
Continual Learning with Gated Incremental
Memories for sequential data processing

Andrea Cossu
Computer Science Dept.

University of Pisa
Pisa, Italy

andrea.cossu@sns.it

Antonio Carta
Computer Science Dept.

University of Pisa
Pisa, Italy

antonio.carta@di.unipi.it

Davide Bacciu
Computer Science Dept.

University of Pisa
Pisa, Italy

bacciu@di.unipi.it

Abstract—The ability to learn in dynamic, nonstationary en-
vironments without forgetting previous knowledge, also known
as Continual Learning (CL), is a key enabler for scalable
and trustworthy deployments of adaptive solutions. While the
importance of continual learning is largely acknowledged in
machine vision and reinforcement learning problems, this is
mostly under-documented for sequence processing tasks. This
work proposes a Recurrent Neural Network (RNN) model for CL
that is able to deal with concept drift in input distribution without
forgetting previously acquired knowledge. We also implement
and test a popular CL approach, Elastic Weight Consolidation
(EWC), on top of two different types of RNNs. Finally, we
compare the performances of our enhanced architecture against
EWC and RNNs on a set of standard CL benchmarks, adapted to
the sequential data processing scenario. Results show the superior
performance of our architecture and highlight the need for special
solutions designed to address CL in RNNs.

I. INTRODUCTION

Dynamic environments are often subjected to the concept
drift phenomenon [1]–[5] which reflects substantial changes
in the data generating process and the corresponding predic-
tions. More formally, given an unknown time-dependent joint
probability pt(y,x) over data x and target y, concept drift can
affect both the evidence pt(x) and the conditional distribution
pt(y|x). Following the definitions presented in [5], this paper
addresses the problem of learning in dynamic environments
in which the evidence pt(x) exhibits instantaneous drifts
without any time limit imposed on it, leading to a permanent,
abrupt concept drift. Since one of the objectives of this paper
is to evaluate the capability of a model to consolidate old
knowledge without forgetting, we do not account for changes
in the conditional distribution pt(y|x) without corresponding
changes in the evidence. In fact, this would lead to forgetting
of the previous input-output mapping in favour of a new one.
We will refer to a specific objective (e.g. learn to classify
MNIST digits) as task. An input distribution pt(x), instead,
will generate data related to a particular task (e.g. subsets
of MNIST digits). Each task is associated to multiple input
distributions (also called subtasks) which altogether define a
dynamic environment in which the model is trained. We will
deal with sequence classification tasks in which each input
sequence x = [xi]i=1,...,T , xi ∈ Rd is associated to a scalar
target y ∈ R. Following the main trend in CL, the temporal

boundary of each subtask is known to the model only at
training time.

In the presence of dynamic environments with recurring
concepts drifts [1] it is useful to design models that are
able to recall and exploit previously acquired information.
Unfortunately, continuous plasticity of internal representations
under drifting task distributions is widely known to suffer
from negative interference between the tasks that are
incrementally presented to the model, yielding to the well
known stability-plasticity dilemma [6] of connectionist
models. The result is that the models catastrophically forget
previously acquired knowledge [7] as new tasks become
available.
The problem of catastrophic forgetting is the main focus of
Continual Learning (CL), defined as “the unending process
of learning new things on top of what has already been
learned” [8].
In the CL scenario, a learning model is required to
incrementally build and dynamically update internal
representations as the distribution of tasks dynamically
changes across its lifetime. Ideally, part of such internal
representations will be general and invariant enough to be
reusable across similar tasks, while another part should
preserve and encode task-specific representations.
While current trends in CL put particular emphasis on
computer vision applications or reinforcement learning
scenarios, sequential data processing is rarely taken into
consideration (see Section II). However, sequential data
are heavily used in several fields like Natural Language
Processing, signal processing, bioinformatics, and many
others. In this context, Recurrent Neural Networks (RNNs)
have the ability to develop neural representations that
capture the history of their inputs. Learning proper memory
representations is a major challenge for RNNs. In addition,
in a CL setting, RNNs have to deal with drifts in task
distributions which can greatly affect their capability of
developing robust and effective memory representations.

We provide a threefold contribution to the discussion con-
cerning CL in sequential data processing. First, we define a
new dynamic approach, named Gated Incremental Memory
(GIM), that imbues RNN architectures with CL skills by incre-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

mentally adding new modules to capture the drifts in input dis-
tribution while avoiding catastrophic forgetting. GIM leverages
autoencoders to automatically recognize input distributions
and to select the correct module to process the sequence.
Second, we apply Elastic Weight Consolidation (EWC) [9],
a popular CL approach, on top of two different RNNs. At
the best of our knowledge, we are the first to experiment
with EWC on RNNs. Third, we test the performances of
GIM against EWC and standard RNNs on three benchmarks
originally introduced here by adapting traditional CL tasks
to the sequential case. The results of our empirical analysis
confirm the advantages of using our enhanced architecture over
standard recurrent models. Such advantages are particularly
clear when testing enhanced architecture on old distributions,
since it successfully prevents forgetting. These results high-
light some of the key differences between feedforward and
recurrent CL techniques and pinpoint the need for solutions
specifically designed for recurrent architectures.

