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Abstract—Belt Conveyors are the main class of machinery that
compose the logistics of a port terminal. The rolling components
of the conveyor may fail mainly due to damaged idlers, which may
cause a severe industrial breakdown. Nowadays, the equipment
protection is done by a set of sensors that indicate an already
existing abnormality or by personal inspection, applying practical
experience in the search of visual, sound, or temperature signa-
tures of imminent failure. Aiming to upgrade from the current
corrective system to the predictive domain, a model for early
failure detection on the conveyor’s idlers is proposed. Ultrasound
recordings were conducted on idlers that did not present any
perceptible abnormalities, labeled as non-defective, and on idlers
that displayed typical failure noise, labeled as defectives. The
dataset collected was used for the training and testing of Random
Forest and Multilayer Perceptron machine learning algorithms.
Four types of experiments were devised to test the methodology,
two of them using time-domain data, and two of them using
frequency domain data, with different statistical attributes. The
results achieved in various classification experiments showed that
there is a distinctive pattern on the ultrasound spectrum that
differs non-defective from defective idlers, as pre-evaluated by
traditional methods of human inspection. In the best case, the
experiment that used a moving average on the frequency domain
data presented an average of 83.68% of correctly classified idlers,
obtaining as best result accuracy of 89.47%.

I. INTRODUCTION

Belt Conveyors (BC) systems are the leading logistics
machinery on a mining port terminal. This equipment con-
tinuously handles the unloaded bulk material for stacking
in the stockyards and subsequent reclaiming, transportation,
and shipping. Port production highly depends on the proper
operation of such equipment.

The typical Belt Conveyor structure comprises a tensioned
rubber belt directly supported by rollers and pulleys typically
driven by electric motors. A frame holds one central and
two angled rollers that are commonly installed each 1 m
of conveyor section. A counterweight system stretches the
belt and absorbs operational load variation, keeping the belt
continuously in contact with the rollers. After passing by an
end-pulley, the top belt section returns to the initial position
by the structure inferior part, being supported by large rollers.
Fig. 1(a) presents the scheme of a common BC structure, while
Fig. 1(b) displays its cross-section.

The major rolling parts failure comes from damaged bear-
ing, lack of lubricant fluid, dirt incursion, or manufacturing
faults [3], [4]. It is estimated that 43% of bearing failures
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Fig. 1. (a) Simplified scheme of a Belt Conveyor, adapted from [1]. (b)
Conveyor cross section, with carry-side and return idlers, adapted from [2].

are due to moisture or other contaminants caused by faulty
sealings [5]. Failures on this component commonly block the
roller, which leads primarily to an over power consumption
due to motion resistance [6]. Furthermore, an obstructed roll
may heat up given the belt friction, reaching up to 400oC [6].
Such a situation presents high damage potential as the heat
may cause a fire in the surrounding structures.

Techniques that use the acoustic signal for machinery failure
detection in the industry are successfully applied in [7], [8].
This sensing method emulates specialized human hearing,
providing continuous monitoring, and automatic diagnostics

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



possibility. Acoustic Emission (AE) techniques base on direct
sound capture and are complementary to traditional vibration
and temperature measurements. Data collection can be per-
formed by local sensors with communication capabilities, or
by the self-contained microphones passing by the conveyor
side.

Aiming to improve belt conveyor inspection techniques, we
address the rollers’ structural health monitoring problem using
ultrasound signals. We recorded ultrasound data from rollers of
an active conveyor at the Ponta da Madeira Mining Port using
an Ultraprobe 10000 sensor, labeling them as non-defective
idler (NDI) and defective idler (DI). BC specialists provided
the roll health status considering its visual and operational
aspects, abnormal vibration, eccentric rotation, noise emission,
sealing lack, oxidation, and elongated roll extremities. We
propose and evaluate different data structures (features) used
as inputs of machine learning algorithms. The ultrasound
sensing along the Belt Conveyor, combined with Artificial
Intelligence techniques and signal pattern recognition is a
potential method to enable early failure detection of belt
conveyor idlers.

