
Scene Text Recognition by Attention Network with
Gated Embedding

Cong Wang 1,2, Cheng-Lin Liu 1,2,3

1National Laboratory of Pattern Recognition, Institute of Automation of Chinese Academy of Sciences, Beijing 100190, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

3CAS Center for Excellence of Brain Science and Intelligence Technology, Beijing 100190, China
{cong.wang, liucl}@nlpr.ia.ac.cn

Abstract—Recurrent attention based encoder-decoder model is
one of the most popular frameworks for scene text recognition.
However, most methods in this category only use standard
recurrent attention network as the decoder. In this paper, in
order to alleviate the problem that standard attention network
relies on the previous output character overmuch, we propose
an attention network with gated embedding for scene text recog-
nition. The proposed attention network with gated embedding
(GEAN) adopts a gated embedding to adaptively reset the
input information from the embedding vector of previous output
character for recurrent attention network. The gated embedding
is constructed by adding an adaptive embedding gate based on
the degree of correlation between the hidden state vector and the
embedding vector of the corresponding character at the same
time step. We verify the effectiveness of GEAN for scene text
recognition through extensive experiments on both regular and
irregular scene text datasets. The performance of GEAN is shown
to be superior to the standard recurrent attention based decoder
and is comparable compared with state-of-the-art methods.

Index Terms—Scene text recognition, Attention network, Gated
embedding

I. INTRODUCTION

Texts in natural images convey rich high-level semantic
information. Reading texts in images plays an important role in
numerous real-world applications such as scene understanding,
image and video retrieval, and driver assistance. Consequently,
scene text recognition has drawn much attention from com-
puter vision and document analysis communities. Despite
several decades of research on Optical Character Recognition
(OCR), recognizing texts from natural scene images is still a
challenging task. The main challenges stem from the following
factors. First, scene text has high variation in character color,
font, size and languages. Second, most scene images undergo
uneven illumination, blurring, perspective distortion, low con-
trast, low resolution and occlusion, etc. Moreover, text lines
in the wild may have irregular shape, such as curved shape.

In recent years, benefiting from the development of deep
learning, notable advances in scene text recognition have
been achieved. Recent works model scene text recognition
as a sequence recognition problem, which allows lexicon-free
recognition and have yielded better performance. Particularly,
Connectional Temporal Classification (CTC) [7] or attention
mechanism [1] are widely adopted at the decoder stage in these
methods.

Fig. 1. The flowchart of standard recurrent attention network.

Most of recurrent attention based methods for scene text
recognition [4], [5], [15], [18], [22], [27], [28], [35], [40],
[41] adopt standard recurrent attention as the decoder module.
Fig. 1 shows the flowchart of the adopted standard recurrent
attention network, which is described in detail in Section III-B.
Standard recurrent attention network recurrently outputs the
prediction sequence and learns the alignment between the
input sequence and the output sequence. In addition, some
recent works [2], [3], [16], [31] further exploit the potential
of recurrent attention model by modifying standard recurrent
attention network in different perspectives. In the context of
scene text recognition, Bai et al. [2] proposed an edit probabil-
ity (EP), which estimates the probability of generating a string
from the output sequence and needs an extra dictionary. Wang
et al. [31] proposed a memory-augmented attention model,
which feeded the part of character sequence already generated
and all attended alignment history to the attention model when
predicting the character at current time step. Li et al. [16]
proposed a tailored 2D attention mechanism which considered
the neighborhood information of each position for alignment
module. Chen et al. [3] proposed an adaptive embedding
gate to control the information transmission between adjacent
characters by introducing high-order character language model
and using a specific dictionary or a specific root table in a
supervised way.

Existing recurrent attention based methods for scene text
recognition all feed the hidden state vector at last time step to
alignment module and use the hidden state vector at current
time step to predict character label. Thus, the hidden state
vector plays an important role in recurrent attention network.
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The hidden state vector is obtained through a recurrent neural
network (RNN) cell in a recurrent way. It can significantly
improve the performance of recurrent attention based text
recognition to feed the embedding vector of previous character
to the input information of the RNN cell. The embedding
vector of previous character is from the ground truth character
label in the training phase, while in the test phase, it is
from the predicted character label. Due to the gap between
the training phase and the test phase, it is not appropriate
to rely on the embedding vector of previous output char-
acter overmuch for recurrent attention network. To alleviate
this problem and further exploit the potential of recurrent
attention network, we propose a recurrent attention network
with gated embedding (GEAN), which adaptively controls
how much recurrent attention network relies on the previous
output character. The proposed gated embedding is constructed
by adding an adaptive embedding gate to recurrent attention
network based on the degree of correlation between the hidden
state vector and the embedding vector of the corresponding
character label at the same time step. Compared with the
standard recurrent attention based scene text recognition, the
proposed attention network with gated embedding adaptively
resets the input information from the previous output character
and further improve the performance of scene text recognition.
In the training stage, the objective function can be optimized
end-to-end in a weak-supervised way, which only requires
images and the corresponding text labels.

