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Abstract—Multi-modal classification tasks (MMCTs) constitute
an important part of pattern recognition. In MMCTs the data
is described through different channels (input streams), which
are defined by different recording sensors or types of features
(e.g. categorical or numerical). The different channels can be
combined by different information fusion (IF) techniques. Popu-
lar IF approaches are late fusion architectures. In the common
late fusion approach, one trains a classification model (CM) for
each of the distinct (i.e. non-overlapping) channels and combines
the outputs of the CMs by some aggregating rule. In this study,
we propose to add an initial evaluation step to determine the
best performing channel, which we define as the dominant
channel. We use the dominant channel to design a modified
late fusion architecture with overlapping channels by including
combinations of non-dominant channels with the dominant one.
This idea has the following two main advantages. First, this
approach is straightforward. No additional parameters and
hence optimisation techniques are required. Second, besides its
simplicity our outcomes show that this approach is effective, since
it significantly outperforms the common late fusion approach
(including non-overlapping, distinct input streams). Moreover, it
reaches and even outperforms state-of-the-art results based on
fusion approaches that are more complex.

Index Terms—Late Fusion, Multi-modal Classification, Multi-
ple Classifier Systems, Pain Intensity Recognition

I. INTRODUCTION

C
OMMONLY, in real-world applications, pattern recog-

nition tasks are multi-modal. In general, this means that

the data is recorded by more than one sensor. As a daily

example, imagine you want to decide (i.e. classify) whether

your cookies, which are already on a baking tray in the oven,

have already the perfect condition. Then, besides measuring

the baking time, you should inspect the smell, the colour and

the consistency of the cookies.

In classification tasks, an appropriate choice of a classification

model (CM) is crucial to obtain satisfying results. Addi-

tionally, in multi-modal classification tasks, one can apply

different information fusion techniques. Two of the main

fusion approaches are the early and the late fusion [1]. Early

fusion operates at feature level. Thereby, for each data sample,

the features that are extracted from all sensor recordings/input
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streams, are combined to one single feature vector, and are

then processed by one CM. Late fusion operates at the CMs’

output levels. Thereby, data recordings specific to each sen-

sor/feature type are used to train CMs separately. The outputs

of each CM are then combined by a fixed or trainable rule to

obtain the classification architecture’s final decision [2].

In the current study, we propose to include an initial evaluation

step to determine the best performing channel, which we de-

note as the dominant channel. The dominant channel is used to

form a modified late fusion architecture with overlapping input

streams. Therefore, we extend the non-dominant channels by

the dominant one. This approach is both, straightforward and

effective. Our experiments show that this simple idea leads to a

significant improvement of the common late fusion approach.

The remainder of this work is organised as follows. In Section

II, we provide some related work. We motivate and define our

proposed dominant channel fusion architectures in Section III.

In Section IV, we shortly describe the data sets, which we

use for our experimental analyses. We summarise all of our

experimental settings in Section V. Section VI includes initial

experimental evaluations, which support the motivation for our

proposed late fusion approach. In Section VII, we evaluate

our proposed approach in comparison to the common late

fusion approach and to state-of-the-art outcomes. We discuss

the experimental outcomes and the properties of our approach

in Section VIII. Finally, in Section IX we conclude this study.

II. RELATED WORK

There exist many approaches, which were proposed by

different researches to improve the common late fusion ap-

proach. In the following, we shortly summarise a couple of

the proposed approaches to show the variety of ideas in the

field of information fusion.

In [3], Ye et al. introduce their robust late fusion, which

is based on rank minimization of so-called comparative

relationship matrices (CRMs). The authors implement one

classification model for each of the available input streams

(type of features) and use the models’ score vector outputs

for the computation of the CRMs. They then solve a matrix

decomposition problem, which leads to the ensemble’s final

decision.
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In [4], Liu et al. propose a sample-specific late fusion (SSLF)

approach. In the SSLF method, a weight is learned for each

labelled (training) sample. Then, for each unlabelled (test)

sample, the SSLF method propagates the fusion weights in

a transductive manner, based on a convex objective function.

In [5], Zheng et al. introduce the query-adaptive late fusion

(QALF) approach. Similarly to the approaches from [3] and

[4], the QALF architecture is based on the classification mod-

els’ scores. In contrast to the SSLF method, the QALF method

estimates the effectiveness of each input stream. Therefore,

the effects of weak performing features are reduced, in an

unsupervised and query-adaptive manner.