II. RELATED WORK

Learning in dynamic environments in the presence of
concept drift has received much attention in the literature.
Concept drift could be generated by hidden contexts
[10], whose detection would result in drastic performance
improvements. Predictions on incoming input patterns can
be performed relying on a window of recently encountered
instances (instance selection), thus accounting for drifts in
the underlying distribution, like in FLORA systems [1].
Similarly, instance weighting systems [11] exploit weights
on the input patterns which can inform predictions based
on their similarity to specific concepts or simply their time
obsolescence. Similar to the approach proposed in this paper,
ensemble methods associate an expert to each (or to a group
of) concepts and combine their predictions into the final
answer [12, 13].
CL explores the problem of concept drift from a slightly
different perspective, by focusing on how to avoid catastrophic
forgetting on old distributions, while at the same time fostering
learning of incoming data. The aspect of forgetting is peculiar
of CL and it is at the center of our work.
CL literature mostly focuses on computer vision and
reinforcement learning applications, with approaches ranging
from regularization methods [9, 14], to dual models [15], to
dynamic architectures [16, 17].
The first attempt to deal with sequential processing in CL was
presented in [18], where the authors introduced a dual model
rehearsed with pseudopatterns and trained to reconstruct
the next element of a sequence (i.e. sequence modeling).
More recently, RNNs have been exploited in combination
with other techniques, such as Fixed Expansion Layer [19],
external growing memories [20], Reservoir Computing [21]
and backpropagation-free learning [22].
Evaluations of the performances of standard RNNs in CL
are provided in [23] and [24]. However, while the latter
provides no solutions to the problem of forgetting, the
former introduces an effective, but rather complex, recurrent

architecture, combining dynamic expansion approaches
(Net2Net) with gradient projection on a reservoir of old
samples (GEM). Instead, in addition to forgetting analysis,
we propose a solution that mitigates its effects, while at
the same time keeping our model simple enough to favor
reproducibility as well as further extensions.
Our dynamic RNN architecture is inspired by Progressive
networks [16], a popular CL approach used for feedforward
networks that deals with drifts in the input distribution
by dynamically expanding the existing model. In addition,
we leverage gating autoencoders, introduced in [25] for
feedforward architectures, to remove the need to know task
identity at test time.

III. GATED INCREMENTAL MEMORIES FOR CONTINUAL
LEARNING WITH RECURRENT NEURAL NETWORKS

In this section, we introduce Gated Incremental Memory
(GIM), a novel CL architecture designed for recurrent neural
models and sequential data. In particular, we show how GIM
can be obtained by combining a recurrent version of the
Progressive network [16] and a set of gating autoencoders [25]
to avoid, at test time, any explicit supervision about subtask
labels. In the following, we denote an entire sequence with
bold notation (e.g. x), and a single vector with plain formatting
(e.g. xi).

A. Recurrent Neural Networks

The proposed approach is independent of the underlying
recurrent architecture. To highlight the generality of our ap-
proach, we focus our study on two different classes of RNNs,
using either gated and non-gated approaches. Gated models,
like LSTM [26], leverage adaptive gates to enable selective
memory cell updates. In our analysis, we consider LSTM as
a representative of gated architectures, given its popularity
in literature and its state-of-the-art performances in several
sequential data processing benchmarks. Non-gated approaches
rely on different mechanisms to solve the vanishing gradient
problem, like parameterizing recurrent connections with an
orthogonal matrix [27]. In our analysis, we consider the Linear
Memory Network (LMN) [28] as a representative of non-gated
approaches. LMNs leverage a conceptual separation between a
nonlinear feedforward mapping computing the hidden state ht
and a linear dynamic memory computing the history dependent
state hmt . Briefly, in formulas:

ht = σ(W xhxt +Wmhhmt−1)

hmt = Whmht +Wmmhmt−1,

where xt, ht and hmt are the input vector, the functional
component activation and the memory state at time t,
respectively. The memory state hmt is the final output of the
layer, which is given as input to subsequent layers. It is then
useful to study how both models behave in CL environments
and how their different memory representations respond to
phenomena like drifting tasks distribution, eventually resulting

(a) GIM-LSTM on Devanagari:
40 epochs

(b) GIM-LMN on Devanagari: 40
epochs

(c) GIM-LSTM on Audioset:
30, 000 time steps, printed every
1000 steps.

(d) GIM-LMN on Audioset:
30, 000 time steps, printed every
1000 steps.

Fig. 1: Examples of accuracy curves on training set (solid line) and validation set (dashed line).

in catastrophic forgetting.

B. Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) [9] is one of the most
popular CL method. EWC mitigates forgetting by preventing
large changes in those parameters which have been recognized
important when learning previous distributions. Hence, in
the case of recurring drifts, the model will still be able to
address previous patterns without forgetting. In order to learn
a new distribution, EWC builds on the assumption that, for an
overparameterized model, it exists an optimal configuration of
the parameters which is not too distant from the current one in
the parameters space and which is able to adapt to upcoming
drifts.
The importance of each connection is estimated through
an approximation of the diagonal of the Fisher Information
Matrix, whose computation requires only first-order deriva-
tives. The penalization is implemented by adding a quadratic
regularization term to the standard loss function, weighted by
the previously computed connection importance. Given task A
already learned by the model, the loss function when learning
a new task B is:

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2, (1)

where Fi is the i-th diagonal element of the (approximated)
Fisher Information Matrix, LB is the loss for task B, θ are
the model parameters, θ∗A are the learned parameters for task
A, λ is the hyperparameter controlling the tradeoff between
accuracy on old and new task.
We implemented EWC in RNNs and we observed its perfor-
mances in terms of forgetting and accuracy on our bench-
marks. At the best of our knowledge, we are the first to study
EWC in a sequential context with RNNs.

C. Gated Incremental Memory (GIM)

GIM is a general class of dynamic, recurrent architectures
that can be built on top of any recurrent model. GIM relies on
a progressive memory [16] extension of the underlying RNN
model, which uses separate modules for each subtask. It also
leverages a set of gating autoencoders, one for each subtask, to
automatically select the module that best matches the current

input. Figures 2 and 3 provide an overview of the entire GIM
architecture during training and test.

1) RNN Modules: The main component of GIM is the
RNN module. As soon as a new distribution arrives, a new
RNN module is added on top of the existing architecture
and connected to the previous one (Fig. 2). The exact inter-
modules connections are slightly different depending on the
underlying recurrent model. When using the GIM-LSTM, at
each timestep, the new module takes as additional input the
current hidden state of the previous module. Instead, the GIM-
LMN takes as additional input the concatenation of the previ-
ous module’s memory hmt and functional activation ht. These
additional inputs allow to easily transfer knowledge from the
previous modules to the new ones. To prevent forgetting,
when a new module is added to the existing architecture,
the previous module’s parameters are frozen and no longer
updated. Therefore, each module becomes an expert of its own
domain. At each timestep t, the input vector xt is forwarded
to all modules. Each module has its own output layer and,
during training, the last module added to the network is used
to generate the final output y from the last hidden state of the
module. Given an input x = x1, . . . , xT , the output y for a
GIM-LMN with N modules can be computed as follows:

hm:,1, h:,1 = LMN1(x, hm0,1)

hm:,j , h:,j = LMNj([x;hm:,j−1;h:,j−1], hm0,j), j = 2, ..., N

y = σ(Wmo
j hmT,N),

where LMNj is the RNN module corresponding to the j-th
subtask, hm:,j and h:,j are the sequences of memory states and
functional activations of module j (: indexes all the steps in
the sequence), and [·; ·] is the concatenation operator between
vectors. The aggregated output y is computed by passing the
final memory state hmT,N through a linear layer.
LSTM modules follow the same logic for the forward pass,
substituting the final hidden state hT to the memory state and
functional activations of GIM-LMN. A detailed description is
provided in Algorithm 1 for LSTM modules and Algorithm 2
for LMN modules.

2) Gating Autoencoders: At inference time, GIM models
must choose which module to use to compute the output. To
solve this problem, each module is associated with an LSTM

Fig. 2: Incremental expansion of the GIM-LSTM during training on 3 subtasks. When a new subtask is encountered a new
module is added.

Fig. 3: GIM-LSTM at inference time. The input x is encoded
by all the autoencoders. The autoencoder with the minimum
reconstruction error (AE2 in the example) determines which
module to choose (LSTM-2 in the example). The input is
passed to the chosen module to compute the output (dashed
line).

autoencoder (AE) [29], which is a sequence-to-sequence
model trained to encode and reconstruct the input sequence
x. Each autoencoder is trained only on data from the subtask
used for the corresponding module. Algorithm 3 shows the
procedure to reconstruct the input using the AE encoder and
decoder.

3) Training: GIM is trained sequentially on each subtask,
by adding and training a new module whenever a new
task is encountered. The current RNN module is trained by
minimizing the Cross Entropy loss for classification tasks,
while the corresponding autoencoder is trained to minimize
the reconstruction error, by optimizing the mean squared error
(MSE) between the input and the reconstructed sequence. The
previous modules and autoencoders are not trained anymore
and their parameters remain constant. Algorithm 3 shows the
pseudocode for the training procedure.