We conducted extensive experiments to verify the effective-
ness of GEAN for scene text recognition. The performance of
GEAN is shown to be superior to standard recurrent attention
based decoder and is comparable compared with state-of-the-
art methods on both regular datasets and irregular datasets,
including the IIIT5K, SVT, ICDAR2003, ICDAR2013, IC-
DAR2015, SVT-Perspective, and CUTE80 datasets.

The rest of the paper is organized as follows. Section II
reviews related work. Section III gives the details of the pro-
posed method. Experimental results are given in Section IV,
and the conclusions are presented in Section V.

II. RELATED WORK

Numerous works for scene text recognition have been pub-
lished in recent years. Comprehensive surveys can be found
in [37], [42].

Early works usually follow the bottom-up pipeline: candi-
date characters detected in text detection stage or generated
in an over-segmentation stage are classified by a character
classifier, and the classification results are fused, possibly with
contexts, to infer the character label sequence.

Recent works mainly follow top-down pipeline, where the
entire text from the original image is directly recognized
without detecting and recognizing individual characters. Cur-
rently, the popular works for regular text recognition can be
roughly categorized into CTC based methods and attention
based methods according to the decoding mechanism.

A. CTC based scene text recognition

CTC based methods for scene text recognition are briefly
outlined as follows. Sun and Lu [29] extract sequences of
HOG features to represent images, and then combine a RNN
with CTC to predict the corresponding character sequence.
He et al. [10] and Shi et al. [26] propose an end-to-end
neural network that combines convolutional neural network
(CNN) and RNN for visual feature representation, and then
adopt CTC as the decoder. Yin et al. [38] propose a sliding
convolutional character model in which the character classifier
outputs on the sliding windows are normalized and decoded
with CTC based algorithm. Gao et al. [6] incorporate the
residual attention modules into a small densely connected
network to encode the input text image and then adopt CTC as
the decoder to generate label sequence. Liu et al. [20] design
a multi-task network with an encoder-discriminator-generator
architecture to guide the feature of the original image toward
that of the corresponding clean image, and then adopt CTC as
the decoder to output the predicted character sequence.

B. Attention based scene text recognition

By means of RNN with attention mechanism, recurrent
attention model as a decoder module is widely adopted for reg-
ular and irregular text recognition. Most of recurrent attention
based methods for scene text recognition [4], [5], [15], [18],
[22], [27], [28], [35], [40], [41] adopt the standard recurrent
attention as the decoder module.

Recent attention based methods [15], [41] have achieved
substantial performance improvement for regular text recog-
nition. Lee and Osindero [15] use a recursive CNN for
image feature extraction and then adopt the attention-based
decoder for sequence generation. Zhang et al. [41] propose
a sequence-to-sequence domain adaptation network for robust
text image recognition, exploiting unsupervised sequence data
by an attention-based sequence encoder-decoder network.

Other recent attention based methods [4], [5], [16], [22],
[27], [28], [35], [40] aim to recognize irregular text. Shi
et al. [27], [28] introduce an end-to-end neural network
model that comprises a rectification network and a recognition
network. The rectification network predicts a flexible Thin-
Plate Spline transformation. The recognition network is an at-
tentional sequence-to-sequence model that predicts a character
sequence directly from the rectified image. Zhan et al. [40]
present an end-to-end trainable scene text recognition system
that iteratively removes perspective distortion and text line cur-
vature as driven by better scene text recognition performance.
Luo et al. [22] propose a multi-object rectified attention
network (MORAN), which consists of a multi-object rectifi-
cation network and an attention-based sequence recognition
network. Cheng et al. [5] propose the arbitrary orientation
network (AON), which extracts four-direction features and the
character placement clues and then adopts recurrent attention
model as the decoder module. Yang et al. [35] propose an
auxiliary Fully Convolutional Network for dense character
detection and an alignment loss to guide the training of an
attention model. Cheng et al. [4] propose a focusing attention



Fig. 2. The framework of the proposed GEAN for scene text recognition. It firstly encodes an input text image into two dimensional feature maps by a
CNN encoder and then the two dimensional feature maps are decoded into one dimensional character sequence by the proposed attention network with gated
embedding.

network (FAN) that automatically draws back the drifted
attention through an auxiliary focusing network.