The remainder of this work is as follows: Section II re-
views the related literature, presenting smart structural health
monitoring and failure detection concepts. Section III briefly
presents the employed machine learning techniques. Sec-
tion IV describes the proposed methodology, detailing the
data collection and the developed feature extraction types.
Section V presents results and discussions. We finish the
document presenting the conclusions and pointing potential
future work.

II. RELATED WORK

Several works cope with intelligent inspection and failure
detection. The most common signals type are vibration, acous-
tic emission, temperature, ultrasound and mechanical stress
analysis. We focused on related works dealing with indus-
trial equipment monitoring and diagnostics of rotating parts
using sound. Prior works are grouped in two categories: (i)
theoretical, proposing methods for using intelligent monitoring
in large mechanical equipment; (ii) restricted to laboratories,
performing tests under ideal conditions. One of the contribu-
tions of this paper is to apply the theoretical ground of prior
research on working equipment on an industrial plant. Thus,
we evaluate the applicability of such methods in real-world
conditions.

Arredondo et al. [9] developed a methodology for fault
detection in induction motors using sound and vibration sig-
nals. The failure types analyzed were of mechanical nature,
like bearing failure, mechanical unbalance and broken rotor
bars. Microphones recorded the sound emitted by running
engines. Faulty motors presented high-intensity sound in
specific frequencies, which they suggest as specific failure
indication. Healthy motors did not present intensity peak
at similar frequencies, suggesting that failure detection via
sound emissions is viable. Marquez and collaborators [10]
presented a general state-of-the-art review of signal processing

techniques and methods applied in wind turbines condition
monitoring. Acoustic emission is one of the most promising
signals noted in the authors’ research for fault diagnosis in
bearings, gears, rotors, and blades.

Kim et al. [11] compared ultrasound and vibration for health
monitoring of bearings. They highlights that one ultrasound
advantage is it adequate detection related to signal-to-noise
relation. A laboratory test rig allowed to capture signals
from good and faulty bearing, both in time and frequency
domains, using different statistical methods for evaluation.
Results indicated that faulty bearings present distinctive ultra-
sound characteristics in relation to non-faulty ones, and that
ultrasound is more effective in failure detection than vibration
signals, suggesting its potential use for automatic diagnosis.

Tchakoua et al. [12] present a review of health monitoring
of wind turbines. Acoustic emission is considered suitable
for failure detection in gearboxes, bearings, shaft, and blades.
They point out that as advantages, ultrasound measurements
have a larger frequency range and relatively higher signal-to-
noise ratio. The main drawbacks are the need to be close to
the sound source – ultrasounds waves have a higher dissipation
rate on thin air when compared to sound waves – and only a
few types of fault are present in the high-frequency range.

Kedadouche, Thomas and Tahan [13] applied Empirical
Mode Decomposition for early failure detection in mechanical
components, like bearings and gears. This technique decom-
poses the original time series signal into intrinsic mode func-
tions. Statistical descriptors were calculated for each signal
decomposition (rms, crest factor, kurtosis e skewness) and
their efficiency in early failure detection was compared. The
authors concluded that the decomposed signal is more sensitive
to bearing failures than the original non-decomposed signal.
Experiments performed on a test bench detected a damaged
bearing of 40 microns in size, with further tests planned to
evaluate several defects of different sizes to explore the full
potential of ultrasound condition monitoring.

The related work researched showed that sound data emitted
from mechanical equipment is an efficient way of detecting
abnormalities and diagnosing their operational condition. They
also may provide meaningful information that can feed an
automatic fault detection system. Moreover, ultrasound signal
is less susceptible to noise and can provide more predictive
insights.

