosendo, L. Brodbeck, and F. Iida, “Evolutionary 
developmental robotics: Improving morphology and control of physical 
robots,” Artif. Life, vol. 23, no. 2, pp. 169–185, 2017. 

[29] M. Lungarella and L. Berthouze, “On the Interplay Between 
Morphological, Neural, and Environmental Dynamics: A Robotic Case 
Study,” Adapt. Behav., vol. 10, no. 3, pp. 223–241, 2002. 

[30] L. Berthouze and M. Lungarella, “Motor skill acquisition under 
environmental perturbations: On the necessity of alternate freezing and 
freeing of degrees of freedom,” Adapt. Behav., vol. 12, no. 1, pp. 47–64, 
2004. 

[31] M. Lungarella and L. Berthouze, “Adaptivity via alternate freeing and 
freezing of degrees of freedom,” ICONIP 2002 - Proc. 9th Int. Conf. 
Neural Inf. Process. Comput. Intell. E-Age, vol. 1, pp. 482–487, 2002. 

[32] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through 
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002. 

[33] P. Chervenski and S. Ryan, “MultiNEAT, project website,” URL 
http//www.multineat.com/, 2012. 

[34] C. Robotics, “VREP Simulator.” [Online]. Available: 
http://www.coppeliarobotics.com/. 

[35] R. L. Smith, “Open Dynamics Engine.” [Online]. Available: 
https://www.ode.org/. 

[36] G. A. Arutyunyan, V. S. Gurfinkel, and M. L. Mirskii, “Investigation of 
aiming at a target,” Biophysics (Oxf)., vol. 13, no. 3, pp. 642–645, 1968. 

[37] K. M. Newell and R. E. A. Van Emmerik, “The acquisition of 
coordination: preliminary analysis of learning to write,” Hum. Mov. Sci., 
vol. 8, no. 1, pp. 17–32, 1989. 

[38] V. Ivanchenko and R. A. Jacobs, “A developmental approach aids motor 
learning,” Neural Comput., vol. 15, no. 9, pp. 2051–2065, 2003. 

[39] J. Bongard, “The utility of evolving simulated robot morphology 
increases with task complexity for object manipulation,” Artif. Life, vol. 
16, no. 3, pp. 201–223, 2010. 

 

 