In [6], Glodek et al. propose a Kalman Filter (KF) [7] based

fusion approach for the classification of time series. The

KF constitutes a linear dynamical system, which is based

on Markov Models. The authors use base classifiers that

provide outputs with corresponding confidence values, and

hence whose outputs can be rejected if the confidence is low.

The classifiers’ outputs are used as inputs, which are fed to an

additional KF layer. Thereby, the authors make use of the fact

that the KF can estimate missing values of a time series by

combining the currently available values with the information

that is provided by previous states.

Another example, for classification schemes that are using the

base classifiers’ outputs as inputs for a second classification

model layer, is the pseudo inverse (PI) [8] based fusion

approach [9]. The PI provides an optimal least squares solution

for linear systems (i.e. systems of the form Ax = b, with a

singular coefficient matrix A). In a PI based fusion architec-

ture, the objective is to determine the optimal least squares

solution between the classifiers’ outputs and the desired label

outputs, by computing the corresponding PI.

III. DOMINANT CHANNEL ARCHITECTURES

This section provides the idea of our proposed dominant

channel (DC) fusion architectures, which we simply call DC

architectures.

A. Motivation: Using Expert Knowledge

Let us assume that the given data is described through

different channels. When a late fusion approach is applied,

usually one classification model is trained for each of the

channels. Then, the outputs of the models are combined for the

final decision. In general, one of the channels is assumed to

lead to the best classification performance among all available

channels. We call this channel dominant channel. We propose

to apply a late fusion approach with modified data channels.

Those include combinations of the originally given channels

extended by the dominant channel. Let us assume that we have

data from three different channels. Moreover, let channel 1 be

the dominant channel. Then, we could modify the late fusion

approach by using three classification models as follows.

One model is trained on the channels 1 and 2, one on the

channels 1 and 3, and the last model is trained solely on the

dominant channel (channel 1). We call this specific kind of

DC architectures binary DC fusion architectures.
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Fig. 1: Late and Binary DC Fusion Architectures. CM

stands for classification model. CR stands for combining rule.

Here, the dominant channel is denoted by the index i.

The common late fusion and the binary DC fusion approaches

are depicted in Figure 1. We will denote the binary DC

architecture by DC2. Moreover, for i > 2, we define DCi

architectures analogously to DC2. Thus, one modified channel

of a DCi architecture consists of i original channels (i−1 non-

dominant channels and the dominant one). For example, let us

consider the channel set {1, 2, 3, 4} with the dominant channel

2. A ternary (DC3) architecture consists of the following

(modified) channels: {(1, 3, 2), (1, 4, 2), (3, 4, 2), 2}.

A model based on a specific channel can perform poorly, but

in combination with another channel, the performance can

be improved. In Sec. VI, we will experimentally analyse this

assumption and show that each channel performs best, when

it is combined with the dominant one, in general.

B. Why do DC Architectures work?

Adding the dominant channel to some or even all of the

other channels decreases the overall diversity at first sight.

Therefore, we propose using unstable base classifiers, such

as decision trees [10]. A classifier is called unstable if small

changes in the training data lead to significant changes of the

classifier’s output [2]. For comparison, in the decision tree

based bagging approach [11], each base classifier is trained on

the same feature space. The differences in the base classifiers’

individual training subsets lie in the random choice of training

samples. Since the combination of non-dominant channels

with the dominant one leads to different new channels, our

DC architectures lead to overlapping, however still different

feature subspaces, similar to the random forest method [12].

Moreover, a decrease in diversity, resulting from the use of

our constructed new channels, does not imply a decrease in

performance. It has been shown, that in general, highly diverse

classification architectures are not the best performing ones

[2], [13]–[15].



C. Dominant Channel Determination

One can define different ways to determine the dominant

channel. In the following, we propose three approaches for

dominant channel determination.

Hold-Out Method. Divide the training data into a training

and a validation set. Define the channel specific to the best

validation set performance as the dominant one.

Cross Validation. Apply a k-fold cross validation, k ∈
N>1, on the training data. Define the channel specific to the

best averaged performance across the k folds as the dominant

channel.