III. MACHINE LEARNING OVERVIEW

To solve increasingly complex problems with a large
amount of data, recent computer algorithms developments
focus on biological systems and natural intelligence emulation.
According to Engelbretch [14], such systems form part of the
Artificial Intelligence (AI) field, composed by logic, deductive
reasoning, expert systems, case-based reasoning, and machine
learning. According to AI definitions gathered by Russell
and Novig [15], they vary along two main dimensions: (i)
thought processes and (ii) behavior processes. Some defini-
tions measure success in terms of human performance and
others measure success as an ideal concept of intelligence



(rationality). This provides four possible goals to pursue in
AI methods: systems that think like humans; systems that
think rationally; systems that act like humans; and systems that
act rationally. The human-centered approach is an empirical
science, involving hypothesis and experimental confirmation,
while the rationalist approach involves mathematics and engi-
neering.

Machine Learning (ML) is a subset of AI that has self-
learning as a key feature. It applies statistical modeling
to detect patterns and enhance performance based on data.
Mitchell [16] defined: “a computer program is said to learn
from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E”. In ML, data is
commonly divided into the training and the testing sets. The
training dataset provides information for fitting the model.
The model thus can be tested with a non-seen dataset (test
set). The resulting model can then perform pattern recognition,
classification tasks and decision making tasks [17], [18]. We
used a supervised learning method in this work. In this branch,
one feeds the model with data with various features and the
output data correct label. The algorithm then identifies patterns
and creates a model that tries to generalize the obtained rules
with new data.

Intelligent monitoring applications can also be found in
other domains, like in aviation [19]. For transportation sys-
tems, Torres and colleagues [20] present an evaluation of
machine learning models to avoid texting while driving. Fer-
nandes and colleagues [21] present an ensemble of convo-
lutional neural networks to deal with unbalanced datasets in
an inspection directed to train wagons. Intelligent industrial
monitoring can also be performed by mobile devices, like
robots or drones. Garcia and colleagues [22] present the
robot ROSI, a robotic device for belt conveyor inspection.
Merriaux et al. [23] introduce the robot VIKING, aiming
to perform industrial inspections autonomously. Tanaka and
collaborators [24] present a robotic device for inspection, but
they deploy an articulated mobile robot as a snake.

Random Forests (RF) are algorithms that create a decision
tree combination. A decision tree is a set of decision-making
steps that has two possible outcomes: true or false. As the
questions are answered, the algorithm goes through the de-
cision tree towards a classification or prevision. The trees
are combined with each other to achieve better performance.
RF prevents overfitting and efficient with a large amount of
data [25], [26]. During the training stage, a supervised model
learns to relate data (features) desired results for the algorithm
to predict (target). The decision trees learn to calculate the
best questions to use the features that were fed to them, to
perform the best possible predictions. RF algorithms form
a combination of decisions made by several trees, each tree
of the forest initiating a random set of features and using a
random set of data for the training stage, enhancing diversity
with the best prevision rates achieved by all the randomly
assembled trees [27].

Artificial Neural Networks (ANN) comprise several acti-

vation nodes (neurons) with different weights grouped in (at
least) three layers: the input layer, the hidden layer(s), and the
output layer. The neurons inter-connections are inspired by
brain functioning. As mentioned by Boutaba et al. [28] and
Zhang et al. [29], the Multi Layer Perceptron (MLP) method
exhibit features such as the ability to learn complex patterns
of data and generalize learned information. The MLP learning
process is subdivided in three parts: stimulation by example;
iterative weights update to minimize output error; and response
in a new way as result of changes previously occurred [30],
[31].

Machine learning is an AI field used on classification tasks,
which are an integral part of this work. Neural networks, such
as MLP, commonly learn patterns using complex data. On
its turn, RF are more adequate for larger datasets, presenting
better generalization and capacity to identify more important
variables for the classification. We used classification algo-
rithms to learn patterns in the ultrasound recordings of healthy
and defective rollers and generalize to non-seen components.

