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Abstract—Self-attention based models like Transformer have
achieved great success on kinds of Natural Language Processing
tasks. However, the traditional fixed fully-connected structure
faces many challenges in practice, such as computing redundancy,
fixed granularity, and inexplicable. In this paper, we present
BiG-Transformer, which employs attention with bipartite-graph
structure to replace the fully-connected self-attention mechanism
in Transformer. Specifically, two parts of the graph are designed
for integrating hierarchical semantic information, and two types
of connection are proposed to fuse information from different
positions. Experiments on four tasks show the BiG-Transformer
achieves better performance compared to Transformer liked
models and Recurrent Neural Networks.

Index Terms—Attention, Transformer, Chinese, Multi-level
Features

I. INTRODUCTION

Traditionally, with the help of deep feature extractor, nat-
ural language sentences are provided with strong semantic
representations. There are two mainly feature extractors in
Natural Language Processing (NLP) area: Recurrent Neural
Network (RNN) and Transformer. Undoubtedly, RNN-based
models play an excellent performance in kinds of NLP tasks
[1, 2, 3, 4]. They process all tokens in the sentence one by
one based on the recurrent structure, which has been proved
to be great success in learning context representation [5, 6, 7].
However, it is precisely the recurrent structure that limits their
speed and causes gradient explode (vanish). Recently, a self-
attention based model named Transformer [8], has become
popular in various NLP applications, especially the language
modeling [9] and machine translation [8]. Some recent works
even suggest that Transformer could be regarded as an alter-
native of recurrent neural networks and convolutional neural
networks in many NLP tasks, such as BERT [9], Transformer-
XL [10] and Universal Transformer [11], because they are
inherently bidirectional and efficient.

Although Transformer-based models have achieved great
successes, there are still a lot of studies to work out their poten-
tialities. For the first, the complexity can be further reduced
by reforming their structure, since self-attention is a heavy
mechanism with fully-connected interactions between any two
tokens. This introduces too much structure information that
may be not necessary, especially for two tokens that are not
related in lexical, syntax or semantics. Meanwhile, it is really
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hard to interpret its action [12]. To overcome this disadvantage,
Star-Transformer [13] replaces the fully-connected structure
with a star-shaped topology, where every two non-adjacent
nodes (tokens) are connected through a shared relay node. This
modification greatly decreases the computation complexity
of the self-attention module. Nevertheless, the star-shaped
topology of star-transformer can not capture words semantic to
some extent, because both of its radical connections and ring
connection are not take the word boundary or the syntactic
structure into consideration.

Second, they fail to integrate tokens of different granularity
and extract rich semantic information. In fact, many East Asian
languages, including Chinese, are written without explicit
word boundary. Thus, some recent works factorize lexical
into characters or subwords [14, 15], and integrate multi-
level semantic information into tokens. For example, Zhang
et al. [16] introduced Lattice-LSTM which adds a lexical
gate to inject word boundary information via a lexical control
gate of modified Long Short-Term Memory Network (LSTM).
Xiao et al. [17] proposed Lattice-Transformer which aims to
inject word boundary information into attention mechanism
to explore effective word or subword representation in an
automatic way during training. Unfortunately, they introduced
a complex position relation into the self-attention mechanism
which leads to one more step calculation and redundant
embedding matrices to be trained at the same time.

In order to reduce unnecessary calculations in fully-
connected self-attention and integrate multi-level information
to enhance semantics. In this paper, we propose a tailor-made
model called BiG-Transformer with a bipartite-graph topology.
Fig. 1 gives an overview of our model.

Different from the standard self-attention mechanism that
works on a fully-connected homogeneous graph where every
node is a character (word), our BiG-Transformer works on
a bipartite graph, where nodes are composed of two differ-
ent granularity: characters and words. In BiG-Transformer,
these two types of nodes are intrinsically related, because
coarse-grained (word) information comes from fine-grained
(character) information. It is obvious that the proposed BiG-
Transformer is capable of fusing multi-granularity informa-
tion without introducing new parameters (such as external
word vectors). In this way, we transform the fully-connected
homogeneous graph self-attention into a bipartite-connected
heterogeneous structure. To reduce the amount of computa-
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Fig. 1. The overall architecture of BiG-Transformer.

tion without losing semantics, two novel connection types
are proposed to replace the fully-connection: Dynamic Local
Connection and Fix Global Connection. Specifically, the Dy-
namic Local Connection preserves local semantic information
between word and character, while the Fix Global Connection
makes up for long-distance syntactic information.