Some recent works [2], [3], [16], [31] further exploit the
potential of recurrent attention based scene text recognition
model by modifying the standard recurrent attention network
in different perspectives. Bai et al. [2] propose an edit prob-
ability (EP), which estimates the probability of generating a
string from the output sequence and needs an extra lexicon
to be given. Wang et al. [31] propose a memory-augmented
attention model, which feeds the part of character sequence
already generated and all attended alignment history to the
attention model when predicting the character at current time
step. Li et al. [16] propose a tailored 2D attention mecha-
nism which considers the neighborhood information of each
position when computing the alignment factors. Chen et al. [3]
propose an adaptive embedding gate to control the information
transmission between adjacent characters by introducing high-
order character language model to attentional decoder.

Besides the recurrent attention based methods for scene text
recognition, the attention based approach of [33] directly con-
nects a CNN-based 2D image encoder to a self-attention [30]
based decoder.

The proposed attention network with gated embedding
(GEAN) in this paper also adaptively resets the embedding
vector of the previous output character for recurrent attention
network. However, the proposed GEAN is motivated by the
gap that the embedding vector of the previous output character
is from different sources in training and test phases. Different
from the method [3] which considers high-order character
language model and uses a specific dictionary or a specific
root table in a supervised way, the proposed GEAN constructs
a gated embedding based on the degree of correlation between
the hidden state vector and the embedding vector of the
corresponding character label at the same time step without
the need of a specific dictionary or a specific root table.

III. PROPOSED METHOD

The framework of the proposed GEAN for scene text
recognition is shown in Fig. 2. It firstly encodes an input text
image into two dimensional feature maps by a CNN encoder
and then the two dimensional feature maps are decoded into

TABLE I
THE ARCHITECTURE OF THE CNN ENCODER. “S” DENOTES THE STRIDE

OF THE FIRST CONVOLUTIONAL LAYER IN EACH BLOCK.

Layer Configurations Output size

Block 0 3× 3, s 1× 1, 32 32× 100

Block 1
[
1× 1, 32

3× 3, 32

]
× 3, s 2× 2 16× 50

Block 2
[
1× 1, 64

3× 3, 64

]
× 4, s 2× 2 8× 25

Block 3
[
1× 1, 128

3× 3, 128

]
× 6, s 2× 1 4× 25

Block 4
[
1× 1, 256

3× 3, 256

]
× 6, s 1× 1 4× 25

Block 5
[
1× 1, 512

3× 3, 512

]
× 3, s 1× 1 4× 25

one dimensional character sequence by the proposed attention
network with gated embedding.

A. CNN Encoder

In order to improve the performance of arbitrary-shaped text
recognition, the input image is encoded into two dimensional
feature maps by an adopted CNN encoder. Inspired by [28]
and for fair comparison, the CNN encoder we adopt is also
based on ResNet [9] and similar to the architecture of [28].
The architecture of the CNN encoder is shown in Table I.
The residual unit in each residual block comprises a 1 × 1
convolution followed by 3× 3 convolution. Feature maps are
downsampled by the stride 2×2 in the first two residual blocks.
The stride in the third residual block is changed to 2 × 1 to
reserve more resolution along the horizontal axis. In order to
recognize arbitrary-shaped text better, the stride in the last two
residual blocks is changed to 1×1. A two dimensional feature
maps are fed to the following decoder module. Considering
that RNN is difficult to compute in a parallel way, we do not
use the Bidirectional Long-Short Term Memory [11] to further
encode the output of the CNN encoder.