4) Inference: At inference time, the computation proceeds
in three steps:

1) the autoencoders reconstruct the input sequence;
2) the subtask is identified by selecting the autoencoder

with the minimum reconstruction error;
3) the module corresponding to the identified subtask is

used to compute the output.
The inference procedure is detailed by the following equa-

tions:

x̃i = AEi(x), i = 1, ..., N

k = arg min
i

MSE(x̃i,x)

y = LMNk(x).

The algorithms describing the output computation at inference
time are in Algorithm 3.

Algorithm 1 GIM-LSTM Forward Pass for Module N

1: function LSTM-MODULE-FW(GIM, x, N)
Require: GIM-LSTM with at least N modules, N ≥ 1, x

with T timesteps
2: h0,1 ← 0
3: h:,1 ← GIM.LSTM1(x, h0,1)
4: for d← 2, N do
5: h0,d ← 0
6: x̂← [x;h:,d−1]
7: h:,d ← GIM.LSTMd(x̂, h0,d)
8: end for
9: y ←W outhT,N

10: return y
11: end function

Algorithm 2 GIM-LMN Forward Pass for Module N

1: function LMN-MODULE-FW(GIM, x, N)
Require: GIM-LMN with at least N modules, N ≥ 1, x with

T timesteps
2: hm0,1 ← 0
3: hm:,1, h:,1 ← GIM.LMN1(x, hm0,1)
4: for d← 2, N do
5: hm0,d ← 0
6: x̂← [x;hm:,d−1;h:,d−1]
7: hm:,d, h:,d ← GIM.LMNd(x̂, hm0,d)
8: end for
9: ymN ←Wmo

N hmT,N

10: return ymN
11: end function

IV. ADVANTAGES OF THE GIM ARCHITECTURE

GIM, like Progressive networks, is capable of learning
multiple distributions without being affected by forgetting.
Freezing old parameters easily guarantees that the model will
retain the knowledge about previous subtasks, while the use
of the activations of the previous module as additional inputs
allow to transfer knowledge from the previous model to the
new ones. Additionally, GIM overcomes one of the major
drawbacks of Progressive networks [16]: it does not require

Algorithm 3 Functions to compute the reconstruction of the
autoencoder, for training it, and for choosing the GIM module.

1: function RECONSTRUCTION(AE, x)
2: henc,0 ← 0
3: henc,: ← AE.LSTMenc(x, henc,0)
4: hdec,: ← AE.LSTMdec(0, henc,T)
5: x̃← AE.W outhdec,:
6: return x̃
7: end function
8: function AE-TRAIN(D)

Require: | D |> 1
9: lae ← []

10: while a new distribution Dk is available do
11: AE← init-autoencoder()
12: lae.append(AE)
13: for training batch x ∈ Dk do
14: x̃← RECONSTRUCTION(AE,x)
15: J ← MSE(x, x̃)
16: ∂J

∂w ← backprop(J)
17: Take a descent step along ∂J

∂w
18: end for
19: end while
20: return lae
21: end function
22: function GIM-INFERENCE(GIM, x)
23: lrec ← []
24: for AE ∈ GIM.lae do
25: x̃← RECONSTRUCTION(AE,x)
26: lrec.append(MSE(x, x̃))
27: end for
28: m← arg min lrec . index of the best autoencoder
29: y ← LSTM-MODULE-FW(GIM,x,m)
30: return y
31: end function

explicit knowledge about input distributions at test time, since
gating autoencoders are able to autonomously recognize the
current input and use the appropriate module to compute the
output. Compared to Progressive networks, GIM simplifies
the inter-modules connections: while Progressive networks use
feedforward networks, created between a module and all the
next ones, GIM employs only concatenation between vectors
and connects only adjacent modules. Since both Progressive
and GIM employ a separate module for each of the n subtasks,
the number of adaptive parameters in the architecture is
quadratic in n for the Progressive network, while it is linear
for GIM. Given ΘM = {θi|θi ∈ M}, where M is a generic
model, we obtain the following upper bounds:

|ΘProgressive| = O(n2), |ΘGIM | = O(n).

V. DATASETS

We experimented with three different datasets: following
the current trend in CL, two of them, MNIST and Devanagari,
originate from images. The third one, Audioset, is constructed

by processing short clips of audio sounds and is therefore
more representative of a sequential, dynamic environment1.
MNIST and Devanagari are adapted to sequential data
processing by transforming each image in a sequence of
pixels, which are then shuffled according to a fixed, random
permutation. Permuting the images ensures that the RNN
performance is not affected by the long sequence of non-
informative elements (pixels) which are present at the end of
each sequence. Considering the image resolution of 28x28,
the sequences consist of 784 timesteps, making these datasets
challenging not only for the CL scenario but also for recurrent
models in general due to the length of the input sequences.
In order to create dynamic environments, we choose to follow
the standard approach of CL literature [23, 24] by dividing
each dataset into groups of non-overlapping classes, which
we call subtasks. When training on a specific dataset (i.e.
when addressing a particular task), subtasks are presented to
the model sequentially one after the other (the next one starts
when the previous has ended).
Concept drift is present on the output layer of each model
since the input distribution associated with each output unit
changes from one subtask to the next. The model should
adapt to the drift and learn the new concept without forgetting
the previous ones. When finished training on all subtasks, the
model is tested on both last and previous subtasks to assess
its resilience to forgetting.