We conduct extensive experiments on four widely-used
NLP tasks including Text Classification (TC), Named Entity
Recognition (NER), Machine Reading Comprehension (MRC)
and Neural Machine Translation (NMT). The experimental re-
sults show the proposed BiG-Transformer model consistently
outperforms than Star-Transformer and Lattice-Transformer
overall tasks, which demonstrates the universality and effec-
tiveness of our model. In addition, an ablation study indicates
that the two types of connections are both indispensables.

II. BACKGROUND

A. Self-Attention Mechanism

Self-attention mechanism, as one of the most representative
variants of attention models, has attracted lots of interests due
to its flexibility in parallel computation and long-term and
short-term dependency modeling. Recently, many works have
proved its effectiveness in kinds of NLP tasks, such as neural
machine translation [8], question answering [5], and named
entity recognition [18].

Formally, given an input sentence X = {x1, · · · , xn} with
n tokens, the sequence is encoded into a set of distributed
representations Hl = {hl

1, · · · ,hl
n} successively, where l is

the layer number, and each hidden state in the l-th layer is
constructed by attending to the states in the previous layer. The
inputs of the first layer can be obtained from an embedding
look-up table: H0 = {x1, · · · ,xn}. To be more specific, the
l-th layer representation Hl ∈ Rn×d is transferred into three
different spaces as quires Ql, keys Kl, and values Vl:Ql

Kl

Vl

 = Hl

WQ

WK

WV

 (1)

where {WQ,WK ,WV } ∈ Rd×d are trainable transfer ma-
trices and d is the dimension of hidden states. Next, we use
Att(·) to denote a attention model, which can be implemented
as either additive attention or dot-product attention [6, 19]. In
this paper, we use the dot-product attention, which achieves
similar performance with additive counterpart but is faster and
more space-efficient in practice:

Att(Ql,Kl,Vl) = softmax(
QlKl>
√
d

)Vl. (2)

where d is dimension of hidden state. Finally, we achieve
the output vectors of the (l+1)-th layer (as well as the input
vectors of the next layer):

Hl+1 = σ(Att(Ql,Kl,Vl)). (3)

where σ is some other functions, such as layer normalization,
feed forward layer.

B. Motivation

Intuitively, the self-attention mechanism could be regarded
as a fully-connected graph, in which each token is regarded
as a node, every node is connected with each other and edges
denote the semantic relationships between two nodes. In fact,
for natural languages, words are naturally made up of charac-
ters, and there are plenty of inherent dependency relationships
between word and character. This structure information has
proven to be useful for word representation learning [15, 16].
To be more specific, some Asian languages like Chinese
typically have no explicit boundary, and a character might
have multiple connections with different words when using
various word segmentation strategies. For the example shown
in Fig. 1, in Chinese character “South” is an element of
words “Nanjing”, “Nanjing City” and “Nanjing Mayor” at the
same time. It is obvious that words and characters can be
divided into two independent parts to highlight the structure
information between them. An intuitive way is to organize the
character and word into a bipartite graph. By this means, the
bipartite-graph is capable of capturing the potential relations
among words and characters. Even for some alphabetical
languages like English, there is still an open problem of
selecting a proper subword vocabulary size, which determines
the segmentation granularity for downstream tasks.

Furthermore, one advantage of the standard self-attention
mechanism is that each token of the sequence is global-aware
since all tokens are calculated with each other based on the
fully-connected structure. With that in mind, we think that
a sentence node with the semantic representation of the input
sentence is also global-aware. By interacting with the sentence
node, each character node in the graph can capture long-
distance information and have global awareness indirectly.

III. BIPARTITE-GRAPH TRANSFORMER

In this section, we introduce the primary architecture of
our BiG-Transformer model firstly, then describe the main
difference between our implementation details and that of
standard Transformer.



A. Bipartite-Graph Construction

As shown in Fig. 1, for our bipartite-graph Transformer,
the input sentence is converted into a bipartite-graph: one
type of nodes are characters and the other type of nodes are
words. We regard the sentence node as a special word node,
by considering the whole sentence to be a very long word. To
connect these character nodes and word nodes, we introduce
two types of connections, namely dynamic local connection
and fixed global connection.