IV. METHODOLOGY

This section describes the proposed methodology. The steps
followed are (1) ultrasound recording of operational rollers
on industrial site, (2) pre-processing of the audio files in
time domain and frequency domains (using the Fast Fourier
Transform – FFT algorithm), (3) data samples grouping, (4)
extraction of features, (5) sample labeling as non-defective or
defective idler, (6) training and evaluation of machine learning
algorithms (Random Forest and Multilayer Perceptron) using
the dataset, test and performance evaluation of the classifier
by labeling of new data. We represent the sound signal using
a waveform as a function of time. This waveform represents
the intensity of the sound at each time instant. The Fourier
Transform (FT) decomposes time waveforms as a sum of
sinusoids of different frequencies.

FFT is an algorithm that applies the Fourier Transform as a
discrete domain. Discrete Fourier Transforms (DFT) are useful
as they reveal periodicities in the input data as well as the rel-
ative intensity of the periodic components. FFT is an efficient
algorithm for DFT computing. The number of computations
required in performing the DFT was dramatically reduced by
the FFT algorithm (the number of computations required for
N points is reduced from the order of N2 to NlogN [32]).

A. Data collectionn

We recorded ultrasound from rollers during plant operation
using an acoustic detector, used for predictive inspection in the
Ponta da Madeira Mining Port located at São Luı́s, Maranhão,
Brazil (2o33’16.6”S, 44o21’24.4”W). The ultrasonic sensor
is the Ultraprobe 10000 (as shown in Fig. 2(a) from UE
Systems Inc., which is used in the terminal for monitoring the
electrical power transmission grid. This sensor captures sound
in the lower ultrasonic spectrum (from 20kHz to 100kHz)
and has a data recording software that can export the data
as waveform audio format (wave) files. The Ultraprobe uses
a signal processing technique, known as Heterodyning, to



(a) Ultrasonic sensor Ultraprobe 10000 (UE Sys-
tems Inc.)..

(b) Ultrasound recording of a con-
veyor idler in the MTPM.

(c) TR-315K-09, one of the BC
accessed for ultrasound data acqui-
sition.

Fig. 2. Environment of the data acquisition.

map the high-frequency acoustic signal to the human-hearing
range. The experienced human operator listens to patters in
the transduced signal in search of defective idlers.

The recording was made by positioning the sensor close
to the idler bearings, as recommended by the Ultraprobe
manufacturer, during the conveyor operation (as showed on
Fig. 2(b). The equipment noise sensitivity was set to minimize
the external noise interference of other nearby equipment.
Fig. 2(c) exhibits the Belt Conveyor structure in the TMPM
port, accessed for ultrasound data acquisition. The goal was to
create an ultrasound recordings dataset of idlers that did not
exhibit any functioning abnormalities noticeable by the human
senses (labeled as non-defective idlers – NDI), and recordings
of idlers that exhibit noticeable abnormalities (through visual
and auditive inspection, labeled as defective idlers – DI). The
patterns perceived in these two conditions were used to train a
set of classifier algorithms that had their performance further
evaluated.

B. Pre-processing of the audio files

We recorded ten time-series in non-defective idlers and ten
recordings for the defective ones. Each recording lasted for
approximately 20 seconds. For each recording, two basic pre-
processing steps were performed: (1) data acquisition in the
time domain and (2) transformation to the frequency domain.

For the time domain data acquisition, each file was transformed
as a sound amplitude data vector normalized between -1 and 1.
The sampling rate was 16000 values for each audio recording
second. Later, for each experiment, these vectors were divided
into smaller parts to increase the number of samples.