A. MNIST

One of the most used datasets in Machine Learning
and CL is the MNIST dataset of handwritten digit [30].
Each image has size 28x28, gray scaled, which leads
to input sequences with 28 · 28 = 784 scalars. We
created 5 subtasks, corresponding to the 5 digits partitions:
(0, 1), (2, 3), (4, 5), (6, 7), (8, 9) and we trained the models
to classify each pair of digits, switching to the next subtasks
once the previous one is completed.

B. Devanagari

Devanagari is a dataset composed of images of handwritten
characters belonging to 46 different classes [31]. Each class
has 1, 700 images, each of which of size 32x32, gray-scaled.
Following the approach of [24], we randomly selected 10
classes out of the 46. In addition, we also remove the padding
along the borders of the image, resulting in 28x28 gray-
scaled input images. The total length of the input sequence
is therefore the same as in MNIST.
We split the selected classes in 5 subtasks of 2 classes each:
(gha, cha), (chha, daa), (bha, ma), (motosaw, petchiryakha),
(1, 3). The last subtask is composed of digits, which however
have a completely different representation than the ones in
MNIST. The objective of the task is to assign to each sequence
the correct class.

1Code to reproduce results is available at https://github.com/AndreaCossu/
ContinualLearning-SequentialProcessing

TABLE I: Validation (top of cell) and Test (bottom of cell) accuracy (± std) on all datasets (D) and subtasks (S). Validation
accuracy on each subtask computed after training on that specific subtask. Test accuracy computed at the end of training on
all subtasks. For each dataset, final row Mean shows Validation / Test accuracy averaged over all subtasks. Results averaged
over 5 runs.

D S LSTM LMN EWC-LSTM EWC-LMN GIM-LSTM GIM-LMN
M

N
IS

T
1 0.97± 0.01

0.55± 0.03
0.99± 0.02
0.45± 0.05

0.95± 0.01
0.74± 0.06

0.98± 0.02
0.32± 0.08

0.97± 0.041
0.97± 0.09

0.99± 0.01
0.98± 0.07

2 0.86± 0.03
0.47± 0.07

0.97± 0.02
0.58± 0.06

0.72± 0.04
0.54± 0.08

0.88± 0.04
0.63± 0.07

0.92± 0.04
0.50± 0.08

0.98± 0.02
0.98± 0.09

3 0.94± 0.04
0.18± 0.08

0.99± 0.05
0.14± 0.04

0.62± 0.03
0.43± 0.03

0.80± 0.03
0.45± 0.08

0.93± 0.01
0.35± 0.08

0.99± 0.02
0.35± 0.09

4 0.98± 0.03
0.75± 0.06

0.99± 0.04
0.76± 0.04

0.56± 0.03
0.54± 0.09

0.93± 0.06
0.76± 0.08

0.96± 0.05
0.91± 0.12

0.99± 0.02
0.96± 0.09

5 0.94± 0.01
0.94± 0.06

0.98± 0.03
0.98± 0.03

0.65± 0.05
0.64± 0.05

0.71± 0.04
0.72± 0.06

0.88± 0.01
0.76± 0.08

0.97± 0.04
0.95± 0.07

Mean (V/T) 0.94 / 0.58 0.98 / 0.58 0.70 / 0.58 0.86 / 0.58 0.93 / 0.70 0.98 / 0.84

D
ev

an
ag

ar
i

1 0.82± 0.04
0.48± 0.03

0.50± 0.04
0.55± 0.06

0.80± 0.05
0.60± 0.03

0.50± 0.05
0.52± 0.04

0.82± 0.01
0.59± 0.02

0.50± 0.07
0.39± 0.06

2 0.76± 0.07
0.44± 0.05

0.85± 0.07
0.59± 0.03

0.76± 0.06
0.48± 0.07

0.50± 0.08
0.49± 0.04

0.81± 0.11
0.74± 0.07

0.96± 0.08
0.73± 0.07

3 0.65± 0.09
0.49± 0.08

0.87± 0.03
0.69± 0.03

0.63± 0.05
0.55± 0.05

0.49± 0.08
0.56± 0.08

0.71± 0.07
0.67± 0.09

0.95± 0.05
0.86± 0.10

4 0.76± 0.05
0.49± 0.04

0.98± 0.03
0.35± 0.05

0.71± 0.07
0.60± 0.06

0.50± 0.06
0.48± 0.09

0.79± 0.08
0.51± 0.08

0.98± 0.04
0.33± 0.08

5 0.90± 0.05
0.91± 0.05

0.99± 0.04
0.99± 0.06

0.86± 0.07
0.82± 0.06

0.51± 0.08
0.52± 0.4

0.87± 0.03
0.66± 0.09

0.99± 0.05
0.83± 0.03

Mean (V/T) 0.78 / 0.56 0.84 / 0.63 0.75 / 0.61 0.50 / 0.51 0.80 / 0.63 0.88 / 0.63