1) Dynamic Local Connection: The dynamic local con-
nections are designed for the character-to-word association.
In BiG-Transformer, the edges between nodes represent the
inclusion relationship from left to right, which means that an
edge between character ci and word wj is established if ci
is an element of wj . For the example in Fig. 1, the character
“South” have edges with words “Nanjing”, “Nanjing City” and
“Nanjing Mayor”. We use a dictionary prepared in advance to
find all possible words appearing in the input sentence based
on the string matching technique. Since words appearing in the
input sentence are not known in advance, these connections
between characters and words are dynamic.

2) Fixed Global Connection: Note that dynamic local
connections focus on capturing local semantic information,
because any character can only interact with its neighbors
and adjacent characters appearing in the same words. As a
result, some useful semantic information from long-distance
characters is lost. To make up for this loss, we introduce a
sentence node at the right part of our bipartite-graph, and all
character nodes on the left are connected with the sentence
node. In this way, the whole sentence is considered to be a
long word, and any two characters are connected indirectly
through this sentence node.

B. Implementation Details

Note that most of the implementations of our model are
similar with that of the standard transformer. In this paper, we
focus on the different modules between BiG-Transformer and
standard Transformer.

1) Word and Sentence Representation: In order to keep the
representations of all nodes in the same embedding space and
avoid introducing more parameters, we utilize a simple and
effective approach to get word and sentence representations
from character representations. In detail, given a sequence of
characters representations H ∈ Rn×d and word position tuples
{(s1, e1), ..., (sm, em)}, where si and ei indicate the indexes
of starting position and ending position of word i respectively
(m is the number of all appearing words), we get the word
representation as following:

Oi: =

ei∑
j=si

hj (4)

where O ∈ Rm×d is the word representation matrix.
The representation of the sentence node indicates the global

sentence-level semantic which is designed for learning long-

Algorithm 1 The Update of BiG-Transformer
Input: A sequence of characters embedding X = {x1, ...,xn},
and word position tuple {(s1, e1), ..., (sm, em)}.
Output: Hidden representation of each character:
hLi .

1: h0
1, ...,h

0
n ← x1, ...,xn.

2: s0 ← average(H0)W0
s

3: for l from 1 to L do
4: // word representation.
5: for j from 1 to m do
6: ol

j = sum(Hl−1
sj :ej )

7: end for
8: // multi-head self-attention.
9: for i from 1 to n do

10: Ul−1
i: = NULL

11: for j from 1 to m do
12: if i between sj and ej then
13: Ul−1

i: = Concatenate(Ul−1
i: ,ol−1

j )
14: end if
15: end for
16: Ul−1

i: = Concatenate([Ul−1
i: , sl−1])

17: hl
i = MultiHeadAtt(hl−1

i ,Ul−1
i: )

18: end for
19: Hl = LayerNorm(Hl−1)
20: // global representation.
21: sl = Average(Hl)Wl

s

22: end for

distance information. We get the sentence representation with
the average pooling operation as following:

sl = Average(Hl)Wl
s (5)

where Wl
s is a learnable parameter matrix.

2) Multi-head Self-attention: Different from standard self-
attention mechanism that calculates attention between any two
characters, our BiG-Transformer only calculates the attention
between an character and any word containing the character.
In our model, given a sequence of character representations,
and word set ui contain the representations of all words
containing the i-th character of the sequence, we utilize multi-
head attention to capture more semantic information. The
calculation of the word-to-character multi-head attentions are
as following:

MultiHeadAtt(hi,U
l
i:) = [r1 ⊕ · · · ⊕ rp]WO (6)

rj = Att(hiW
Q
j , [Ui ⊕ s]WK

j ,HWV
j ), j ∈ [1, p] (7)

Ui = [u1i ⊕ · · · ⊕ u
|ui|
i ] (8)

where ⊕ denotes the concatenation operation, p is the number
of heads, WQ

j ,W
K
j ,W

V
j and WO are trainable matrices.