Cross Validation with Votes. Apply a k-fold cross valida-

tion, k ∈ N>1, on the training data. For each fold, the channel

with the best performance (winner) gets a vote. In case of a

draw, each winner receives a vote for this fold. Define the

channel with the maximum amount of votes (maximum k)

as the dominant one. In case of a draw, take the averaged

performance across the k folds.

For the unlikely case that two or more channels are defined as

dominant channels, one can define the combination of those

channels as the dominant one. It is not recommended defining

the dominant channel based on the training samples accuracy

(also known as resubstitution accuracy), since it tends to be

too optimistic.

IV. DATA SETS

In this section, we describe the data sets, which we are using

for this study. The first part includes the BioVid Heat Pain

Database1 as well as the SenseEmotion Database, whereas the

second part focuses on the so-called mfeat data set. We are

using part A of the BioVid Heat Pain Database in this study.

A. BioVid Heat Pain & SenseEmotion Databases

The BioVid Heat Pain Database (BVDB) [16], as well as

the SenseEmotion Database (SEDB) [17] have been collected

at Ulm University. Both data sets were recorded for research

purposes in the field of automatic pain (intensity) and emotion

recognition, respectively. In this study, we focus solely on the

pain intensity recognition task. For part A of the BVDB, the

recordings of 87 participants (43 female and 44 male) are

available, whereas data specific to 40 subjects (20 female and

20 male) is available for the pain intensity recognition related

part of the SEDB.

In both data sets, the participants were healthy. Pain was

induced in form of heat using a Medoc thermode2, which was

attached to one of the participants’ forearms. An individual

calibration phase led to four and three equidistant subject

specific pain levels, for the BVDB and the SEDB respectively.

The participants were stimulated 20 (BVDB) and 30 (SEDB)

times with each of the corresponding temperature levels,

in randomised order with a fixed duration of four seconds.

Each pain level related stimulus was followed by a stimulus

with 32◦C, which was defined as the neutral level for each

1Online available at http://www.iikt.ovgu.de/BioVid.html
2https://medoc-web.com/products/pathway/
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Fig. 2: Example for stimulation and recovering phases. This

sketch depicts a sequence for a participant from the SEDB. In

the BVDB, there are five temperature levels.

participant (see Fig. 2). For the SEDB, the experiments were

conducted twice. Once, the thermode was attached to the

participant’s left forearm, and once it was attached to the

participant’s right forearm. Thus, the SEDB constitutes two

data sets, which we will simply call SEDB Left (or SEDB-L)

and SEDB Right (or SEDB-R).

For the BVDB as well as the SEDB, the recorded modali-

ties include electrocardiogram (ECG), electrodermal activity

(EDA), electromyogram (EMG) and videos (VID) from three

different angles. In addition, audio (AUD) and respiration

(RSP) signals were recorded for the SEDB. ECG and EDA

signals measure heart activity and skin conductance, respec-

tively. EMG is a measure for muscle activity. EMG data were

recorded from the trapezius muscle (in part A), which is

located at the back, in the shoulder area of a human torso.

EDA signals were recorded from the participants’ ring and

index fingers. RSP data was collected by an elastic belt system.

We refer the readers to [16] and [17] for a full data set

description, including data acquisition experiments for the

emotion recognition tasks. Table I summarises the properties

of the BVDB and the SEDB.

In this study, we use hand-crafted features, which were ex-

tracted from windows, with a length of 4.5 seconds for the

biopotentials and audio signals from the SEDB, 5.5 seconds

for the biopotentials of the BVDB, and 6.5 seconds for videos

from the SEDB. Feature extraction is not part of our cur-

rent contribution. Therefore, we refer the reader, for detailed

analyses on feature extraction and normalisation, to [18] or

[19] for the BVDB, and to [20] for the SEDB. Moreover,

we refer the reader to some of our latest studies, for the

analyses of different deep models for different pain recognition

tasks, based on physiological signals [21], as well as video

sequences [22]. Table II summarises the recorded modalities

and the corresponding numbers of extracted features for both,

the BVDB and the SEDB. The video features are divided

into three feature based channels, i.e. geometric features

(GEO), head pose (HPO), and local binary patterns from three

orthogonal planes (LBP-TOP) [23]. We will denote LBP-TOP

simply by LBP, in all figures and tables, in the interest of

legibility.