B. Standard Recurrent Attention Network

The standard recurrent attention based decoder we adopt
is a RNN that directly generates an output sequence y =
(y1, · · · , yT ) from an input. In this work, the input is the two
dimensional feature maps F which are the output of the above
described CNN encoder. the probability of the output character
yt at the t-th time step is given by

P (yt|y1, · · · , yt−1, F ) = softmax(Wost + bo) ∈ RN , (1)

where, Wo and bo are the trainable parameters, and N is
the number of character classes. In English text recognition,
the character label space includes all 26 English letters (up-
per/lower case not discriminated), 10 digits, plus a special
end-of-sequence (EOS) token, namely N = 37. When EOS
is emitted, the decoder ends the generation of characters. In
addition, st is the hidden state vector of the Gated Recurrent
Unit (GRU) cell at the t-th time step. We compute st as

st = GRU([yprev, gt], st−1), (2)

where yprev denotes the embedding vector of the previous
output yt−1 at the (t−1)-th time step. Note that yt−1 denotes
the ground truth character label in the training phase, while in
the test phase, it denotes the predicted character label. And gt
denotes the glimpse vector at the t-th time step. yprev and gt
are computed as follows:

yprev = Embedding(yt−1), (3)

gt =

H∑
i=1

W∑
j=1

αt(i, j)F (i, j), (4)

where W and H are the width and height of the feature map
F . αt is a matrix of attention weights, also called as alignment
factors, which effectively controls where the decoder focuses
on at the current time step and is computed as follows:

et(i, j) = vT tanh(Wsst−1 +WfF (i, j) + b), (5)

αt(i, j) =
exp(et(i, j))∑H

k=1

∑W
q=1 exp(et(k, q))

, (6)

where v, Ws, Wf and b are the trainable parameters.

C. Recurrent Attention Network with Gated Embedding

The hidden state vector at each time step plays an important
role in standard recurrent attention network for scene text
recognition. Firstly, the hidden state vector at each time step
is a representation of the predicted character and gives the
probability of the output character through a fully connected
layer. Secondly, standard recurrent attention network adopts
the hidden state vector at last time step as the query to
compute alignment factors at current time step. A confusing or
ambiguous query can cause the inaccurate alignment factors
and then make error in predicting character label.

In standard recurrent attention network, the hidden state
vector at each time step is obtained through a RNN cell,
which concatenates the glimpse vector at current time step and
the embedding vector of the previous output character as the

Fig. 3. The mean embedding gate of output sequences in a mini-batch during
the first 40 thousands times of training.

input information. It can significantly improve the performance
of text recognition to introduce the embedding vector of the
previous output character to recurrent attention network, as
shown by the experimental results in Table II. However, unlike
that the embedding vector of the previous output label is from
the predicted character label in the test phase, it is from the
ground truth character label in the training phase. Due to the
gap between the training phase and the test phase, it is not
appropriate to rely on the embedding vector of the previous
output character overmuch for recurrent attention network.

In order to further exploit the potential of recurrent attention
network and introduce the embedding vector of the previ-
ous output character to the recurrent attention network in a
more elaborate way, we propose a recurrent attention network
with gated embedding (GEAN), which adaptively controls
how much recurrent attention network relies on the previous
output label. The proposed gated embedding is constructed
by adding an adaptive embedding gate to recurrent attention
network based on the degree of correlation between the hidden
state vector and the embedding vector of the corresponding
character label at the same time step. The adaptive embedding
gate at the t-th time step is defined as

γt = σ(vTg tanh(Wg1st−1 +Wg2yprev + bg)), (7)

where, vg , Wg1 , Wg2 and bg are the trainable parameters, σ
denotes sigmoid function, and γt denotes the embedding gate
at the t-th time step.

Thus, the hidden state vector in GEAN is computed as

st = GRU([γt ∗ yprev, gt], st−1). (8)

Compared with standard attention network, the proposed
GEAN adaptively alleviates the problem that standard atten-
tion network relies on the previous output character overmuch.
Fig. 3 demonstrates the mean embedding gate of output
sequences in a mini-batch during the first 40 thousands times
of training. According to Fig. 3, we can see that the proposed
GEAN places too much reliance on the previous output
character only in the beginning of training phase and then
significantly decreases the reliance on the previous output
character with the increase of training times.



D. Training Objective

For training the proposed GEAN for scene text recognition,
the objective function is defined as

Lreg = −
T∑

t=1

lnP (ŷt|I, θ), (9)

where, I is the given input image, ŷt is the ground truth of
the t-th character in the character label sequence, and θ is a
vector that combines all the network parameters.

IV. EXPERIMENTS

We evaluate the performance of the proposed model on
various benchmarks, including both regular and irregular text
datasets.

A. Datasets

Following many published works, the proposed GEAN
model is trained on two synthetic datasets, namely
Synth90k [12] and SynthText [8]. And the proposed GEAN
model is tested on four regular text datasets and three ir-
regular text datasets, namely IIIT5K-Words [23], Street View
Text [32], ICDAR 2003 [21], ICDAR 2013 [14], ICDAR 2015
Incidental Text [13], Street View Text Perspective [24] and
CUTE80 [25]).