A typical time-domain curve for a non-defective idler is
shown in Fig. 3(a). Each second in the graph contains 16000
amplitude values normalized between -1 and 1. A curve
displaying a defective idler pattern is shown in Fig. 3(b).
For the frequency domain data transformation, on each FFT
file, we applied with 4096 frequency range sections. Later,
these frequency values would be divided in smaller intervals to
form the testing dataset samples. A typical frequency domain
curve for a non-defective idler is shown in Fig. 3(c). A curve
displaying a defective idler pattern is shown in Fig. 3(d).

C. Investigated models of feature extraction

We devised four different feature extraction models with
different sampling and characteristics. The proposed models
are as follows:

Experiment 1: Half second sampling attribute vector in
time domain; In E1, for each half second sample from the
audio file, we computed the following statistical moments:
mean, median and standard deviation of 8000 sound amplitude
values. Along with these three values, each vector was labeled
as NDI or DI regarding the type of idler. Thus, a dataset
was assembled with 378 half-second samples labeled as NDI
and 390 half-second samples labeled as DI. Each half-second
resulted in three attribute and one label vector: mean, median
and standard deviation and the label NDI or DI.

Experiment 2: One-second sampling attribute vector in
time domain; In E2, for each one-second sample from an
audio file, the following statistical moments were calculated:
mean, median and standard deviation of every quarter of a
second. A vector was thus assembled with 12 sound amplitude
values (four mean values, four median values and four standard
deviation values). Along with these twelve values, each vector
was labeled as NDI or DI regarding the type of idler. Each
second resulted in a twelve attribute and one label vector: 4
mean values, 4 median values and 4 standard deviation values
and the label NDI or DI.

Experiment 3: FFT of a complete audio file divided into
40 parts; In E3, for each audio file, we computed the FFT
with 4096 frequency ranges, spanning from 0 to 8000Hz. Each
FFT was divided in 40 parts, composed by 102 frequency
values each. For each part, the following statistical values
were calculated: mean, median and standard deviation. Thus,
a dataset was assembled with 400 samples labeled as NDI and
400 samples labeled as DI. Each one of the 40 parts of a FFT
resulted in a three attribute and one label vector: mean, median
and standard deviation and the label NDI or DI.

Experiment 4: Moving mean of the FFT of a 5 second
sample; In E4, for each 5 second recording the FFT was
computed, with 4096 frequency values ranging from 0 to
8000Hz. Each FFT was divided in 40 parts, composed by
102 frequency values each. For each part, the mean frequency



(a) Amplitude by time of a non-defective idler. (b) Amplitude by time of a defective idler.

(c) Magnitude by frequency the non-defective idler shown in (a). (d) Magnitude by frequency the defective idler shown in (b).

Fig. 3. Data in time domain and frequency domain of defective and non-defective idlers.

value was calculated. This generated a 40-attribute vector
representing the moving mean for each 5 second sample. Thus,
a dataset was assembled with 40 samples labeled as NDI and
40 samples labeled as DI.

D. Training and evaluation test of the classifier

We used the total number of samples classified as NDI and
DI in the training step of a RF and MLP machine learning
algorithms to achieve diversity in the classification task and
enable means of comparison between then. The complete
dataset was deployed to run the RF and MLP classifiers
using the machine learning collection Waikato Environment
for Knowledge Analysis (WEKA) [33]. The experiments took
place with ten-fold cross-validation.

Each experiment initiated with 10 different seed values
(starting conditions) for comparison effects. Each experiment
carried out the following RF and MLP configurations: RF
with 10 trees (RF10), RF with 50 trees (RF50), RF with 100
trees (RF100), MLP with one 5-neuron layer (MLP5), MLP
with one 10-neuron layer (MLP10), MLP with two 5-neuron
layers each (MLP5x5) and MLP with two 10-neuron layers
each (MLP10x10). Boxplots were assembled with the correct
classification (hit) rate achieved by each experiment.

