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Abstract—Most companies exploit information systems to man-
age their business processes. Logs generated by such systems
might be used to automatically learn models of such processes,
e.g. for analysis and conformance checking purposes. Since logs
are often not generated specifically for this purpose, the reported
activities might be too fine-grained, leading to very complex and
incomprehensible (‘spaghetti’) models. Modularization is a way
to improve understandability and reusability of the models. This
work proposes an approach to automatically discover modules,
in the form of subprocesses, in unstructured processes, using the
WoMan framework. Experimental results on synthetic data and
models are promising.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

A process consists of agents carrying out tasks [1], [2].
An activity is the actual execution of a task by an agent.
A process execution, called a case, can be described as a
sequence of events (e.g., the start and end of the case, or of
activities in the case [2]), associated with steps (time points)
and collected in traces [3]. To manage their activities, most
companies exploit information systems that, while executing
cases of their business process, record the corresponding traces
in event logs. However, often these systems are not driven by,
or even aware of, the underlying intended process model. A
process model (or workflow) formally specifies a process. In
these environments, one might want to discover such models
(e.g., in order to analyze and improve them).

Process Discovery aims at automatically learning process
models from logs. The learned model should be complete1,
irredundant2, and minimal3. While a model’s accuracy is
proportional to completeness and irredundancy, minimality
pertains to effectiveness and efficiency. To help human un-
derstandability, process discovery techniques should provide
compact models. However, compactness may be affected by
the domain’s complexity. In these cases, producing event logs
or process models at an appropriate level of abstraction is of
utmost importance. Unfortunately, since logs are often not gen-
erated specifically for process discovery, the reported activities
might be too fine-grained. When used by most existing process

1Should account for all event sequences in the log.
2Should generate as few event sequences not in the log as possible.
3Should be as simple and compact as possible.

discovery techniques (e.g., [3]–[5]), that produce ‘flat’ models
(i.e., expressed in terms of the basic tasks found in the logs),
this leads to very complex and incomprehensible (‘spaghetti’)
models, which are of little value. In these cases, a possible
solution is to raise the abstraction level by modularization,
aimed at yielding more structured (‘lasagna-like’) models.

This paper focuses on modules in the form of subpro-
cesses. A subprocess is an encapsulation of activities rep-
resenting a coherent complex logical unit of work, having
its own attributes and goals, that contribute to achieve the
main goal. A single activity is its minimal expression [6].
Just like activities, subprocesses can be composed to obtain
a higher-level process by means of the usual control-flow
constructs [7]: sequence, if occurring one after the other;
choice (XOR or OR), if arranged as options in a decision
point; parallelism, if occurring simultaneously; iteration, if
repeated many times. A subprocess, being itself a process,
can be in turn decomposed into subprocesses, resulting in a
hierarchy where higher levels are more abstract and leaves are
atomic activities. More specifically, we investigate subprocess
discovery in unstructured processes, where a subprocess is
a frequent behavior which is common to ‘sufficiently many’
process executions (behavioral pattern [8]). Our proposal is
based on the WoMan [9] (Workflow Management) Process
Mining framework. We evaluate the proposed approach by
using a Ground Truth, to assess whether the framework can
provide valuable candidates subprocess.

Sections II and III report related works and the specific
framework adopted. Then, Section IV presents our proposal for
automated modularization. Section V reports the evaluation of
performance and draws some conclusion. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

Process models are usually expressed as graphs, where
vertexes represent tasks and edges causal connections among
tasks. Albeit several specialized formalisms have been pro-
posed in the literature, Petri Nets, and their restriction Work-
flow Nets (WF-nets, for short) [7], are classical representa-
tions used for process models. Declarative process mining
approaches [10] learn models expressed as a set of constraints,
rather than a monolithic model.
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While suitable for application to operational and well-
structured processes, process discovery techniques have
limitations when facing unstructured ones, often yielding
‘spaghetti’-like or complex process models. An event log may
contain different traces showing similar execution behaviors
(patterns), i.e., manifestations of larger subflows of activities.
The discovery of common patterns of activities in traces
(beyond the immediate succession relation), i.e. subprocesses,
can help in these cases. Only few approaches presented in
the literature to deal with this problem, perform subprocess
analysis. In the following we report all the works, to the
best of our knowledge, aimed at dealing with process model
complexity by finding subprocesses.