Synth90k [12] contains 8-million training images and theirs
corresponding ground truth words. Such images are generated
by a synthetic text engine and are highly realistic.

SynthText [8] is generated for text detection. Therefore,
words are rendered onto full images. We crop 6-million word
images using the groundtruth word bounding boxes.

IIIT5K-Words [23] (IIIT5K) was collected from the Inter-
net. The test set contains 3000 cropped word images. Each
word image has a 50-word lexicon and a 1000-word lexicon.

Street View Text [32] (SVT) was collected from Google
Street View. The test set contains 249 images, from which 647
word images are cropped. Each word image has a 50-word
lexicon.

ICDAR 2003 [21] (IC03) contains 251 scene images in its
test dataset. Following [32], we discard images that contain
non-alphanumeric characters or have less than three characters,
and then get a test set with 859 cropped word images. Each
word image is associated with a 50-word lexicon and a full
lexicon which contains all label words.

ICDAR 2013 [14] (IC13) inherits most text images from
IC03. The dataset is filtered by removing words that contain
non-alphanumeric characters. and contains 1015 cropped text
images.

ICDAR 2015 Incidental Text [13] (IC15) is from the
Challenge 4 of the ICDAR 2015 Robust Reading Competition.
It contains 2077 cropped text images for testing. And some
of them are irregular. To fairly compare with some previous
methods, we also test our method on a subset of IC15, which
discards the images containing non-alphanumeric characters
and has 1811 images (refer to as IC15-1811).

Street View Text Perspective [24] (SVT-P) is from side-
view angle snapshots in Google Street View. The dataset

consists of 645 cropped images for testing. Many of them are
heavily distorted by the non-frontal view angle. Each word
image is associated with a 50-word lexicon and a full lexicon
which contains all label words.

CUTE80 [25] contains 80 high-resolution images taken
in natural scenes. It was specifically collected for evaluating
the performance of curved text recognition. It contains 288
cropped natural images for testing.

B. Implementation Details

Network: The architecture of the CNN encoder is given in
Table I. The number of hidden units of GRU in the decoder
module is set to 256. Specifically, “Baseline” method in the
following sections refers to the standard recurrent attention
based text recognition, which has no the gated embedding.

Model training: We apply ADADELTA [39] to train our
proposed model. We set the learning rate to 1.0 in the
beginning and decrease it to 0.1 after the third epoch. The
mini-batch size of each branch is set to 64. All images in
both training set and test set are resized to 32 × 100. And we
randomly rotate the input images in a certain angle range of
[−30◦, 30◦] in the training phase.

Implementation: We implement the proposed model with
Pytorch and conduct all experiments on a NVIDIA TITAN Xp
GPU with 12GB memory.

Transcription: In the test phase, we obtain the final recog-
nition result by straightforwardly selecting the most probable
character at each time step for lexicon-free transcription. When
a lexicon is given, the final recognition result chooses the
sequence in the lexicon that has smallest edit distance with
recognition result via lexicon-free transcription.

C. Effect of Embedding Vector yprev
We examine how the embedding vector of the previous

output character yprev impacts the performance of recurrent
attention based text recognition. The corresponding results are
shown in Table II. We can see that the performance of recurrent
attention based text recognition significantly decreases when
the input information of RNN cell does not use the embedding
vector yprev . In addition, compared with the standard recurrent
network, the proposed recurrent attention network with gated
embedding can further improve the performance.

TABLE II
THE PERFORMANCE OF RECURRENT ATTENTION BASED TEXT

RECOGNITION WHEN USING EMBEDDING VECTOR yprev IN DIFFERENT
WAYS.

Variants IIIT5K SVT IC13 SVT-P CUTE80
Baseline 92.0 87.9 91.4 79.7 80.9

without yprev 90.4 85.5 89.8 74.6 78.8
GEAN 92.5 87.5 91.9 80.9 82.6

D. Performance on Regular Text Datasets

We evaluate the performance of the proposed GEAN com-
pared with other representative methods on four regular text
datasets. The results are shown in Table III.



TABLE III
THE RESULTS ON FOUR PUBLIC REGULAR DATASETS. “50”, “1K” AND “FULL” DENOTE THE LEXICON SIZES, “NONE” MEANS NO LEXICON. “*”

INDICATES THE MODELS TRAINED WITH BOTH WORD-LEVEL AND CHARACTER-LEVEL ANNOTATIONS. “†” INDICATES THE MODELS TRAINED WITH
EXTRA DICTIONARY OR ROOT TABLE.

