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Abstract—Everyday born a new cyberattack and among these
an emerging attack is represent by the so-called colluding.
The application collusion attack is a new form of threat that
is becoming widespread in mobile environment, especially in
Android platform. This technique requires that two or more
apps cooperate in some way with the aim to perform a malicious
action that they are unable to perform independently. Detecting
colluding apps is challenging problem, because currently there
are no effective tools due to the search space of all possible
combination of apps. In this paper we present a method exploiting
model checking technique with the aim to detect a collusion
attack between two applications. The method uses a heuristic
function able to reduce the number of the analyzed apps and
to localize the collusion attack. This heuristic function is based
on the study of execution flow of an application, to identify the
execution flow and verify it. The proposed algorithm verify if
there is a flow of sensitive data that ends up in a shared resource
and if this happens the app could be marked as potentially
collusive, otherwise it is possible to exclude the app from the
analysis, in order to reduce the number of apps to be analyzed.
Experimental results on a data-set of Android applications show
promising performances in colluding mobile app detection.

Index Terms—colluding, model checking, formal methods,
Android, security

I. INTRODUCTION

Everyday people use devices such as smartphones and
tablets without thinking about problems related to their use,
because smartphones handle a great deal of personal infor-
mation (e.g. photos, finances, messages) that can be stolen. In
fact Android platform being the most popular mobile operating
system, is also the most attacked by cybercriminals. The large
popularity of Android combined with its open nature made this
operating system a primary target of attackers able to develop
more and more malicious apps at an industrial scale [1]–[3].

From the defensive side, commercial and free antimalware
software solutions are not able to correctly identify new
threats, because the malicious payload is detectable only once
its signature is stored in their repository.

In this scenario, malicious writers have developed a new
trend, the so-called colluding attack. It basically consists in a
malicious action split into several apps, so current antimalware
that analyze a single application to discover harmful actions as
a single entity, are not able to identify the malicious payload
[4]. These applications communicate with each other when the
user performs a specific action or when a specific system event

occurs and not make suspicious the antimalware, because they
require only the minimum permissions needed for play their
role in the attack [5]: the first app might read sensitive data
and transmits it to the second one, which transmits they to
the outside. In this way the first application requires only the
permissions to read the data, instead the second one requires
the permissions to use the Internet connection [5]. If two apps
that collude are individually analyzed, for the antimalware will
not be possible to find errors or threats, since the damage will
be caused by their collusion [6].

In Android the applications not always are independent
to each other, they may communicate through the Inter-
Component Communication (ICC). This mechanism reduces
the developers’ burden and promote functionality reuse, allow-
ing an inter-applications collaboration thanks to information
exchange between components that could be of the same
application or different applications [7], but it can be also
misused by malicious applications to attack users privacy [8].

Starting from these considerations, in this paper we present
a tool implementing a methodology able to detect colluding
Android applications based on model checking technique [9]
and on a new heuristic function that aims to reduce the number
of the analyzed apps. To define the function has been used the
µ-calculus temporal logic and it is based on model checking.
In particular in this paper we focus on string resources shared
exploiting Android SharedPreferences.

The paper is organized as follows. Next section introduces
the proposed method for detecting colluding attacks in mobile
environment, Section III presents the experimental analysis we
performed to demonstrate the effectiveness of the proposed
method and, finally, in last section conclusion and future
research lines are drawn.

II. THE METHOD

To detect and verify colluding Android apps, we have build
the methodology starting from the binary code. The choice
is fell on the application Bytecode since this type of code is
always reachable as opposed to the source code that is not
always possible to achieve due to the obfuscation of the same.
The first step consists to define the formal model that allows
to create a model of the Android application. In this way you
have a general model with which is possible check every type
of property on the system.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



A. Formal Model Creation
The formal model is created using the Calculus of Commu-

nicating Systems (CCS) process that simulates the behaviour
of an application, starting from the bytecode. An Android app,
also called .apk (i.e., Android Package) is a variant of the well-
known .jar archive file. This type of file contains the executable
code for the Dalvik Virtual Machine (i.e., the .dex file), the
re-source folder (i.e., icons, images, sounds) and the Manifest
file.

Starting from the .apk we can obtain Bytecode instructions.
The process to transform an apk file into a Javabytecode is
composed by following steps:

• generation of the .jar file from the .apk file with a tool
called dex2jar1;

• extraction of the java class file and the directories from
the .jar file, using the Java Archive Tool utility2;

• generation of the Android application Bytecode invoking
the BCEL (Byte Code Engineering Library3).