3) Position Embedding: Transformer-based models usually
utilize position embedding to incorporate the sequence infor-



mation. In this study, we also adopt the same strategy with
standard transformer:

p(j, 2i) = sin(j/1000002i/d)

p(j, 2i+ 1) = cos(j/1000002i/d)
(9)

where j is the position of tokens, i is index of position embed-
ding and d is the model dimension. As a result, the position
embedding is added to corresponding token embedding as their
initial representation.

4) Update of BiG-Transformer: The overall update of our
model is shown in Algorithm 1. Formally, let Hl = {hl1, · ·
·, hln} to be the hidden state representation of a sequence char-
acters at l-th layer. We initialize H0 with E = {e1, · · ·, en},
which is a character embedding layer.

Next, in order to update the hidden state representations,
we get word representations based on Formula 3, the attention
mechanism integrates the lexical information into characters,
and the long-term distance information is learned by interact-
ing with global sentence representation s.

C. Why BiG-Transformer Works?

Character-based self-attention mechanisms have been
proved effective in many NLP tasks. However, these character-
based methods still have their disadvantages: it is difficult to
explain intuitively why they work, because the character can
neither reflect the syntactic relationship nor the true semantics
of the sentence. For the attention of a word, an intuitive
approach is that the word should focus on two aspects. One is
the word that could form the word locally, and the second is
the whole semantic relationship. In addition, a word may be
contained in multiple words. When calculating the attention
mechanism, the final expression of the word strengthens the
representation of overlapping words between multiple words.
We think this is also the reason why it can stand out in NER.

IV. EXPERIMENTS

A. Tasks and Datasets

To demonstrate the effectiveness of our BiG-Transformer
model, we conduct lots of experiments on ten open-world
datasets of four mainstream NLP tasks:
• Named Entity Recognition (NER): Given a sentence,

the task is to classify the named entity label in each
position. We adopt four widely used datasets for this
task: Weibo-NER [20, 21], OntoNotes, MSRA[22], and
Chinese Resume[21].

• Text Classification: Given a sentence or a pair of sen-
tences, the task is to predict its label. For this task,
we take four datasets. ChnSentiCorp1 and Sina Weibo2

are sentiment classification (SC) datasets, THUCNews
is a document-level text classification (DC) dataset, BQ
Corpus[23] is a dataset of the sentence pair matching
(SPM) task which predicts the relation label for a given
pair of sentence.

1https://github.com/pengming617/bert classification
2https://github.com/SophonPlus/ChineseNlpCorpus/

• Machine Reading Comprehension (MRC): DRCD [24]
is an open domain traditional Chinese machine reading
comprehension dataset. Given a paragraph and a question,
the MRC task is to predict the answer span which
appeared in the paragraph.

• Neural Machine Translation (NMT): We introduce
the NMT task to make a comparison with Lattice-
Transformer. Following Lattice-Transformer, we chose
the NIST 2005 dataset as development set and use the
NIST 2002, 2003, 2004, 2006, and 2008 datasets as test
sets.

For the statistical details of our datasets, please refers to
Table I.

B. Experimental Settings

In order to make a fair comparison, for each dataset, we
keep the same hyper-parameters (such as maximum length,
warm-up steps), and tune the initial learning rate from 1e-3
to 1e-5. We run the same experiments for three times and
report the average results to ensure reliability. And the best
learning rate is determined by selecting the best development
set performance. The details of parameter setting of our model
on these ten datasets is also shown in Table I.

C. Results of Text Classification

The text classification task includes three types of datasets
in this paper: Sentiment Classification (ChnSentiCorp, Sina
Weibo), Sentence Pair Matching (BQ Corpus), Document
Classification (THUCNews). For all experiments of text clas-
sification, we perform average pooling operation over the
character representations as the final text representation and
feed it into the softmax classifier. Results of text classification
are shown in Table II.

For word2vec-based initialization approach, our model out-
performs all Transformer-based models on four datasets. This
demonstrates the effectiveness of our proposed attention mech-
anism. It is worthy to note that LSTM gets better results
compared with Transformer and Star-Transformer but is worse
than BiG-Transformer on ChnSenti, Weibo and THUCNews
datasets. This implies that attention-based model still needs
better structure to tap its potential.