Method IIIT5K SVT IC03 IC13
50 1k None 50 None 50 Full None None

Yao et al. [36] 80.2 69.3 - 75.9 - 88.5 80.3 - -
Su and Lu [29] - - - 83.0 - 92.0 82.0 - -
Shi et al. [26] 97.8 95.0 81.2 97.5 82.7 98.7 98.0 91.9 89.6
Shi et al. [27] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6
Lee et al. [15] 96.8 94.4 78.4 96.3 80.7 97.9 97.0 88.7 90.0
Yin et al. [38] 98.9 96.7 81.6 95.1 76.5 97.7 96.4 84.5 85.2
Cheng et al. [4]* 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3
Cheng et al. [5] 99.6 98.1 87.0 96.0 82.8 98.5 97.1 91.5 -
Bai et al. [2]† 99.5 97.9 88.3 96.6 87.5 98.7 97.9 94.6 94.4
Liu et al. [18] - - 92.0 - 85.5 - - - 91.1
Liu et al. [20] 97.3 96.1 89.4 96.8 87.1 98.1 97.5 94.7 94.0
Shi et al. [28] 99.6 98.8 93.4 97.4 89.5 98.8 98.0 94.5 91.8
Gao et al. [6] 99.1 97.9 81.8 97.4 82.7 98.7 96.7 89.2 88.0
Li et al. [16] - - 91.5 - 84.5 - - - 91.0
Liao et al. [17]* 99.8 98.8 91.9 98.8 86.4 - - - 91.5
Luo et al. [22] 97.9 96.2 91.2 96.6 88.3 98.7 97.8 95.0 92.4
Xie et al. [34] - - 82.3 - 82.6 - - 92.1 89.7
Zhan et al. [40] 99.6 98.8 93.3 96.9 90.2 - - - 91.3
Chen et al. [3]† 99.4 98.3 93.6 96.9 89.2 98.8 98.0 94.8 92.9
Baseline 99.2 98.1 92.0 97.4 87.9 98.1 96.4 93.7 91.4
GEAN 99.3 98.2 92.5 96.6 87.5 97.8 95.9 93.6 91.9

From Table III, we can see that GEAN achieves a compa-
rable performance on regular text datasets compared with the
state-of-the-art methods . The method of [16] also used extra
synthetic and public real data in training besides Synth90k and
SynthText. Referring to [33], the result of [16] we compare
with is only based on the model trained with Synth90k and
SynthText for fair comparison. The methods of [2], [3] both
train the models with extra dictionary or root table. And the
performance in [3] we compare is that without combining with
the rectification based methods for fair comparison.

As shown in Table III, GEAN can statistically improve
the performance on regular text datasets under lexicon-free
(None) condition compared with “Baseline” method. This
verifies the effectiveness of the proposed GEAN for regular
text recognition.

E. Performance on Irregular Text Datasets

We also evaluate the performance of the proposed GEAN on
three irregular text datasets compared with other representative
methods. The results are shown in Table IV.

From Table IV, we can see that GEAN achieves a com-
parable or superior performance on irregular text datasets
compared with the state-of-the-art methods. In addition,
GEAN can be flexibly combined with other recurrent at-
tention based methods to further improve the performance
of scene text recognition, such as the rectification based
methods [28] [40] [22].

As shown in Table IV, GEAN can improve the performance
on the three irregular text datasets compared with “Baseline”
method. Specifically, it gives accuracy increases of 1.2% (from
79.7% to 80.9%) on SVT-P, 1.7% (from 80.9% to 82.6%)

TABLE IV
THE RESULTS ON THREE PUBLIC IRREGULAR DATASETS. “NONE” MEANS

NO LEXICON. “*” INDICATES THE MODELS TRAINED WITH BOTH
WORD-LEVEL AND CHARACTER-LEVEL ANNOTATIONS. “†” INDICATES

THE MODELS TRAINED WITH EXTRA DICTIONARY OR ROOT TABLE.