Trace cluster analysis has been exploited as a pre-processing
task. Groups of low-level events are clustered into high-level
events, or similar traces are clustered, in order to solve the
problem of unstructured processes. E.g., [11]–[13] tackle the
case in which the event log is not originated from a single
process, and use this approach to prevent mixing different
usage scenarios into one unstructured process. However, not
all types of data exhibit a cluster tendency.

Contrarily to trace clustering, model clustering is almost
new. To the best of our knowledge, only [14], [15] adopted
this approach. [14] mines a set of frequent patterns from a
collection of process models, suitably transformed into real-
valued vectors in order to apply an agglomerative clustering
algorithm. However, results are poor in trying to discover
similar subprocesses. [15] adopts a similar approach, using
a graph clustering technique. The main drawback of these
approaches is that process models are not always available
or already structured.

In [16], [17] authors proposed the discovery of hybrid
process models (procedural for structured, and declarative for
unstructured), meant as hierarchical ones. Each imprecise part
(subprocess) in the hierarchy is specified in a declarative
fashion. Experiments have shown that hybrid models can be
more precise (no over fit). A technique for discovering a
process-subprocess hierarchy from a log is presented in [18].
Given this hierarchy and the projected logs associated with
each node in the hierarchy, the parent process and subprocess
models are then discovered (using techniques for flat process
discovery) and analyzed (for boundary markers). They vali-
dated the models with a synthetic log and two real life logs,
showing that they are more precise and less complex than those
derived with flat process discovery techniques. [19] proposed
an approach to decompose process models by using abstrac-
tion criteria based on quantitative measures. Given a slider
threshold, all the elements below the threshold are filtered
out. The higher the threshold, the more compact the model.
An obvious limitation of this approach is that, to provide
effective threshold values, users should understand thoroughly
the process model. [20] proposed some guidelines for selecting
parts of process models for modularization. [21] proposed to
group low level events into higher level activities, i.e., events
abstraction, to be used to discover better (high quality) process
models. They aim to discover local process models and, then,

use these models to lift the event log to a higher level of
abstraction. In fact, preliminary results on different real-life
event logs have shown that fitness and precision scores are
more balanced. [22] proposed Post Sequential Patterns Mining
(PSPM) which takes as input patterns of sequences, discovered
by any sequential pattern mining algorithm, and merges them
in a single graph. Unfortunately, only sequence and choice,
not parallelism, are considered as constructs. Manifestations
of patterns (‘commonly used model constructs’) within a trace
or across traces have been explored in [23]. These patterns are
then used to pre-process (i.e., to abstract) the log. While for
sequential patterns the abstracted sequences must be equal, for
more complex constructs (parallelism or choice) they may be
just approximately similar. Results in the health care domain
are promising, reducing the spaghetti-ness of the mined mod-
els. The approach is suitable for hierarchical process mining
(as in [24]), trace clustering and fault diagnosis.

[6] proposed a method, based on trace alignment as defined
in [25], to segment aligned traces and form representative
groups of subprocesses. The authors create and exploit the
tree of building blocks, i.e., subprocesses, each represented
by its matrix of trace alignment. The process is decomposed
according to 4 constructs. This technique allows to detect
interesting patterns, which can be framed in different contexts,
providing a holistic view of the process. It also allows to
detect subprocesses and their dependencies which compose the
process. Authors in [26] proposed an extension to well-known
process mining techniques to handle multi-instantiation (MI)
of subprocesses, i.e., several instances of a subprocess being
executed concurrently, for both discovery and conformance
checking. It defined strategies to extract subprocess identifiers
and make them explicit in a pre-processing step. This step
allows to hierarchically discover process models with MI.
First, based on subprocess IDs, log splitting is performed,
obtaining a high-level (collapsed subprocess) and a low-level
(with explicit subprocesses) process. Then, standard process
discovery techniques can be separately applied for each trace.
In the end, process models are merged by replacing the
collapsed subprocesses in the high-level process with the
corresponding expanded subprocesses. While producing more
structured and accurate models than classical approaches, this
approach requires expert knowledge to annotate subprocesses
in the event log with identifiers. [8] takes into account event
logs in which parallelism is explicitly expressed (as in [9],
[27]) in order to represent traces in the form of instance
graphs on which (occurrence-based) frequent subgraph mining
techniques are applied to extract behavioral patterns. The
dataset of instance graphs undergoes a repair procedure with
respect to a process model (deleting superfluous relations, or
inserting missing ones). Then, hierarchical cluster analysis is
applied using SUBDUE (an inexact graph matching technique)
to extract a lattice of frequent substructures. The main draw-
back of this approach is that it cannot provide subprocesses
involving choices or loops.