Our model beats all other models in ChnSenti dataset, and
achieves 0.50 points of improvement compared with the best
baseline (LSTM). ChnSenti is a small corpus which shows that
our model could extract feature better from a small dataset.
Our model also performs well on Weibo dataset which is the
largest one, but is slightly lower than LSTM on BQ which
is sentence pair matching dataset. We speculate that spatial
information may be important for the matching task.

When initializing the embedding layer with Chinese BERT3,
our model still outperforms all baselines including pure BERT
model with a fully-connected classify layer. This proves that
word-character based attention is more helpful to capture the
semantic character-based model. We think these results agree

3https://github.com/google-research/bert



TABLE I
AN OVERVIEW OF EXPERIMENTAL DATASETS AND THE HYPER-PARAMETERS IN OUR EXPERIMENTS, “HEAD” INDICATES THE NUMBER OF HEADS IN

THE MULTI-HEAD ATTENTION. PARAMETERS IN TEXT CLASSIFICATION TASK ARE DIVIDED BY “/”, WHICH DENOTES THAT BERT-BASED AND
WORD2VEC-BASED WORD EMBEDDING INITIALIZATION METHODS.

Dataset TASK MAXLEN BATCH LR HEAD EPOCH TRAIN DEV TEST

Weibo-NER NER - 16 1e-5 8 15 1,350 270 270
MSRA NER - 12 1e-5 8 15 46,306 4,361 4,361
Resume NER - 12 3e-5 8 5 3,821 463 477
Ontonotes NER - 16 1e-5 8 15 15,717 4,298 4,345

ChnSenti SC 256 16/128 3e-5/7e-4 6 3/20 9,601 1,201 1,201
BQ SPM 128 64/128 1e-5/7e-4 6 3/20 100,001 10,001 10,001
THUCNews DC 512 16/128 1e-5/7e-4 6 3/20 50,001 5,000 10,001
Weibo SC 128 16/128 2e-5/7e-4 6 3/20 100,001 9,989 10,001

DRCD MRC 512 16/10 3e-5 6 -/2 26,932 3,524 3,485

NIST NMT - -/64 1.0 8 -/2 100,0000 1,082 -

TABLE II
RESULTS ON THE TEXT CLASSIFICATION DATASETS. BOLD MARKS HIGHEST NUMBER AMONG ALL MODELS. THERE ARE TWO WAYS TO INITIATE THE

WORD EMBEDDING LAYER: WORD2VEC (TOP) AND BERT (BOTTOM).

ChnSenti Weibo BQ THUCNews

Model dev test dev test dev test dev test

LSTM (Word2vec) 89.58 88.17 94.92 95.38 68.82 67.19 77.81 79.21
Transformer (Word2vec) 87.33 86.17 94.73 95.19 67.49 65.24 72.41 72.90
Star-Transformer (Word2vec) 84.25 81.83 94.66 95.04 65.85 65.34 77.23 78.77
BiG-Transformer (Word2vec) 88.83 89.50 94.51 95.93 67.06 66.02 79.20 80.71

BERT 94.30 94.42 97.38 97.31 83.76 80.08 97.40 94.70
LSTM (BERT) 94.42 94.22 96.38 95.17 83.90 82.54 96.84 97.18
Transformer (BERT) 93.01 93.23 59.60 95.17 85.05 83.47 97.26 96.99
Star-Transformer (BERT) 93.08 93.58 94.71 97.63 85.54 83.34 95.88 96.65
BiG-Transformer (BERT) 94.90 94.92 97.52 98.04 84.40 83.69 98.01 97.55

with recent works of span-based pre-trained language models
[25, 26].

D. Results of Machine Reading Comprehension

In this section, we compare BiG-transformer with state-of-
the-art baselines to show the natural language understandabil-
ity on MRC task. We use BERT as the initial embedding layer
for all models, and predict the start/end label for each position
by passing the output of model into a fully-connected layer.
Table V shows the experimental results.

For all three baselines, BiG-Transformer obtains better
performance on both EM and F1 scores. Transformer liked
models initialized by BERT still outperform LSTM, this
conclusion keeps consistent to we mentioned in section IV-F.
Compare within Transformer liked models, we obtain close
results between standard Transformer and Star-Transformer,
but lower than BiG-Transformer, we think that the model
is effective but unable to learn the words level semantic
information to improve character-based start/end classification.