TABLE I: Characteristics of the BioVid Heat Pain Database

(BVDB) and the SenseEmotion Database (SEDB). The

values for the SEDB are equal for both parts, i.e. for SEDB-L

and SEDB-R.

BVDB [16] SEDB [17]

# participants 87 (43 f, 44 m) 40 (20 f, 20 m)
# classes 5 (T0, . . . , T4) 4 (T0, . . . , T3)
# samples per class 20 (× 87) 30 (× 40)
# samples in total 8700 4800
ECG/EDA/EMG/VID X X

AUD/RSP − X

TABLE II: Number of extracted features for the BioVid

Heat Pain Database (BVDB) and the SenseEmotion

Database (SEDB). n.u.: not used in the experiments.

Modality BVDB SEDB-L/SEDB-R

ECG 68 115
EMG 56 61
EDA 70 72
RSP − 59
AUD − 980
GEO+HPO+LBP n.u. 714 + 252 + 2160
Total number 194 4413

Kessler et al. proposed including remote Photoplethysmog-

raphy features from video channels [24], [25]. In one of our

latest studies based on the SEDB [26], we showed that a simple

quartile-based data transformation significantly improves the

accuracy of nearest neighbour classifiers [27].

B. Mfeat Data Set

The publicly available mfeat (multiple features) data set [28]

consists of 2000 samples of handwritten digits. Thus, there are

ten classes (digits 0, . . . , 9). The dimensionality of the feature

space is 649. The features are divided into six channels, i.e.

Fourier coefficients of the character shapes, profile correla-

tions, Karhunen-Love coefficients, pixel averages in 2 × 3
windows, Zernike moments and morphological features. Table

III states the different features with corresponding dimensions.

V. EXPERIMENTAL SETTINGS

This section provides an overview of all experimental set-

tings, which we will use throughout the study. We will call the

common late fusion approach without additional modifications

simply late fusion, when the context is clear.

Combination Rule. As the combination rule, we choose

to apply a fixed rule to ensure that the combination of the

different classification models (channels and modified chan-

nels) is independent from any random parameters, such as

initialisation values. Moreover, we focus on the mean rule,

since it has shown to be more robust against estimation errors

in comparison to other fixed rules, such as the product, max

or majority vote rule [29], [30].

Note that in general, a decision tree provides continuous

outputs consisting of the scores for each class. The scores

correspond to the proportion of the classes, in the final leaf

nodes. In case that the decision trees provide simple label

outputs, an ensemble of decision trees can use the proportion

TABLE III: Extracted features and feature dimensions of

the mfeat (multiple features) data set. This data set consists

of 2000 handwritten digits.

Features Acronym Dimension

Profile Correlations Fac 216
Fourier Coefficients Fou 76
Karhunen-Love Coefficients Kar 64
Morphological Features Mor 6
Pixel Averages Pix 240
Zernike Moments Zer 47

of the predicted labels to compute the corresponding scores.

Equal Choice of Training Samples. We use bagged deci-

sion trees for each (extended) channel as classification model.

Thus, each of the decision trees is trained on a different set

of training samples. For the common late fusion approach, we

pull the training samples for each base classifier at random.

For the DC fusion approach, we take the same training samples

to ensure a fair comparison.

Evaluation Approaches. For the BVDB and the SEDB, we

apply leave-one-participant-out (LOPO) cross validations. This

means, that we apply k-fold cross validations with k being the

number of participants. Thus, in iteration i, the data specific

to the ith participant is used as the test set, and the rest of

the data is used as the training set. For the mfeat data set, we

apply a straightforward 10-fold cross validation, dividing the

data randomly into 10 folds, according to equal distribution.

Performance Measure. As the performance measure, we

take the unweighted accuracy, i.e. the number of correctly

classified test samples divided by the total number of test

samples:

accuracy =
|{y ∈ Y : CM(y) = l(y)}|

|{Y }|
,

whereby Y ⊂ R
d denotes the test set, and l(y) denotes the

true label of y. The unweighted accuracy is an appropriate

choice, since all of the data sets that are included in our study

constitute balanced multi-class tasks.

Significance Tests. In Sec. VII, we will apply the two-sided

Wilcoxon signed-rank test [31] at a significance level of 5%,

to test for significant improvement of accuracy.