Summing up, several techniques were developed to gain an
insight of less structured processes (where traditional methods



fail), and to extract sub-processes from them. Unfortunately,
some of them cannot deal with event logs where some frequent
patterns are surrounded by random events. A common issue
when dealing with complex sub-structures is that modules are
just approximations of the original fragments. Other works
reduce complexity without using subprocesses or requiring
many process models to start the discovery. A fair compar-
ison is actually infeasible, since the proposed methods either
require a completely different type of input (a collection of
graphs), or support only a part of the known constructs. Our
contribution is aimed at mining sub-processes, although being
approximations, involving all the constructs.

III. THE WOMAN FRAMEWORK

WoMan [9] is a Declarative Process Mining framework
that pervasively uses First-Order Logic (FOL) techniques and
representations for enhanced expressiveness (e.g., allowing
one to describe contextual information using relationships).
Experiments proved that its techniques can handle efficiently
and effectively very complex processes (involving a very large
number of tasks, high concurrency, duplicate and hidden activ-
ities, and short or nested loops). It is fully incremental: not only
can it refine an existing model according to new cases when-
ever they become available, it can even start learning from
an empty model and a single case, while other approaches
need a (large) number of cases to draw significant statistics
before learning starts. This allows continuous adaptation of
the learned model to the actual practice efficiently, effectively
and transparently to users [9].

WoMan’s input formalism allows traces to report both start
and end time of activities. So, parallelism can be inferred
by just evaluating the time span overlapping between activ-
ities. If activity start and end times are not available, activ-
ities are considered as instantaneous. It consists of 6-tuples
〈T,E,W,P,A,O[, R]〉 where T is the event timestamp, E is
the type of the event (one of ‘begin process’, ‘end process’,
‘begin activity’, or ‘end activity’), W is the name of the
reference workflow, P is the case identifier, A is the name
of the activity, and O is the progressive number of occurrence
of A in case P , and R (optional) is the agent performing A.

Each input trace is transformed into an internal representa-
tion formalism based on two predicates:
activity(S,A,R) :

activity A, performed by agent R, occurred at step S;
next(S’,S’’) :

step S′′ directly follows step S′.
Case representations are handled separately, so there is no need
to report the case identifier in these predicates.

Let C be a set of training cases to learn a process model.
WoMan’s output representation formalism specifies process
models mainly using two kinds of declarative constraints:
task(t,Ct) :

task t was observed in training cases Ct ⊆ C;
transition(I,O,p,Cp) :

transition p (often denoted p : I ⇒ O), observed in training

cases Cp ⊆ C, involves two multisets of tasks4, input tasks I =
[i1, . . . , in] and output tasks O = [o1, . . . , om]. It is enabled
if all tasks in I are running. It occurs when, after stopping
the execution of all tasks in I (in any order), the execution
of all tasks in O is started (again, in any order). A transition
is completed when the execution of all of its output tasks
terminates. For clarity, a model might involve both A ⇒ B
and B ⇒ A, each one carrying its own relative frequency
(which can be exploited for filtering strategies).

Transitions can be seen as ‘consumers’ of their input tasks,
and ‘producers’ of their output tasks. In this perspective, the
completion of an activity during a case can be seen as the
production of a resource that is supposed to be consumed
by some transition. WoMan tracks which transitions consume
resources produced by which transitions. This relationship is
expressed in the models using the following predicate:
transition_provider([p1, . . . , pn],p,q) :

transition p, involving input tasks I = [i1, . . . , in], is enabled
provided that each task ik ∈ I was produced as an output
of transition pk; several combinations of transition providers
can be allowed, numbered by progressive q. It partitions the
input multiset of a transition according to the producers of the
activities to be consumed.