After obtained the Java Bytecode, is used an inference
algorithm developed by the authors in [10]. This algorithm
generates a CCS process for each Java Bytecode instruction.
The CCS process encodes the instructions, the actions that it
makes, represent the opcodes (i.e., the control-flow between
two or more instructions).

B. Heuristic function: PUT and GET
The detection of colluding apps is very difficult, because

there are not effective tools able to search all possible combi-
nation of apps. There is a large number of applications in
official and unofficial stores and this is the reason for the
exponential growth of analysis costs: if we have n apps,
analyzing all the possible pairs we obtain n2 tests have to
be performed, considering all the possible triples of colluding
apps instead are required n3 tests and so on (Figure 1).

A method is needed to reduce the search for collusion
candidates and to identify which groups of apps should be
considered together for collusion.

In this paper are presented two different heuristic functions:
the first one is based on the uses of the SharedPreferences
and monitors every possible code path for each read/write of
a string shared resource. It makes a division of the apps based
on the different use of the shared resources.

To show how SharedPreferences are working, let us con-
sider the Android code snippet below shown: it represents
an example of SharedPreferences invocation, in particular the
code snippet retrieves by invoking the getString methods a
string value from the SharedPreferences (stored in the value1
variable).

1 SharedPreferences sharedPreferences = this.
getSharedPreferences("SharedPreferences",
Context.MODE_WORLD_WRITEABLE);

2 String value1 = sharedPreferences.getString("value1"
,"defaultValue");

1https://sourceforge.net/projects/dex2jar/
2https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jar.html
3https://commons.apache.org/proper/commons-bcel/

The second Android code snippet presents the SharedPref-
erences writing invocations.

1 SharedPreferences sharedPreferences= this.
getSharedPreference("SharedPreferences", Context
.MODE_WORLD_WRITEABLE);

2

3 SharedPreferences.Editor editor = sharedPreferences.
edit();

4 editor.putString("value1", "information");

In particular the information in the SharedPreferences are
stored using the putString methods.

As discussed in literature [6], it is very easy for two applica-
tions to share (sensitive) data by only knowing the name of the
SharedPreferences (in the code snippets SharedPreferences).

Usually an application can execute two different type of
operation on a shared resource (i.e., get and put operations).

We can define these actions after the study of the application
behaviour.

We resort to the µ-calculus logic to encode these actions:
• an app can perform a ”put” on a shared resource,

in this case the formula (Table I - Formula1) is
true if the process is able to perform the following
sequence of actions: InvokegetSharedPreferences,
invokeedit, invokeputString, invokecommit;

• an app can perform a ”get” on a shared resource, in this
case the formula (Table I - Formula2) is true if the pro-
cess is able to perform the following sequence of actions:
InvokegetSharedPreferences, invokegetString.

The developed methodology uses the heuristic function to
search a pair of colluding apps in a short time. With the
heuristic function is possible to create two different sets of
applications which will be analyzed: the first one containing
the applications that verify the put property (Figure 2), the
second one containing the applications that verify the get
property (Figure 3).

Furthermore the heuristic function allows to reduce the
computing cost since it is based on checking a temporal logic
formula in the CCS processes representing the applications.

The second heuristic function works after the put property
verification and is useful to further reduce the search space of
the applications that collude based on the execution flow. To
verify if there is flow, the tool use FlowDroid.

We need also a system model and system property to apply
the model verification technique. To create the system model
has been developed an algorithm that start from FlowDroid,
it takes in input an application at a time returning an xml file
containing the reconstruction of data flow and the description
of all sources with the respective sinks. In this way will be
created two lists: one for the sources and one for the sinks.
These lists are then inserted into hashmap where the source
represent the key and the array of sink represent the respective
value. To create the model, the flow is modeled as a graph
composed by an array of roots and an array of leaves: the
sources array is scanned and if the source element is present
also in the sinks array, it is deleted from both arrays.



Fig. 1. The proposed methodology.

Fig. 2. First heuristic flowchart about PUT property.



Fig. 3. First heuristic flowchart about GET property.