Illustrations on the SEDB. Since the data subsets SEDB

Left and SEDB Right are very similar, we will focus solely

on SEDB Left in our figures and tables to avoid the repetition

of explanations and discussions.

VI. ANALYSIS OF BINARY CHANNEL EXTENSIONS

In this section, we analyse the effects of combining each

of the non-dominant channels with the dominant one. Figure

3 depicts cross validation accuracy results for each of the

given channels, according to the settings from the previous

section. Figure 4 illustrates the accuracy results for each of

the given channels in combination with the corresponding

dominant channel. We denote binary channel combinations,

where one channel is extended by the dominant one, with an

additional plus sign, e.g. ECG+:= (ECG, EDA), if EDA is

defined as the dominant channel.
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Fig. 3: Single channel evaluation. Left: The EDA channel is

the dominant channel for the BVDB and the SEDB, respec-

tively. Right: The Fac channel is the dominant channel for

the mfeat dataset. LOPO stands for leave-one-participant-out.

The features of the mfeat data set are defined in Table III. The

median and mean values are defined by a horizontal line and

a dot, respectively.

EC
G
 

EC
G
+

EM
G
 

EM
G
+

ED
A 

ALL
 

0

20

40

60

80

L
O

P
O

  
A

c
c
u
ra

c
y
  
in

  
%

BVDB: 200 Trees per Channel

EC
G
+

EM
G
+

ED
A 

R
SP+

G
EO

+

H
PO

+

LB
P+

AU
D
+

ALL
 

20

30

40

50

60

L
O

P
O

  
A

c
c
u
ra

c
y
  
in

  
%

SEDB: 300 Trees per Channel

Fac
 

Fou
+

Kar
+

M
or

+
Pix

+
Zer

+
ALL

 

91

92

93

94

95

96

97

98

99

100

1
0
-f

o
ld

 C
ro

s
s
 V

a
lid

a
ti
o
n
 A

c
c
u
ra

c
y
  
in

  
%

Mfeat: 100 Trees per Channel

Fig. 4: Dominant channel extension. Channels extended by

the dominant channel are denoted by an additional plus sign

(+). ALL stands for the combination of all available channels

(early fusion). LOPO stands for leave-one-participant-out. The

features of the mfeat data set are defined in Table III. The

median and mean values are defined by a horizontal line and

a dot, respectively.

From Fig. 4, we can make the following observations for

the BVDB. Extending the weak performing non-dominant

channels (ECG and EMG) by the dominant channel (EDA)

outperforms the original channels significantly. Moreover, the

extended channels seem to outperform the dominant channel,

and even the combination of all three channels (early fusion).

TABLE IV: Averaged leave-one-participant-out cross vali-

dation accuracies of pairwise combined channels for the

BVDB in %. The figures in row i and column j depict the

accuracy resulting from combining channel i with channel

j. For each row, the best combining channel is depicted in

bold. The best overall performance is underlined. The result

of combining all features (early fusion) is stated in the upper

left table cell. Chance level accuracy: 20%.

38.59 ECG EMG EDA

ECG 26.44 26.46 38.87

EMG 26.46 24.00 37.76

EDA 38.87 37.76 38.07

TABLE V: Averaged leave-one-participant-out cross vali-

dation accuracies of pairwise combined channels for the

SEDB Left in %. The figures in row i and column j depict

the accuracy resulting from combining channel i with channel

j. For each row, the best combining channel is depicted in

bold. The best overall performance is underlined. The result

of combining all features (early fusion) is stated in the upper

left table cell. Chance level accuracy: 25%.

41.85 ECG EDA RSP GEO LBP AUD

ECG 33.22 42.16 35.46 34.77 33.90 33.39
EMG 32.13 40.83 33.25 32.13 30.65 30.32
EDA 42.16 42.55 42.29 42.81 43.17 42.32
RSP 35.46 42.29 33.87 35.72 34.26 34.08
GEO 34.77 42.81 35.72 33.16 32.55 32.99
HPO 34.00 42.45 35.02 33.04 31.63 31.48
LBP 33.90 43.17 34.26 32.55 30.62 31.30
AUD 33.39 42.32 34.08 32.99 31.30 30.83

TABLE VI: Averaged 10-fold cross validation accuracies

of pairwise combined channels for the mfeat data set in

%. The figures in row i and column j depict the accuracy

resulting from combining channel i with channel j. For each

row, the best combining channel is depicted in bold. The best

overall performance is underlined. The result of combining all

features (early fusion) is stated in the upper left table cell.