A
ud

io
se

t

1 0.63± 0.01
0.10± 0.02

0.60± 0.01
0.05± 0.02

0.67± 0.03
0.08± 0.04

0.61± 0.03
0.04± 0.01

0.68± 0.02
0.64± 0.04

0.62± 0.03
0.55± 0.01

2 0.71± 0.04
0.09± 0.02

0.67± 0.03
0.08± 0.01

0.71± 0.03
0.12± 0.02

0.65± 0.03
0.14± 0.02

0.73± 0.03
0.71± 0.03

0.68± 0.02
0.65± 0.08

3 0.68± 0.03
0.13± 0.03

0.64± 0.01
0.14± 0.2

0.68± 0.01
0.13± 0.02

0.64± 0.01
0.15± 0.01

0.71± 0.04
0.57± 0.03

0.63± 0.03
0.54± 0.02

4 0.67± 0.01
0.46± 0.02

0.63± 0.02
0.43± 0.02

0.62± 0.03
0.50± 0.01

0.62± 0.02
0.47± 0.02

0.67± 0.03
0.50± 0.03

0.63± 0.04
0.42± 0.05

Mean (V/T) 0.67 / 0.20 0.64 / 0.18 0.67 / 0.21 0.63 / 0.20 0.70 / 0.61 0.64 / 0.54

C. Audioset

Audioset [32] is a collection of annotated audio events,
extracted from 10 seconds audio clips and organized
hierarchically in classes. The objective is the classification
of a sound from its audio clip source, embedded through
a VGG-acoustic model into 10 vectors, one per second,
each of dimension 128. To implement a CL scenario, we
selected 40 audio classes and split them among 4 subtasks
(10 classes per subtask). We selected the 40 classes according
to the procedure outlined by [33]. Since the authors did not
publish the classes, we randomly selected them from the
superset resulting from their preprocessing pipeline. Audioset
data has already been used in literature to assess CL skills
[33]. However, the authors focused on the task from a
static perspective, relying on the use of feedforward models
only. Since the preprocessing step provides, for each audio
clip, a sequence of fixed-size embeddings, it is possible to
concatenate the vectors into a single large vector and feed it
to the network. The sequential aspect of the task, however, is
completely lost. At the best of our knowledge, we are the first
to tackle Audioset in CL scenarios with recurrent models. It
is also important to notice that the task difficulty is increased
when using recurrent networks, since the model is not able
to see the input in its entirety (like in feedforward networks),

but it has to scan it one timestep at a time.

VI. EXPERIMENTS

On MNIST and Devanagari we trained all models with
Adam optimizer [34], learning rate of 1e − 4, mini batch
size of 32. The number of hidden units is set to 128 for
both LSTM-based and LMN-based (functional and memory
component) models.
It is well known that orthogonal initialization of memory
weight matrixes can improve learning when dealing with long
sequences and linear memories [27, 35]. Therefore, we chose
to use such initialization for LMN-based models and also
to preserve it during training through an additional penalty
in the loss function, expressed by β‖(Wmm)TWmm − I‖2,
where Wmm is the memory weight matrix of the LMN, I
is the identity matrix and β is the hyperparameter associated
to the penalization. We used a value of β = 0.1, which was
capable of preserving orthogonality on all experiments.

On Audioset we adopted a different configuration by using
smaller models with 16 hidden units on LSTM and LMN
(memory and functional component). This choice was deter-
mined by the limited amount of data points available for each
class in Audioset: larger models led to overfitting without any

(a) MNIST (b) Devanagari (c) Audioset

Fig. 4: Paired plots for the three tasks. Each pair plot shows, for each model and for each subtask, mean validation accuracy
(left point) computed after training on that subtask, and mean test accuracy (right point) computed at the end of the entire
training on all subtasks. Validation and test accuracies are connected by a line. Therefore, the drop in performance due to
forgetting is the difference between the two points. The red dashed line is the average among subtasks. Horizontal dotted line
is equal to random classifier performance (0.5 for MNIST and Devanagari, 0.1 for Audioset).