TABLE I
GET AND PUT FORMULAE RELATED TO THE HEURISTIC FUNCTION

Formula1
ϕPUT = µX. 〈invokegetSharedPreferences〉 ϕPUT1∨

〈−invokegetSharedPreferences〉X
ϕPUT1

= µX. 〈invokeedit〉 ϕPUT2
∨ 〈−invokeedit〉X

ϕPUT2 = µX. 〈invokeputString〉 ϕPUT3 ∨ 〈−invokeputString〉X
ϕPUT3

= µX. 〈invokecommit〉 tt ∨ 〈−invokecommit〉X

Formula2
ϕGET = µX. 〈invokegetSharedPreferences〉 ϕGET1∨

〈−invokegetSharedPreferences〉X
ϕGET1

= µX. 〈invokegetString〉 tt ∨ 〈−invokegetString〉X

About our work is been developed a recursive algorithm
called CodeSnippet1, it selects the first root from the roots
array, enters in the hashmap (using the root that represents a
key) and then finds if this root has sons. If the root has a son,
in the CCS file model we go from the root to the son and the
recursive algorithm is invoked until all the roots have been
selected. In the end, you get the CCS file ready for checking
the model.

C. Coupler definition and formal verification

Using the above explained heuristic functions, we obtain a
set of app pairs for the SharedPreferences, following indicated
as Ssp.

For each (p, q) ∈ Ssp we define the following CCS process:

Procpq = (p |C| q)\L

where:

• p and q are the CCS representation of the apps that
potentially may colluding, since obtained by the heuristic
functions.

• C is the coupler definition process that has the aim to
identify whether p and q collude.

• L is the set of communication actions. L =
{Preferences NAME, invokeSharedPreferences,
resource ID, invokeputString, invokegetString}.

The last step consists in the application of a formal ver-
ification environment including a model checker. The CCS
process Procpq is checked for each (p, q) ∈ Ssp. When the
result of the CWB-NC (the model checker tool used) is true,
CCS process Procpq satisfies a µ-calculus formula encoding
the colluding notion, it means that our method considers two
apps p and q under analysis colluding, false otherwise.



III. THE EXPERIMENT

In this section we present the experimental analysis, aimed
to demonstrate the effectiveness of the proposed method for
detecting colluding applications.

A. The data-set

To test our methodology the data-set has been generated
using different sources:

• We have used a data-set generated with Application
Collusion Engine (ACE) [11], a system to automatically
generate combinations of colluding and non-colluding
Android apps to evaluate different collusion detection
and protection methods. For the experiment we have
generated 80 couples of colluding apps (160 different
applications) communicating through SharedPreferences
and 160 couples of colluding apps (320 different applica-
tions) not using this type of communication. Therefore,
is been considered a data-set composed by 480 colluding
apps, where only 160 of they show the malicious action
with the SharedPreferences;

• the second data-set considered is DroidBench 2.04, an
open data-set to evaluate the effectiveness of taint-
analysis tools specifically for Android applications. In
this data-set there are no apps that collude, only some
use SharedPreferences;

• we have also a colluding data-set created by Swansea
University containing 14 applications, where there is only
a pair of different apps that colludes;

• have been taken a set of ”trusted” apps from Google Play
Store, divides by their size (from 500kb to 700kb) and a
set composed by ”trusted” apps taken from the web5.

B. Results

To measure the performance of the methodology we have
used the following metrics:

Precision (PR) = TP
TP+FP

Recall (RC) = TP
TP+FN

F −measure (Fm) = 2∗(PR∗RC)
PR+RC

Accuracy (AC) = TP+TN
TP+FN+TN+FP

where TP (True Positive) represents the number of colluding
apps couples identify correctly with the tool, TN (True Neg-
ative) represents the number of not colluding apps couples
identify correctly with the tool. FP (False Positive) represents
the number of not colluding couples that are identified from the
tool as colluding couples and FN (False Negative) represents
the number of colluding couples that are identified from the
tool as not colluding couples.

In Table II are showed the obtained results. We obtain an
interesting rate of precision and recall, furthermore during the

4https://github.com/secure-software-engineering/DroidBench
5http://www.freewarelovers.com/android/apps

colluding identification process we have an accuracy ranging
between 0.98 and 1.

The developed methodology is able to correctly identify all
the 80 couples of colluding applications showing the presence
of malicious behaviour using the SharedPreferences.