95.70 Fac Fou Kar Mor Pix Zer

Fac 95.95 96.85 96.90 94.85 97.15 95.45
Fou 96.85 79.60 94.55 78.50 96.45 81.55
Kar 96.90 94.55 91.50 91.00 96.20 91.10
Mor 94.85 78.50 91.00 69.45 94.80 79.10
Pix 97.15 96.45 96.20 94.80 95.00 95.50
Zer 95.45 81.55 91.10 79.10 95.50 75.95

For the SEDB, comparing Fig. 3 to Fig. 4 (in both figures,

the results for the left subset are depicted), we can make the

following observations. The extended channels first, improve

significantly over the original channels, second, can outper-

form the best channel and third, are also able to outperform

the early fusion approach.

For the mfeat data set, also by comparing Figures 3 and 4,

we get the same observations. The extended channels mostly

outperform the original channels and the dominant one, as well

as the early fusion approach.



In Tables IV, V and VI, the classification performances for

each binary combination are stated for the BVDB, SEDB-

L and the mfeat data set, respectively (The combination of

one channel with itself represents the result achieved by this

channel without any combination). In Table V, we removed

the columns corresponding to the worst performing channels,

i.e. EMG and HPO (for reasons of space). Thus, Table V is not

symmetric. The missing accuracies are 24.00% and 30.42% for

the EMG and HPO channels, respectively. The combination

of both channels, which is also missing in Table V, led to an

accuracy value of 29.94%.

From Tables IV, V and VI, we can observe that combining

each channel with the dominant one leads to the best results,

also outperforming the early fusion approach. A comparison

to the late fusion approach is undertaken in Sec. VII.

VII. DC ARCHITECTURES EXPERIMENTS

This section provides the results for our proposed DC

architectures with comparisons to the common late fusion

approach, as well as to state-of-the-art results.

In this section, we define an architecture by its set of input

channels. For example, the common late fusion approach for

the BVDB, which has only three channels is denoted by the

set {ECG, EDA, EMG}.

A. Dominant Channel Determination

In each testing cross validation (CV) step, we applied

an additional stratified 10-fold cross validation based on the

training data. For each fold, we designed a bagged decision

tree ensemble with 50 base classifiers for each of the channels,

separately. The channel with the highest accuracy (winner) was

noted for each fold. Finally, the channel with the most votes

(maximum 10) was defined as the dominant one.

For the BVDB, as well as the SEDB, the EDA channel was

voted at least 9 times as the winner for each test subject during

the 10-fold cross validation on the corresponding training

data. Therefore, the EDA channel was always defined as the

dominant channel for the BVBD and the SEDB, respectively.

For the mfeat data set, channel Pix was defined as the dominant

channel for each CV. By contrast, in Sec. VI, channel Fac was

defined as the dominant channel. In Sec. VI, we calculated

each channel’s accuracy based on the corresponding test sets.

In the current section, we determined the dominant channel,

according to a real-world scenario, without any knowledge

of the (current) test data. Moreover, for the determination of

the dominant channel, we designed ensembles with 50 base

classifiers. In Sec. VI, we used ensembles consisting of 100
base classifiers, where the Pix channel was almost as good

as the Fac channel (see Fig. 3). For the mfeat data set, Table

VII summarises how often each channel won in each of the

10-fold cross validations, conducted on the training data.

B. Results

In this section, we compare the results obtained by dif-

ferent DC architectures to state-of-the-art outcomes reported

on the considered data sets. Table VIII includes different

TABLE VII: Mfeat: Dominant Channel Determination.

Channel Pix was determined as the dominant channel for each

cross validation (CV). The figures denote the number of votes

(wins) for each 10-fold CV based on the training data.

CV 1 2 3 4 5 6 7 8 9 10
Fac 4 2 2 2 4 3 4 1 3 1
Fou 0 0 0 0 0 0 0 0 0 0
Kar 0 0 1 0 0 0 1 1 0 1
Mor 0 0 0 0 0 0 0 0 0 0
Pix 6 8 7 8 6 7 5 8 7 8

Zer 0 0 0 0 0 0 0 0 0 0

TABLE VIII: Implemented DC architectures. Size denotes

the number of bagged base classifiers (decision trees) for each

channel.