performance improvements. We used the RMSProp optimizer,
with learning rate of 3e − 5, momentum of 0.9 and L2
regularization with hyperparameter of 1e − 3 and mini batch
size of 4.
LSTM autoencoders use 500 hidden units on encoder and
decoder (36.22% compression on MNIST and Devanagari,
60.94% on Audioset) trained with Adam optimizer and learn-
ing rate of 1e−4. On Audioset, we also use L2 regularization
with hyperparameter 1e− 3.
We compare GIM-LSTM and GIM-LMN with standard LSTM
and LMN and with the popular EWC method [9]. EWC
requires to choose the value of the hyperparameter regulating
the tradeoff between new incoming subtask and older ones.
We choose the value of 0.4 out of 0.01, 0.1, 0.4, 1.0, since it
gave the best performances on a held-out validation set.
Table I provides the results of our experiments, averaged over
5 runs. Paired plots (Fig. 4) show the comparison between
the validation performance for each subtask computed after
training on that subtask (on the left) and the test performance
computed after the final training is completed for all the
subtasks. Therefore, the forgetting for each configuration can
be evaluated by looking at the difference between the left and
right points for each subtask.
MNIST and Devanagari are binary classification tasks, hence a
random classifier would score 0.50 accuracy on all subtasks.
On Audioset, being composed of 10 classes per subtask, a
random classifier would score 0.10 accuracy on all subtasks.
We also show examples of learning curves, comparing GIM-
LMN with GIM-LSTM (Fig. 1). Audioset shows early overfit-
ting even with small models. A similar behavior, even if less
drastic, is detected on Devanagari. It is, however, important to
stress the fact that the learning curves cannot show the effect
of forgetting because they are computed using the data from
the current subtask, while we are interested in the final test
accuracy, measured after training on all subtasks.

VII. DISCUSSION

Table I and Figure 4 show that, in accordance with the
results presented in [24], LSTM and LMN models suffer
from catastrophic forgetting of old subtasks, independently
of the performance achieved on the validation set during
training. Even models regularized with EWC are not able to
mitigate catastrophic forgetting. Notably, EWC always lowers
the performance of the last subtask, an effect that is probably
caused by the strong regularization imposed on the model
weights. We were unable to find an EWC setting capable of
guaranteeing a good tradeoff between current and previous
subtasks accuracies. We hypothesize that the recurrence
in RNNs could be the cause of the poor performance of
EWC, leading to an importance evaluation through the Fisher
Information matrix which is not representative of the (sub)task
on which the model is trained. However, further studies will
be needed to validate or contradict this hypothesis.
GIM models are by far the best performing ones, since they
successfully learn on dynamic environments while limiting
forgetting.
On Audioset, GIM-LSTM and GIM-LMN are capable of
maintaining comparable performance on all subtasks once
training is finished, while performance for standard and
EWC-based models drops below the random baseline for
some subtasks. This means that the autoencoders successfully
recognize the incoming distribution and select the correct
module to produce the output without any information on the
incoming input labels.
On MNIST we obtained similar results, with some exceptions:
GIM-LSTM underwent complete forgetting on 2 subtasks
out of 5, while GIM-LMN experienced it on 1 out of 5.
In those cases, autoencoders failed to reconstruct the input
sequences, leading to the choice of the wrong module for the
final classification. On these subtasks, the EWC version of
LMN and LSTM surpassed GIM architectures.
Devanagari is the most challenging task: GIM models still

exhibited complete forgetting on 2 subtasks out of 5, with
reduced performances on almost all the others. However, this
behavior is common to all models on this task. EWC-LMN
does not show significant differences between performances
on the validation set and final test only because it is unable
to learn the task, achieving an accuracy equivalent to the one
of a random classifier.

VIII. CONCLUSIONS

The main objective of this work is to draw attention to the
problem of CL for sequential data processing by introducing
GIM, a recurrent CL architecture inspired by the Progressive
networks [16]. Our benchmarks show that GIM is able to
mitigate forgetting on computer vision and sequential audio
data. GIM surpasses LSTM, LMN and their corresponding
EWC version on the large majority of the experiments. The
performance of GIM models depends on the reconstruction
error of the subtask’s autoencoders. In the future, different
models for the autoencoders could be used to further improve
the performance. The comparison with EWC on sequential,
dynamic environments supports the claim that recurrent
architectures need to be adapted to manage CL scenarios and
encourages future works towards an in-depth study of their
behaviors.

REFERENCES

[1] G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” Machine Learning, vol. 23, pp. 69–101, Apr. 1996.

[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, pp. 44:1–44:37, Mar. 2014.

[3] A. Tsymbal, “The Problem of Concept Drift: Definitions and Related
Work,” tech. rep., Trinity College, Dublin, 2004.

[4] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
Concept Drift: A Review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, pp. 2346–2363, Dec. 2019.

[5] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in Non-
stationary Environments: A Survey,” IEEE Computational Intelligence
Magazine, vol. 10, pp. 12–25, Nov. 2015.

[6] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks,
vol. 113, pp. 54–71, May 2019.

[7] R. French, “Catastrophic forgetting in connectionist networks,” Trends
in Cognitive Sciences, vol. 3, pp. 128–135, Apr. 1999.