Example. Consider a model including, among others, the
following transitions:
p1 : [x, y, z]⇒ [a, b]
p2 : [x, y]⇒ [a]
p3 : [x]⇒ [a, d]

and the following constraints related to those transitions:
transition_provider([p′, p′, p′′], p1, 1).
transition_provider([p′, p′′, p′′], p1, 2).
transition_provider([p′, p′′, p′], p1, 3).
transition_provider([p′, p′], p2, 1).
transition_provider([p′], p3, 1).

Suppose that the current set of activities to be consumed is
{x, y, z}, where x and z were produced by p′, and y was
produced by p′′. So, p1, p2 and p3 are enabled. If an activity
a is started, any of the above transitions might in principle
be the consumer. However, based on the consumer-producer
constraints, transition p2 is not a valid consumer, since it
requires that both x and y are produced by transition p′,
while in our case they were produced by transitions p′ and p′′,
respectively. Conversely, the third constraints for transition p1
is compliant with the available producers, which makes it an
eligible candidate. Also transition p3 is enabled.
transition_provider constraints allow us to map

each case to a graph where nodes represent transitions, and
directed edges connect producer-consumer transitions.

WoMan performs all classical process mining tasks. Pro-
cess model discovery is carried out by the learning module
WIND [9] (Workflow INDucer). It may also learn from
standard log formats for case representation, and import/export
workflow models from/into standard formalisms (Petri nets).
Module WEST [28] (Workflow Enactment Supervisor and

4I.e., several instances of a task can be running at the same time.



Trainer) performs conformance checking of an event log with
a process model. The learned models can be used for process
simulation by module SWAP (Simulate Workflow Arbitrary
Process), that runs a workflow and generates any of the
possible cases from which it was learned (see [9] for more
details).

IV. PROCESS MODEL MODULARIZATION FRAMEWORK

As said, WoMan assumes that parallelism among activities
in a case is explicitly represented in the event log. WoMan’s
internal representation of a case (in terms of activity/3
and next/2 predicates) can be represented as a labeled
Directed acyclic graph (DAG), where nodes represent time
steps, labeled with activities occurring at those time steps,
and edges represent the immediate succession relation be-
tween time steps. This representation is compliant with the
concept of instance graph in the literature, used to represent
a process case as a DAG [27]: edges outgoing from a node
indicate an and-split, and edges incoming to a node an and-
join. Instead of traditional instance graphs, we propose to
exploit higher level DAGs for subprocess mining in WoMan,
where nodes represent transitions and edges represent the
provider-consumer relation between transitions, expressed by
transition_provider constraints in Section III. The
main advantage is that, since transitions naturally express and-
splits/joins through their I and O sets, we don’t need to
explicitly represent them as edges. As explained in [29] (see
Prototyped Process Discovery section), we want to clarify that
each case trace can have just one possible DAG encoding (both
traditional and higher level). Conversely, each DAG may refer
to many different traces where only the execution order of the
concurrent activities varies.

Using this representation, the problem of finding common
patterns can be cast as a Frequent Subgraph Mining (FSM)
task, aimed at extracting all the subgraphs whose support
exceeds a given threshold in the training dataset. The extracted
subgraphs can be then grouped by similarity, using cluster
analysis techniques (similar subgraphs representing variants of
the same subprocess). In the following we describe in more
detail the processing steps for this approach.

A. Processing Pipeline

Given an event log L, we first learn the corresponding
process model M (including and-split/join constructs), to be
modularized, by running WoMan’s WIND module. Then, we
apply the following pipeline of steps (i.e., each step in the
pipeline takes the output of the previous step as input and
provides its output to the next one):

1) Transformation of L into a database D of graph
data objects. Each case trace t in the event log
L is expressed as an instance graph i based on
the next/2 and activity/3 predicates. Then, the
set of transition/4 atoms is extracted from i
by applying a procedure inspired to Algorithm 2
in [9], and the transition_provider/3 con-
straints for these atoms are computed. transition/4

and transition_provider/3 atoms represent, re-
spectively, the nodes and arcs of the high level DAG for
t. The declarative formalism is kept in each node. D is
the set of such DAGs.

2) Frequent Subgraph Mining (FSM) applied on D,
using a given support threshold, in order to obtain the
set S of subgraph patterns.