V. RESULTS

A. Investigation with ML using time domain data

Experiments 1 and 2 take into account time-domain data.
Experiments 3 and 4 take into account frequency domain data,
by means of the FFT algorithm applied on the time domain
data. For each different experiment (different input features)
we run RFs in the following configurations: 10, 50 e 100 trees,

and MLPs with the following configurations: one layer of 5
and 10 neurons, and two layers with 5 and 10 neurons each.
Each experiment was run 10 times with different seed values.
Ten-fold cross-validation was applied.

The first experiment (E1) was performed employing half-
second samples extracted from the 20 idler recordings. The
best result for the RF was achieved with the RF with 100 trees;
the RF100 algorithm presented 74.21% of correctly classified
instances. Of the 378 non-defective idlers, 295 were correctly
labeled while 83 were mistakenly classified as defective. Of
the 390 defective idlers, 275 were correctly labeled while 115
were mistakenly classified as non-defective. In E1, the MLP
presented inferior classification results in comparison with the
RF algorithms. Results are presented in Fig. 4(a).

We carried out a statistical evaluation upon the results
presented in Fig. 4(a) aiming to evaluate the behavior of the
methods. We employ the Shapiro-Wilk normality test to verify
the adequacy of the results to parametric or non-parametric
distributions. For all sets in E1, results presented p-values
larger than 0.01. In this case, we can consider that, with 99%
of confidence, the results fit normal distributions and a t-test
(Welch Two Sample) can be employed. In E1, the best result
was found using RF100. The comparison of the RF100 with
the others showed that RF100 is equivalent to RF50 (Welch
Two Sample t-test p-value 0.018). In this case, we can consider
that, with 99% of confidence, the results of RF100 and RF50
are equivalent in E1. All other comparisons showed p-values
lower than 0.01.

The second experiment (E2) was performed employing one-
second samples with a 12-attribute vector with means, medians
and standard deviations extracted from the 20 recordings.



(a) Experiment 1. (b) Experiment 2.

(c) Experiment 3. (d) Experiment 4.

Fig. 4. Accuracy for the different ML algorithms and different feature extraction models (Experiments E1 to E4).

The best result was achieved by the RF100 algorithm, which
produced 75.12% of correctly classified instances when ap-
plied with cross-validation. By observing Fig. 4(b) one can
notice that MLP presented a significantly inferior output. The
two-layer MLP neural networks (MLP5x5 and MLP10x10)
presented, in the worsts cases, 59.29% of correctly classified
instances.

We also carried out a statistical evaluation upon the results
presented in E2 (Fig. 4(b)) aiming to evaluate the behavior
of the methods. For all sets in E2, results presented p-values
larger than 0.01. In this case, we can consider that, with 99%
of confidence, the results fit normal distributions and a t-test
(Welch Two Sample) can be employed. In E2, the best result
was found also using RF100. The comparison of the RF100
with the others showed that RF100 is equivalent to RF50
(Welch Two Sample t-test p-value 0.209). In this case, we can
consider that, with 99% of confidence, the results of RF100
and RF50 are equivalent in E2. All other comparisons showed
p-values lower than 0.01.

B. Investigation with ML using frequency domain data

Experiment 3 employed FFT with a 3-attribute vector. It
was performed on the samples extracted from the FFT applied
in each of the 20 recordings divided into 40 parts. This
way of sampling presented the worst results amongst the 4
experiments, as shown in Fig. 4(c). The RF algorithm has
shown inferior results in relation to Experiments 1, 2 and
4, with 66.50% as the best accuracy in the 50 and 100 tree
configurations, while the MLP presented as a worst result a
47.50% rate in the two-layer configurations.

We also carried out a statistical evaluation upon the results
presented in E3 (Fig. 4(c)) aiming to evaluate the behavior
of the methods. For all sets in E3, results presented p-values
larger than 0.01. In this case, we can consider that, with 99%
of confidence, the results fit normal distributions and a t-test
(Welch Two Sample) can be employed. In E3, the best result
was found also using RF100. The comparison of the RF100
with the others showed that RF100 is equivalent to RF50
(Welch Two Sample t-test p-value 0.730). In this case, we can
consider that, with 99% of confidence, the results of RF100
and RF50 are equivalent in E3. All other comparisons showed



p-values lower than 0.01.
The way data was treated in E3 presented the worst results

amongst the 4 experiments, as shown in Fig. 4. Also, we can
see that, for E1 to E3, best results were found using RF with
100 trees, and the results are equivalent to the use of 50 trees.