Data Set Size Implemented DC architectures

BVDB 200 DC2, DC2 ∪ {ECG,EMG}
SEDB 300 DC2, DC2\{EDA}
Mfeat 100 DC2, DC3, DC4, DC5

DC architectures, which we implemented in our experiments.

Table IX includes the results for all data sets for the common

late fusion approach, as well as the state-of-the-art outcomes

and the best performing dominant channel architecture. We

applied the same cross validations as in the state-of-the-art

literature. For each of the data sets, we implemented four

different DC architectures. For the BVDB, we stated the

best achieved result from [13], which is one of the latest

studies conducted solely on the biopotentials of the BVDB

in the literature. The result from [13] was obtained by using

an early fusion approach with the bagging method designing

an ensemble of 200 decision trees as base classifiers (It is

shown in [13] that the early fusion approach outperforms the

common late fusion in combination with the mean rule since

ECG and EMG channels both perform significantly worse than

the EDA channel and hence alleviate the overall performance).

For this data set, we applied the DC architectures from Table

VIII, i.e. DC2 = {ECG+, EMG+, EDA}, DC2 ∪ {ECG,

EMG} = {ECG, EMG, EDA, ECG+, EMG+}, as well as

both aforementioned sets extended by the combination of all

three channels. The best performance, which is depicted in

TABLE IX: Mean accuracies and standard deviations in

%. For the BVDB and the SEDB, we applied the leave-

one-participant-out cross validation. For the mfeat data set,

we applied a 10-fold cross validation. SEDB-L and SEDB-R

correspond to the left and right data set, respectively. LF: Late

Fusion with mean rule. SotA: State-of-the-Art. DC: Dominant

Channel architecture with mean rule. The DC architecture

outperforms the LF approach significantly, according to the

two-sided Wilcoxon signed-rank test with a significance level

of 5% for the BVDB and SEDB data sets.

Data Set LF DC SotA

BVDB 38.16 ± 11.4 40.31± 10.9 39.34± 10.2 [13]
SEDB-L 40.32 ± 7.78 43.61± 7.74 42.48± 8.35 [20]
SEDB-R 41.80 ± 8.04 43.91± 8.33 43.11± 7.93 [20]
Mfeat 98.00 ± 1.18 98.60± 1.02 98.40± n.a. [32]



Table IX, was achieved by the architecture defined by the set

{ECG, EMG, EDA, ECG+, EMG+}.

For both of the SEDB subsets (SEDB-L and SEDB-R), we

compare our results to the results of one of our latest studies

[20], where we combined each of the channels with the

common late fusion approach, however by using the pseudo

inverse, which is a trainable combination rule. Applying the

pseudo inverse outperforms the mean rule significantly (see

Table IX). Again, we tested four different DC architectures,

i.e. both of the DC architectures from Table VIII, as well as

both of the architectures extended by the combination of all

eight channels. The best results, which are stated in Table

IX, were achieved by the DC architecture defined by the

set DC2\{EDA} = {ECG+, EMG+, RSP+, GEO+, HPO+,

LBP+, AUD+}.

For the mfeat data set, we compare our results to the outcomes

of [32]. The authors in [32] used support vector machines

with radial basis function kernels in combination with a bi-

objective genetic algorithm feature selection. For this data set,

we also implemented four different DC architectures, a binary,

ternary, quaternary and quinary DC architecture, respectively.

The best result, which is depicted in Table IX, was achieved by

the quinary DC architecture, in which each modified channel

consists of four original channels and the dominant channel

(5 modified channels in total, since we have only 6 original

channels, including the dominant one).

VIII. DISCUSSION

In this section, we discuss the following aspects. First, we

take the misidentification of dominant channels into account.

Second, we discuss the possible size for a fully-established

DC architecture. Subsequently, we explain why our choice of

data sets seems to cover three very different classification tasks

in regard to our proposed DC architectures, even though the

BVDB and the SEDB seem to constitute similar data sets.

A. Identifying Sub-dominant Channels

For the BVDB, as well as for both SEDB subsets, the

EDA channel leads to the best test accuracy values (see

Sec. VI). Moreover, the EDA channel was clearly defined as

the dominant channel in the real-world scenario, based on

the corresponding evaluations of the training data (see Sec.