3) Repairing of each s ∈ S into a subgraph s′ that
has single source and sink nodes, as required by (sub-
)processes. Indeed, the FSM step may return subgraphs
with many source and/or sink nodes. If s does not have a
single source node and a single sink node, the repairing
procedure works by finding its ‘edge boundary’, ensur-
ing that s′ has single source and sink nodes. An edge
boundary of a graph s is a set of edges (representing
in turn a graph), having just one start and end point5.
So the procedure is aimed at reconstructing s by adding
missing edges needed to complete and lead it to have just
one terminal node, i.e., entry and exit point. Formally,
given the set of nodes S of s (graph to be repaired), and
the set of nodes T of all process cases (expressed as
graphs) from which s was mined, the aim is to extract
all those edges (u, v) needed to complete the graph, such
that u ∈ S and v ∈ T . Let us call S ′ the resulting set
of repaired patterns.

4) Cluster Analysis of S ′, to partition it into k groups, each
of which should contain semantically similar subgraphs,
i.e., given two subgraphs, the more different they are,
the less likely they represent the same subprocess. So,
subgraphs in a cluster are meant as variants of the same
subprocess. Note that, currently, we cannot guarantee
that clusters are non-overlapping (i.e., that they don’t
share transitions). Let us call C the resulting clustering.

5) Modularization, by transforming each c ∈ C into a
module (i.e., a subprocess model). Indeed, each cluster
contains a group of patterns that are variant executions of
the same subprocess, and so they should be generalized
into one sub-process model. We do this by extracting and
merging transitions and tasks (obtained from transitions)
from all subprocesses in c. Let us call M the set
of extracted subprocess models. As discussed in [15],
desirable features of a good clustering are: few and
big clusters, i.e., large coverage and good generality,
and minimal/no overlap, i.e., better defined concepts.
To pursue these objectives, only a subset M′ ⊆ M
of non-ovelapping modules is taken into account for
modularization, choosing those that do not overlap with
each other and that are optimal based on some criterion
defined over M (e.g., a subprocess minimizing the
Description Length of M ).

6) Abstraction of M . Each m ∈M′ abstracts a (different)
portion of M by just replacing the corresponding tasks
and transitions in M with a non-atomic task.

5It means that there exist just two nodes, in the graph, respectively with
in-degree and out-degree equals to 0.



B. Tools and Technologies

In our implementation of the above procedure, the Fre-
quent Subgraph Mining task was performed by the gSpan
algorithm [30], which has been proven to outperform other
state-of-the-art algorithms [31]. It is an exact search algorithm,
which means that a complete mining is performed, and it
makes use of a depth first search (DFS) with a pattern-growth
strategy. The aim of gSpan is to extract all the subgraphs in a
database occurring a number of times greater than a support
threshold δ. Since δ is domain-dependent, we will test different
thresholds.

For the Cluster Analysis step, we adopted two kinds of
algorithms:
• HAC (the Hierarchical Agglomerative Clustering) pro-

duces the dendrogram of the clusters. The criterion to
choose the pair of clusters to merge at each step is
based on Ward’s minimum variance method [32] (ob-
jective function). The optimal number k of clusters of
S is automatically determined by applying the elbow
method [33], which cuts-off the dendrogram. It gives us
a way to obtain an appropriate level of granularity for
process decomposition.

• DBSCAN (the Density-Based Spatial Clustering of Ap-
plications with noise [34]) is a non-parametric algorithm,
and one of the most common clustering algorithms.
The optimal number k of clusters of S is automatically
selected by choosing the one maximizing the average
silhouette (ranging between -1 and 1) over a range of
possible values of k.

For computing the pairwise distance between graphs, we
adopted a symbolic approach based on maximum common
subgraph [35] (MCS). [36] proved that the MCS distance
measure yields the best performance among the symbolic
graph measures proposed in the literature.

V. EXPERIMENTS

In the following experiment, we evaluate the pipeline up
to the Modularization task using a ground truth, in order
to assess whether it can be effective for the discovery of
subprocesses, i.e., suitable candidate modules. Then, applying
the Abstraction task is quite trivial after selecting the best
candidate modules.