E. Results of Machine Translation

To make a comparison with Lattice-Transformer [17], we
introduce machine translation experiments in which task is
used to demonstrate the effectiveness of Lattice-Transformer

in [17]. All baseline results are from [17]. From Table III,
we can find that our model outperforms Transformer and
Lattice-Transformer by 0.88 and 0.30 BLEU in the overall
performance. These results give a piece of strong evidence to
show our model’s effectiveness.

F. Results of Named Entity Recognition

To verify the ability of our model in sequence labeling,
we choose the classical NER task. We follow Lattice-LSTM
[16], and adopt four frequently-used datasets to show the
effectiveness of BiG-Transformer 4.

From Table IV, we can find that BiG-Transformer achieves
state-of-the-art performance on all four datasets. This leads to
the same conclusion with Lattice-LSTM: lexical information is
really important for named entity recognition task. Comparing
to Transformer and Star-Transformer, our BiG-Transformer
model beats both of them on no matter large (MSRA,
Ontonotes) or small datasets (Weibo-NER, Resume), it follows
that our model helps to learn a better character representation
benefit by bipartite-graph structure. Interestingly, Transformer
achieves better performance than LSTM on all four datasets.

4Transformer-based models initialized by word2vec are poor for NER task,
and there is no any official results reported, so we omit the results here.



TABLE III
EVALUATION OF TRANSLATION PERFORMANCE ON NIST ZH-EN DATASET. RNN, LATTICE-RNN AND LATTICE-TRANSFORMER RESULTS ARE CITED

FROM [17]. WE HIGHLIGHT THE HIGHEST BLEU SCORE IN BOLD FOR EACH SET.

System Input MT05 MT02 MT03 MT04 MT06 MT08 ALL

RNN
PKU 31.42 34.68 33.08 35.32 31.61 23.58 31.76
CTB 31.38 34.95 32.85 35.44 31.75 23.33 31.78
MSR 29.92 34.49 32.06 35.10 31.23 23.12 31.35

Lattice-RNN Lattice 32.40 35.75 34.32 36.50 32.77 24.84 32.95

Transformer
PKU 41.67 43.61 41.62 43.66 40.25 31.62 40.24
CTB 41.87 43.72 42.11 43.58 40.41 31.76 40.35
MSR 41.17 43.11 41.38 43.60 39.67 31.02 39.87

Lattice-Transformer Lattice 42.65 44.14 42.24 44.81 41.37 32.98 40.93

BiG-Transformer Matching 43.35 43.84 44.10 44.11 42.56 33.78 41.23

TABLE IV
RESULTS ON THE NER DATASETS, BOLD MARKS THE HIGHEST NUMBER AMONG ALL MODELS. WE DON’T REPORT TRANSFORMER,

STAR-TRANSFORMER AND BIG-TRANSFORMER’S RESULTS WHICH INITIATING THE EMBEDDING LAYER USING CONTEXT-FREE EMBEDDING, BECAUSE
THERE ARE NO RESULTS REPORTED.

Ontonotes Resume Weibo-NER MSRA

Model P R F1 P R F1 P R F1 P R F1

LSTM 74.36 69.43 71.81 92.97 90.80 91.87 50.55 60.11 56.75 94.53 94.29 94.41
Lattice-LSTM 76.35 71.56 73.88 61.08 47.22 53.26 52.71 53.92 53.13 94.81 94.11 94.46
LR-CNN 76.40 72.60 74.45 94.50 92.93 93.71 65.06 50.00 54.43 95.37 94.84 95.11

BERT-Tagger 78.01 80.35 79.16 94.43 93.86 94.14 67.12 66.88 67.33 96.12 95.45 95.78
Lattice-LSTM (BERT) 79.79 79.41 79.60 93.57 92.79 93.18 61.08 47.22 53.26 95.79 95.03 95.41
LR-CNN (BERT) 79.41 80.32 79.86 94.68 94.03 94.35 64.11 67.77 65.89 95.68 96.44 96.06
Transformer (BERT) 76.46 81.41 78.86 92.00 93.41 92.70 64.50 66.41 65.44 95.20 96.13 95.67
Star-Transformer (BERT) 77.37 81.52 79.39 92.89 94.01 93.45 65.73 63.24 64.46 94.20 94.66 94.43

BiG-Transformer (BERT) 78.34 82.43 80.33 94.47 94.30 94.38 70.05 67.13 68.56 96.50 96.32 96.41

TABLE V
RESULTS ON THE DRCD DATASET, BOLD MARKS THE HIGHEST NUMBER

AMONG ALL MODELS.