VII). By contrast, we showed for the mfeat data set, that the

Fac channel leads to the best test accuracy values (see Sec.

VI). However, in the real-world scenario, channel Pix was

defined as the dominant channel, based on the corresponding

evaluations of the training data (see Sec. VII). Using Pix as the

dominant channel led to a performance of 98.60 ± 1.02. We

repeated the experiments with Fac as the dominant channel.

This led to a performance of 98.65±0.82, which is just slightly

better than the result stated in Table IX. This shows that

choosing a sub-dominant channel does not affect the quality of

the DC architectures significantly. The risk of choosing a bad

performing channel as the dominant one is relatively low. It is

important that the dominant channel is determined based on an

adequate evaluation. Thus, one has to apply a cross validation

TABLE X: Sizes of complete DC architectures. n: number

of given channels. N(n) := n+2n−1−1: number of channels

in a complete DC architecture.

n 3 4 5 6 7 8 9 10
N(n) 6 11 20 37 70 135 264 521

on the training data, or choose a representative subset of the

training data as validation set.

B. Complete DC Architecture

Considering n data channels, n ∈ N>1, there exist 2n−1−1
possibilities to form artificially fused channels including the

dominant channel. Thus, a fully-established DC architecture

consists of n + 2n−1 − 1 channels, including the n original

channels (and the combination of all available channels, i.e.

the early fusion, included in the 2n−1 term). We call the fully-

established unique DC architecture complete DC architecture.

Table X states the sizes of complete DC architectures accord-

ing to different numbers of channels.

For example, for the BVDB, we have three channels (ECG,

EMG, EDA). According to Table X, the complete DC architec-

ture consists of six channels, i.e. {(ECG, EMG, EDA), ECG,

EMG, EDA, ECG+, EMG+}.

Thus, our proposed DC architectures constitute a family of

late fusion architectures with a maximum channel size of the

unique complete DC architecture, and a minimum channel size

of one (solely the dominant channel).

C. Adequate Choice of Data Sets in this Study

The BVDB and the SEDB are similar data sets, based on

similar settings for data augmentation. For the BVDB, we used

solely the physiological signals, whereas for the SEDB, we

used all available recordings. For both data sets, EDA was

identified as the dominant channel. However, for the BVDB,

the EDA channel has a dimensionality of 70, out of 194
(see Table II), which makes 70/194 ≈ 36% of the whole

feature space. On the other hand, for the SEDB, the EDA

channel has a dimensionality of 72, out of 4413 (see Table II),

which makes 72/4413 ≈ 1.63% of the whole feature space.

Therefore, we showed that our proposed DC architectures are

able to improve the overall performance, independently from

the relative size of the dominant channel. In contrast to both of

the data sets, we included the mfeat data set, which constitutes

a well-posed classification task. By a well-posed classification

task, we denote a classification task, in which high accuracies

(significantly above 90%) can be reached easily.

IX. CONCLUSION

In this study, we proposed a new family of fusion ap-

proaches based on the common late fusion architecture, which

we call dominant channel (DC) fusion architectures, or simply

DC architectures. Given a data set, which is defined by at least

three data sources/types of features (channels), the first step

of our approach, is to determine the dominant channel for the

current classification task. The dominant channel is defined as



the best performing channel, according to the current perfor-

mance evaluation measure (e.g. unweighted accuracy). Thus,

the first step is to apply a k-fold cross validation (k ∈ N>1)

for each of the given channels separately (or to define a

validation set for this purpose). Step two is to design a late

fusion architecture, which includes different combinations of

the original channels with the dominant one. In our study, we

used bagged decision tree ensembles for each of the resulting

new channels in combination with the simple mean rule, for

a fair comparison.

This study provides three important outcomes. First, DC ar-

chitectures improve the common late fusion approach. Second,

designing DC architectures with the simple mean rule is able to

reach and even outperform state-of-the-art results arising from

classification models that are more complex. And third, DC

architectures lead to good results for cases where the dominant

channel constitutes a relatively small fraction, and also where

the dominant channel constitutes a normal fraction (≈ 1/n,

whereby n denotes the number of channels) of the feature

space. Moreover, DC architectures lead to good results on

both, well-posed and complex classification tasks.
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