A. Dataset and Ground Truth

We validated our approach by running it on a publicly
available benchmark dataset6 (as far as we know, the only
publicly available dataset with a ground truth) concerning a
large bank transfer process. Specifically, it describes a realistic
transaction process within a banking context. The dataset
provides both the original and the decomposed model, which
was used in [37] for decomposed conformance checking (of
course, this is applicable only if a modularized process model
is already available). To the best of our knowledge, it was not
used for subprocess discovery or process abstraction so far.

6https://doi.org/10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c

TABLE I
DATASET AND MODEL STATISTICS.

Cases Events Act Task Trans
all avg all avg all avg all avg

2000 262960 131.48 129480 64.74 113 0.06 108 0.05

The process involves all monetary checks, authority notifica-
tions, and logging mechanisms compliant with the new degree
of responsibility and accountability that current economic
environments demand. Fig. 1 shows the high-level overview
of the complete process, composed by 8 subprocesses. The
process is structured as follows: it starts with a request for
a new transaction, opening a new instance in the system and
registering all the components involved (ORT for short). The
second step is checking the person (or entity) originating
the monetary transaction (CS). Then, the actual payment is
processed differently, depending on whether it is in cash
(PCaP), cheque (PChP) or eletronic form (PEP). Later,
the receiver is checked (CR) and the money is transferred
(TM). Finally, the process ends by recording the transaction
information, notifying it to the required actors and authorities,
and emitting the corresponding receipt (NCT). The process
is characterized by a peculiar mix of features, in addition to
parallelism (involving up to 3 activities), such as some short
loops and optional activities.

First of all, using WoMan’s import functionalities, we
translated the original event log (stored in the XES7 standard
format), including 2000 traces8, into WoMan’s input formal-
ism, and the complete model (i.e., the low-level Petri Nets
shown in Fig. 29) into WoMan’s process model formalism
(expressed in terms of transition/4 atoms).

Table I reports statistics on the experimental dataset: on
both the event log (number of cases and number of events
and activities) and the imported process model (number of
tasks and transitions), also on average per case. The number
of events is in the hundreds thousands, and more than twice
the number of activities (since each activity is associated to
two events —start and end—, plus the start and end of cases).
Other sources of complexity are a large number of tasks, and
a large number of activities per case (about 64). However,
WoMan has already been able to deal with these kinds of
complexity. The number of transitions is comparable to the
number of tasks, denoting low variety of combinations. The
average number of tasks and transitions per case is very low
(also due to the large number of activities per case), so we
expect little variability between cases.

B. Evaluation

We evaluated quantitatively the applicability of a part
of the framework’s pipeline on a flattened process model,

7http://www.xes-standard.org/
8All having the start and the completion time for each activity (to compute

the temporal overlap).
9By Munoz-Gama, J. from https://data.4tu.nl/repository/uuid:c1d1fdbb-

72df-470d-9315-d6f97e1d7c7c



Fig. 1. High-level overview of the running example process, structured in subprocesses.

Fig. 2. Low-level overview of the running example process.

in order to obtain a subprocess decomposition. We exper-
imented several support threshold values ({100, 300, 500,
700, 900}) for the gSpan algorithm. So, in this experi-
mental setting we present performance for threshold values
δ = {100, 200, 300, 400, 500}. We purport to assess how the
framework behaves as long as more frequent, but also less (in
terms of number), patterns are required. Concerning cluster
analysis algorithms, we adopted DBSCAN and HAC (denoted,
respectively, by DB and H for the sake of compactness).
Thence, the number of different setting combinations is 10
(5 thresholds for 2 algorithms).

Inspired by the overlap-based most relevant match pre-
sented in [38], we evaluated the goodness of our approach
by comparing the structure of a gold standard subprocess
with each mined (automatically retrieved) subprocess, and
choosing as the ‘most relevant’ the one that reported the
highest overlapping. Since the problem we tackled is one-
shot, the evaluation does not involve any statistical inference.
The overlap was measured by adopting the FOL similarity
framework proposed in [39] to the graphs expressed using
transition/4 and transition_provider/3 atoms.

This ensures that not only the activities, but also the flow is
the same in the compared graphs. In practical applications,
where no golden standard will be available, the best candidate
modules will have to be selected based on the state-of-the-
art measures: completeness (or coverage), representativeness,
frequency, and diversity.