[8] M. Ring, “Recurrent Transition Hierarchies for Continual Learning: A
General Overview,” Workshops at the Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” PNAS, vol. 114, no. 13,
pp. 3521–3526, 2017. arXiv: 1612.00796.

[10] M. B. Harries, C. Sammut, and K. Horn, “Extracting Hidden Context,”
Machine Learning, vol. 32, pp. 101–126, Aug. 1998.

[11] R. Klinkenberg, “Learning drifting concepts: Example selection vs.
example weighting,” Intelligent Data Analysis, vol. 8, pp. 281–300, Aug.
2004.

[12] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Machine Learning, vol. 1, pp. 317–354, Sept. 1986.

[13] K. O. Stanley, Learning Concept Drift with a Committee of Decision
Trees. 2001.

[14] F. Zenke, B. Poole, and S. Ganguli, “Continual Learning Through Synap-
tic Intelligence,” in International Conference on Machine Learning,
pp. 3987–3995, July 2017.

[15] G. E. Hinton and D. C. Plaut, “Using Fast Weights to Deblur Old
Memories,” Proceedings of the ninth annual conference of the Cognitive
Science Society, pp. 177–186, 1987.

[16] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural
Networks,” arXiv: 1606.04671 [cs], June 2016. arXiv: 1606.04671.

[17] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong Learning With
Dynamically Expandable Networks,” ICLR, p. 11, 2018.

[18] B. Ans, S. Rousset, R. M. French, and S. C. Musca, “A dual-network
architecture with self-refreshing memory to overcome catastrophic for-
getting in multiple sequence learning,” 2002.

[19] R. Coop and I. Arel, “Mitigation of catastrophic forgetting in recurrent
neural networks using a Fixed Expansion Layer,” in The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN), (Dallas, TX,
USA), pp. 1–7, IEEE, Aug. 2013.

[20] N. Asghar, L. Mou, K. A. Selby, K. D. Pantasdo, P. Poupart, and
X. Jiang, “Progressive Memory Banks for Incremental Domain Adapta-
tion,” arXiv: 1811.00239 [cs], Nov. 2018. arXiv: 1811.00239.

[21] T. Kobayashi and T. Sugino, “Continual Learning Exploiting Structure
of Fractal Reservoir Computing,” in Artificial Neural Networks and
Machine Learning – ICANN 2019: Workshop and Special Sessions (I. V.
Tetko, V. Kůrková, P. Karpov, and F. Theis, eds.), vol. 11731, pp. 35–47,
Cham: Springer International Publishing, 2019.

[22] A. Ororbia, A. Mali, C. L. Giles, and D. Kifer, “Continual Learning of
Recurrent Neural Networks by Locally Aligning Distributed Represen-
tations,” arXiv:1810.07411 [cs], Aug. 2019. arXiv: 1810.07411.

[23] S. Sodhani, S. Chandar, and Y. Bengio, “On Training Recurrent Neural
Networks for Lifelong Learning,” arXiv: 1811.07017 [cs, stat], Nov.
2018. arXiv: 1811.07017.

[24] M. Schak and A. Gepperth, “A Study on Catastrophic Forgetting in Deep
LSTM Networks,” in Artificial Neural Networks and Machine Learning
– ICANN 2019: Deep Learning (I. V. Tetko, V. Kůrková, P. Karpov, and
F. Theis, eds.), Lecture Notes in Computer Science, (Cham), pp. 714–
728, Springer International Publishing, 2019.

[25] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert Gate: Lifelong
Learning with a Network of Experts,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7120–7129, July
2017.

[26] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[27] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient Or-
thogonal Parametrisation of Recurrent Neural Networks Using House-
holder Reflections,” in International Conference on Machine Learning,
pp. 2401–2409, July 2017.

[28] D. Bacciu, A. Carta, and A. Sperduti, “Linear Memory Networks,” in
Proceedings of the 28th International Conference on Artificial Neural
Networks (ICANN 2019),, Lecture Notes in Computer Science, Springer-
Verlag, Sept. 2019.

[29] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised
Learning of Video Representations using LSTMs,” ICML, 2015. arXiv:
1502.04681.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[31] S. Acharya, A. K. Pant, and P. K. Gyawali, “Deep Learning Based Large
Scale Handwritten Devanagari Character Recognition,” Proceedings of
the 9th International Conference on Software, Knowledge, Information
Management and Applications (SKIMA), pp. 121–126, 2015.

[32] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 776–780, Mar. 2017.

[33] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan,
“Measuring Catastrophic Forgetting in Neural Networks,” in Thirty-
Second AAAI Conference on Artificial Intelligence, Apr. 2018.

[34] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[35] M. Henaff, A. Szlam, and Y. LeCun, “Recurrent Orthogonal Networks
and Long-Memory Tasks,” in International Conference on Machine
Learning, pp. 2034–2042, June 2016.