Experiment 4 was performed with samples extracted from
the FFT applied in each 5 seconds of the 20 recordings divided
in 40 parts. This way of sampling presented the best results
amongst the 4 experiments, as shown in Fig. 4(d). The best
result was achieved by the MLP10, which in one case attained
89.47% of correctly classified instances.

We also carried out a statistical evaluation upon the results
presented in E4 (Fig. 4(d)) aiming to evaluate the behavior
of the methods. For all sets in E4, results presented p-values
larger than 0.01. In this case, we can consider that, with 99%
of confidence, the results fit normal distributions and a t-test
(Welch Two Sample) can be employed. The only exception is
the set MLP10x10 that showed a p-value lower than 0.000 and
should be considered as a non-parametric distribution, in this
case, a comparison using the Wilcoxon rank-sum test should
be employed.

Best results among all were found in E4. In this experiment,
the best result was found with the MLP10. We compared its
results with other sets (RF10, RF50, RF100, MLP5, MLP5x5,
MLP10x10). The comparison showed that all sets can be con-
sidered equivalent to 99% of confidence. The only exception
is the comparisons of MLP10 with MLP10x10 that showed a
p-value of 0.002 (Wilcoxon rank-sum test). Hence, both RF10,
RF50, RF100, MLP5, MLP5x5, and MLP10 can be considered
as equivalent for E4. The only MLP10x10 is not equivalent
and presented the worst results, it might have happened due
to overfitting.

Results of Experiment 4 emphasizes that, for the acquired
data, both the modeling, the pre-processing methods and
attribute definition are substantial.

The results achieved by this work were satisfactory in
detecting the abnormalities previously perceived by human
inspection. Related work in the field of failure detection
by acoustic sensing was applied under controlled laboratory
conditions with known defects; therefore, this work contributes
to the application of the acoustic methodology in operational
equipment on an industrial site.

VI. CONCLUSION AND FUTURE WORK

This work presented a methodology to early failure detec-
tion on belt conveyor idlers. Four types of experiments were
devised (with time domain and frequency domain data with
different attributes vectors) in order to evaluate which pre-
processing and feature extraction methods are more efficient
in achieving better classification results.

The results showed that the performance of the detection
depends on the different data structures we employ as input of
the classifier. Experiments 1 and 2 used time-domain data. The
best case for Experiment 1 presented an accuracy of 74.22%.
The best case for Experiment 2 showed an accuracy of 75.13%.
The worst general results were achieved by Experiment 3,

which employs the same attribute vector as Experiment 1 but
using frequency domain data. The accuracy for the best case
was 66.50%, with an average of 65.65%. The best general
results were achieved by Experiment 4, which deploys a
more detailed attribute vector in the frequency domain using
a moving average with 40 values. For Experiment 4, most
learning methods surpassed the accuracy of 80%. The best
model for this Experiment showed an average accuracy of
83.68%, with the best case presenting accuracy of 89.47%.

Although this methodology presented satisfactory results,
future work might explore even further the pre-processing
techniques with other statistical moments, other ways of
organizing attributes and other pattern recognition algorithms.
A dataset with a long-term recording samples could also
be assembled for better training of the model. Some future
possibilities were envisioned during the development of this
research, including (1) use of the intelligent system to identify
specific failures on conveyor idlers; (2) long time monitoring
to develop life expectancy prediction methods; (3) electronic
and mechanics studies to adapt the system on a Belt Conveyor
robot-inspector.
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