A subprocess can be represented as the set of nodes it con-
tains. While an automatically retrieved subprocess might not
have some relevant nodes (w.r.t. the gold standard subprocess),
one can consider to not reject it. For example, let us suppose
that the node set {a, b, c, d, e} is a target subprocess. If the set
{a, b, c, d} is mined, while not being a perfect match, it still
provides useful information to the process analyst. Indeed, the
subprocess can be manually examined and adjusted, instead
of rejecting it and not having any information at all.

Table II reports the various settings (Settings) on the row
headings, and corresponding performance and measures on
the columns. Columns Subprocesses report the number of
discovered clusters (column #c) with the relative silhouette
score (Sil). In the following columns, for each gold standard
subprocess, the overlap ratio between its most similar mined



Fig. 3. Mined version of the NCT subprocess.

one (sim), and the average overlap ratio between discarded
mined subprocesses, are reported. An empty field means that
no discovered subprocess could be assigned to that gold
standard (especially when #c is lower than 8). Merged cells
mean that one discovered subprocess was big enough to
overlap different gold standard subprocesses.

First note that the gold standard subprocess ORT (the first
one) was never discovered with support δ < 500. Basically,
its small size (it is the smallest one) caused its incorporation
within CS, which is its immediate successor. This issue might
be solved by a further decomposition. As a consequence,
no mined subprocess was able to suitably cover CS (the
best similarity is 56.3%), because when discovered, it often
involved its predecessor ORT too. The most challenging high-
level construct in the gold standard process model is the OR-
split/join between PCaP, PChP and PEP. Table II shows that it
was discovered only by strategies with a low support threshold
(100 for DB and H). In fact, the more frequent patterns
required, the less likely that all OR construct alternatives are
extracted. PCaP was the most frequent subprocess among OR-
join alternatives, simply because almost all strategies produced
it (except for support 900); its similarity values for the various
strategies range between 62.5% and 75.2%, which are very
good, considering the challenging task. Similarity values for
PChP and PEP, when discovered, ranged between 62.1% and
70.5%. The last subprocesses sequence (CR, TM and NCT)
were (almost) always discovered. Specifically, the sim values
for CR and TM were, on average, above 60%. As regards
NCT, its similarity value decreases from 80.2% to 70% as
long as the support value δ was increased. It is noteworthy
the framework was always able to find a consistent ending
block for the mined subprocesses.

Looking at the silhouette values, clustering algorithms al-
ways produced a positive score. Strategy (H, δ = 100), in
bold in Table II, yielded the highest silhouette score (0.40).
It also covers the largest number of subprocesses (7 out of 8)
compared to other settings, with #c = 16. Overall, we consider
this strategy to be the best one, representing a good trade-off
among all values and modules. Accordingly, Figure 3 shows
an example10 of a mined subprocess (NCT), in both WoMan
and Petri formalism, that reported the highest sim value for

10Due to space limitations we can not show all subprocesses.

(H, δ = 100)11. It is outstanding that its structure is almost
compliant (80.2%) with the gold standard one except for two
activities (FIT and FTT). It is also interesting to note that
HAC, with a suitable cut-off method (e.g., the elbow one), is
able to provide a number of clusters reflecting more closely
the actual number of gold standard subprocesses than the
DBSCAN algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

The activity logs generated by most information systems
might be used to automatically learn models of business
processes, to be used for analysis and conformance checking.
The reported activities might be too fine-grained, leading to
complex and incomprehensible (‘spaghetti’) models. In this
work we proposed an approach to modularize process models
by automatically discovering modules, in the form of subpro-
cesses, in the context of unstructured processes. Modulariza-
tion is a possible solution to improve understandability and
reusability of the models. Experimental results on synthetic
data and models confirmed that the approach is viable.

One future work direction concerns the use of other overlap-
ping assessment strategies (e.g., normalized similarity/distance
scores based on the Maximum-Common-Subgraph distance,
used for sub-graph clustering). Also, we will investigate non-
overlapping discovery for specific clusters of subgraphs, in
order to better decompose the workflow and to accomplish the
modularization step. Besides, a criterion to select the potential
module, among the candidates, will be investigated.
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