With the just described heuristic function, it is possible
to consider 6, 400 possible couples of different applications.
Without using the heuristic function, the theoretical number of
actual couples of apps is equal to the binomial coefficient, in
fact there are

(
320
2

)
possibility to choose a subset of 2 elements

from a set containing 320 elements.
Also about the analysis of trusted applications the method

achieves good results, giving for all trusted data-sets the
indication of not malicious apps.

IV. RELATED WORK

Nowadays the detection techniques generally used by com-
mercial and free antimalware software, focus the attention on
the analysis of one sample at a time, without consider the
communication channel exploited by two or more applications
to perpetrate a malicious behaviour. For this reason, the
research community is working to develop new methods for
the identification of malicious behavior linked to the use of
communication channels. These channels can be used from
different applications to communicate with another application
and this communication could be malicious, such as for the
colluding technique.

For instance, DroidSafe [12] is a tool that analyze static
information flow to report possible leaks of sensitive data in
Android applications. To develop DroidSafe has been used
Soot Java Analysis Framework and it works by analyzing one
app at a time, but the analysis of a single app does not permit
the detection of colluding attacks that are caused by two or
more apps.

TaintDroid [1] is an Android operating system extension
and tracks the flow of privacy sensitive data through third-
party applications. It assumes that downloaded third-party
applications are not trusted and monitors in realtime how these
applications access and manipulate users’ personal data.

IccTA [13] uses a static taint analysis technique to find
privacy leaks, e.g. paths from sensitive data (called sources) to
statements sending the data outside the app or device (called
sinks). This path may be within a single component or across
multiple components. The researchers have developed about
22 apps containing ICC-based privacy leaks to verify this
approach.

Epicc [14] identifies a specification for every ICC source
and sink. It works on the location of the ICC entry/exit point,
the ICC Intent action, data type and category, the ICC Intent
key/value types and the target component name. Epicc infers
all possible ICC values where they are not fixed, thereby
building a complete specification of the possible ways ICC can
be used. All the specifications are then recorded in a database
as flows detected by matching compatible specifications.

Another kind of colluding attack is about the covert channel.
Usually mobile communication systems use a single channel to



TABLE II
COLLUDING EVALUATION

Apps Theoretical Couples Effective Couples Colluding Couples TP TN FP FN PR RC Fm AC
773 298378 6668 81 80 298296 1 1 0.98 0.98 0.98 0.99

transmit the data, but the authors in [15] propose a multichan-
nel communication mechanism for mobile devices to secure
sensitive data transfer, called Multichannel Communication
System (MSYM). They use the VpnService interface provided
by Android platform to intercept the network data sent and
then split it into different parts that will be disordered and
encrypted via multiple transmission channels.

A new type of covert channel is represented by the ac-
celerometer sensor, able to generate signals that reflect the
users’ motions. As a matter of fact, a malicious application
can read this data, but if the device vibration motor is used
properly, is possible to encode stolen data, so an application
can produce effect on acceleration data to be received and
decoded by a second application. About that in [16] are been
implemented two Android apps (source and sink) and used
three different smartphones to verify this type of communica-
tion.

The approaches just discussed not consider the problem of a
large number of Android applications that need to be analyzed
to find colluding. Furthermore, they analyze only an app at
time without the possibility to localize the malicious payload
perpetrating the colluding attack, we instead present in this
paper an approach able to analyze more applications at time.

V. CONCLUSION AND FUTURE WORK

Collusion is an emerging type of attack afflicting mobile
environment, it is based on the communication between two
or more malicious applications.

The attack is performed by the collaboration of the appli-
cations: a single app is not able to performs the malicious
action by it-self, so the current antimalware cannot identify
these apps as dangerous whether analyzed separately. About
that, in this paper is showed a model checking-based method
to detect this threat in Android environment.

We presented a heuristic function to reduce the number
of apps to analyze, using the µ-calculus temporal logic.
Different real-world data-sets containing collusive applications
are considered, obtaining an accuracy equal to 0.99.

As future work, we plan to improve the method to ana-
lyze others app components extending the applications’ data-
set (for istance, Broadcast Receivers) currently exploited to
circumvent the current Android security model. Moreover,
We are working to permit to the proposed method to detect
collusion attacks requiring more thank two applications in
fact, on of the weakness of the proposed method is that is
able to test only two apps at a time for now. Furthermore we
are thinking a method to sanitize the infected apps (i.e., by
removing the actions involved in the colluding action).
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