Method SVT-P CUTE80 IC15 IC15-1811
None None None None

Shi et al. [26] 71.8 59.2 - -
Yang et al. [35] 75.8 69.3 - -
Liu et al. [19] 73.5 - - -
Cheng et al. [4]* 71.5 63.9 - 66.2
Cheng et al. [5] 73.0 76.8 68.2 -
Bai et al. [2]† - - - 73.9
Liu et al. [20] 73.9 62.5 - -
Liu et al. [18] 78.9 - 74.2 -
Shi et al. [28] 78.5 79.5 76.1 -
Liao et al. [17]* - 79.9 - -
Li et al. [16] 76.4 83.3 69.2 -
Luo et al. [22] 76.1 77.4 68.8 -
Xie et al. [34] 70.1 82.6 68.9 -
Zhan et al. [40] 79.6 83.3 76.9 -
Chen et al. [3]† 80.0 80.2 75.5 -
Baseline 79.7 80.9 72.9 77.7
GEAN 80.9 82.6 74.2 78.5

on CUTE80, 1.3% (from 72.9% to 74.2%) on IC15 and
0.8% (from 77.7% to 78.5%) on IC15-1811. The experiment
verifies that the proposed GEAN is effective for irregular text
recognition. Some irregular text images which are recognized
by GEAN correctly but not recognized by “Baseline” correctly
are shown in Fig. 4. Fig. 4(a) shows the images and the
corresponding 2D attention maps at each time step based on
“Baseline”, while Fig. 4(b) shows that based on GEAN.



Fig. 4. Some irregular text images which are recognized by GEAN correctly but not recognized by “Baseline” method correctly. (a) shows the images and
the corresponding 2D attention maps at each time step based on “Baseline” method, while (b) shows the images and the corresponding 2D attention maps at
each time step based on GEAN.

V. CONCLUSION

In this paper, in order to alleviate the problem that standard
attention network relies on the previous output character over-
much, we propose an attention network with gated embedding
for scene text recognition. The proposed attention network
with gated embedding (GEAN) adopts a gated embedding
to adaptively reset the input information from embedding
vector of previous output character. The gated embedding is
constructed by adding an adaptive embedding gate based on
the degree of correlation between the hidden state vector and
the embedding vector of the corresponding character label at
the same time step. The proposed GEAN can improve the per-
formance of recurrent attention based scene text recognition.
We verify the effectiveness of GEAN for scene text recognition
through extensive experiments. The performance of GEAN
is shown to be superior to the standard recurrent attention
based decoder and is comparable compared with state-of-the-
art methods. In addition, the proposed GEAN can be flexibly
combined with other recurrent attention based models for
scene text recognition.

ACKNOWLEDGMENTS

This work has been supported by the Major Project for
New Generation of AI under Grant No. 2018AAA0100400,
the National Natural Science Foundation of China (NSFC)
grants 61733007 and 61721004.

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[2] F. Bai, Z. Cheng, Y. Niu, S. Pu, and S. Zhou, “Edit probability for scene
text recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1508–1516.

[3] X. Chen, T. Wang, Y. Zhu, L. Jin, and C. Luo, “Adaptive embedding
gate for attention-based scene text recognition,” Neurocomputing, vol.
381, pp. 261–271, 2020.

[4] Z. Cheng, F. Bai, Y. Xu, G. Zheng, S. Pu, and S. Zhou, “Focusing
attention: Towards accurate text recognition in natural images,” in
Proceedings of the International Conference on Computer Vision, 2017,
pp. 5076–5084.

[5] Z. Cheng, Y. Xu, F. Bai, Y. Niu, S. Pu, and S. Zhou, “Aon: Towards
arbitrarily-oriented text recognition,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 5571–
5579.

[6] Y. Gao, Y. Chen, J. Wang, M. Tang, and H. Lu, “Reading scene text
with fully convolutional sequence modeling,” Neurocomputing, vol. 339,
pp. 161–170, 2019.

[7] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369–376.

[8] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
localisation in natural images,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2315–2324.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, June 2016, pp. 770–778.

[10] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang, “Reading scene text
in deep convolutional sequences,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic
data and artificial neural networks for natural scene text recognition,”
arXiv preprint arXiv:1406.2227, 2014.

[13] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov,
M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu et al.,
“Icdar 2015 competition on robust reading,” in Proceedings of the 13th
International Conference on Document Analysis and Recognition, 2015,
pp. 1156–1160.

[14] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Bigorda, S. R.
Mestre, J. Mas, D. F. Mota, J. A. Almazan, and L. P. de las Heras,
“Icdar 2013 robust reading competition,” in Proceedings of the 12th
International Conference on Document Analysis and Recognition, 2013,
pp. 1484–1493.

[15] C.-Y. Lee and S. Osindero, “Recursive recurrent nets with attention
modeling for ocr in the wild,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2231–2239.