Model EM F1

LSTM (BERT) 91.13 85.02
Transformer (BERT) 91.31 85.28
Star-Transformer (BERT) 91.22 85.25

BiG-Transformer (BERT) 91.77 86.23

TABLE VI
ABLATION STUDY RESULTS ON CHISENTI (TC), ONTONOTES (NER) AND

DRCD (MRC) DATASETS.

Model ChiSenti Ontonotes DRCD
Acc F1 F1

BiG-Transformer 89.50 80.33 86.23
w/o global 87.21 72.21 82.11
w/o local 80.38 50.10 73.01
r. radical 83.56 77.33 85.16

We conjecture that this is because BERT has compatibility
with Transformer instead of the LSTM model.

G. Ablation Study

In this section, we perform an ablation study to verify the
effectiveness of the dynamic local connection and fixed global
connection. Results are shown in Table VI.

We test three variants of our model in three datasets:
ChnSenti (Text Classification), Ontonotes (NER) and DRCD
(MRC). For the first one, we remove dynamic connection
and keep the global connection in the bipartite graph. As
shown in the first line of Table VI, without the dynamic
local connection, performance on three datasets decline, which
demonstrates that our dynamic connection between different
grains is capable of fusing lexical level information into
character representation. For the second, we remove the global
connection to prove the effectiveness of long-distance semantic
our model learned, as the results indicated, discarding global
connection will make the performance decrease sharply, be-
cause model losses the ability to model long-distance de-
pendencies. Third, we replace the dynamic connection with
the adjacent connection. comparing to our model, it performs
worse on three of the tasks, which give the evidence of
useful of dynamic connection. Therefore, both the dynamic
local attention and fixed global connections are necessary and
helpful to BiG-Transformer.



V. RELATED WORK

Our model can be divided into two main novel parts: Word-
Character level Compositionality and Global-Level Composi-
tionality. In view of this, we roughly review the related works
via two parts.

A. Word-Level Compositionality

As the word is the fundamental unit of semantic expression,
the most intuitive approach to represent a word to vector [27],
but to deal with the Out-Of-Vocabulary problem and learn
more semantic relation between words, subword level models
are proposed. For example, [28] uses a character LSTM to
solve obtaining competitive results for the NER task. [29, 30]
pre-train the subword enrich word representation to improve its
performance on kinds of NLP tasks. [16] design a novel lattice
LSTM representation for mixed characters and lexicon words
by adding a word-level gate. SA-LSTM [31] incorporates seg-
ment information into word-level attention, and is capable of
learning relational expressions. Many works integrating word-
level information and character-level information have been
found to achieve good performance. [28] hierarchy structure
by incorporating BiLSTM-based character embeddings. Tree
Transformer [32] adds an extra constraint to attention heads
of the bidirectional Transformer encoder in order to encourage
the attention heads to follow tree structures.

B. Global-Level Compositionality

For integrating global-level semantic information into
words, prior work can be divided into three parts: recurrent-
based, CNN-based and attention-based. Hierarchically stacked
CNN layers [33, 34] allow better interactions between non-
local components in a sentence via incremental levels of
abstraction. S-LSTM [35] uses a global sentence-level node
to assemble and back-distribute local information in the re-
current state transition process, suffering less information loss
compared to pooling. Recently, attention-based models achieve
great success because of its bi-direction and effectiveness.
Transformer [8] learns the dependencies between words in a
sentence based entirely on self-attention without any recurrent
or convolutional layers. Star-transformer replaces the fully-
connected self-attention structure with a star-shaped topology,
in which every two non-adjacent nodes are connected through
a shared relay node.

VI. CONCLUSION

In this paper, we propose a novel word-character atten-
tion mechanism to replace the original fully-connected self-
attention mechanism in the Transformer. Experiments base on
four tasks demonstrated the effectiveness. In other languages,
there are segment operations divide the lexical level word
into character or n-grams. So in future work, we will extend
our model to subword or character base approach in other
languages.
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