[16] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, attend and read: A simple
and strong baseline for irregular text recognition,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8610–
8617.



[17] M. Liao, J. Zhang, Z. Wan, F. Xie, J. Liang, P. Lyu, C. Yao, and
X. Bai, “Scene text recognition from two-dimensional perspective,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 8714–8721.

[18] W. Liu, C. Chen, and K.-Y. K. Wong, “Char-net: A character-aware
neural network for distorted scene text recognition,” in Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[19] W. Liu, C. Chen, K.-Y. K. Wong, Z. Su, and J. Han, “Star-net: a spatial
attention residue network for scene text recognition.” in Proceedings of
the British Machine Vision Conference, vol. 2, 2016, p. 7.

[20] Y. Liu, Z. Wang, H. Jin, and I. Wassell, “Synthetically supervised feature
learning for scene text recognition,” in Proceedings of the European
Conference on Computer Vision, 2018, pp. 435–451.

[21] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young,
“Icdar 2003 robust reading competitions,” in Proceedings of the 7th
International Conference on Document Analysis and Recognition, 2003,
pp. 682–687.

[22] C. Luo, L. Jin, and Z. Sun, “Moran: A multi-object rectified attention
network for scene text recognition,” Pattern Recognition, vol. 90, pp.
109–118, 2019.

[23] A. Mishra, K. Alahari, and C. Jawahar, “Scene text recognition using
higher order language priors,” in Proceedings of the British Machine
Vision Conference, 2012.

[24] T. Quy Phan, P. Shivakumara, S. Tian, and C. Lim Tan, “Recognizing
text with perspective distortion in natural scenes,” in Proceedings of the
International Conference on Computer Vision, 2013, pp. 569–576.

[25] A. Risnumawan, P. Shivakumara, C. S. Chan, and C. L. Tan, “A robust
arbitrary text detection system for natural scene images,” Expert Systems
with Applications, vol. 41, no. 18, pp. 8027–8048, 2014.

[26] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 11, pp. 2298–2304, 2017.

[27] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene text
recognition with automatic rectification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4168–4176.

[28] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “Aster:
An attentional scene text recognizer with flexible rectification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2018.

[29] B. Su and S. Lu, “Accurate scene text recognition based on recurrent
neural network,” in Proceedings of the Asian Conference on Computer
Vision, 2014, pp. 35–48.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[31] C. Wang, F. Yin, and C.-L. Liu, “Memory-augmented attention model
for scene text recognition,” in Proceedings of the 16th International
Conference on Frontiers in Handwriting Recognition, 2018, pp. 62–67.

[32] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text recog-
nition,” in Proceedings of the International Conference on Computer
Vision, 2011, pp. 1457–1464.

[33] P. Wang, L. Yang, H. Li, Y. Deng, C. Shen, and Y. Zhang, “A simple and
robust convolutional-attention network for irregular text recognition,”
arXiv preprint arXiv:1904.01375, 2019.

[34] Z. Xie, Y. Huang, Y. Zhu, L. Jin, Y. Liu, and L. Xie, “Aggregation
cross-entropy for sequence recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6538–6547.

[35] X. Yang, D. He, Z. Zhou, D. Kifer, and C. L. Giles, “Learning to read
irregular text with attention mechanisms.” in IJCAI, vol. 1, no. 2, 2017,
p. 3.

[36] C. Yao, X. Bai, B. Shi, and W. Liu, “Strokelets: A learned multi-scale
representation for scene text recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
4042–4049.

[37] Q. Ye and D. Doermann, “Text detection and recognition in imagery:
A survey,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 37, no. 7, pp. 1480–1500, 2014.

[38] F. Yin, Y.-C. Wu, X.-Y. Zhang, and C.-L. Liu, “Scene text recog-
nition with sliding convolutional character models,” arXiv preprint
arXiv:1709.01727, 2017.

[39] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[40] F. Zhan and S. Lu, “Esir: End-to-end scene text recognition via iter-
ative image rectification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2059–2068.

[41] Y. Zhang, S. Nie, W. Liu, X. Xu, D. Zhang, and H. T. Shen, “Sequence-
to-sequence domain adaptation network for robust text image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2740–2749.

[42] Y. Zhu, C. Yao, and X. Bai, “Scene text detection and recognition:
Recent advances and future trends,” Frontiers of Computer Science,
vol. 10, no. 1, pp. 19–36, 2016.




