
Language Inference with Multi-head Automata
through Reinforcement Learning

Alper Şekerci
Department of Computer Science

Özyeğin University
İstanbul, Turkey

alper.sekerci@ozu.edu.tr

Özlem Salehi
Department of Computer Science

Özyeğin University
İstanbul, Turkey

ozlem.koken@ozyegin.edu.tr

Abstract—The purpose of this paper is to use reinforcement
learning to model learning agents which can recognize formal
languages. Agents are modeled as simple multi-head automaton,
a new model of finite automaton that uses multiple heads, and
six different languages are formulated as reinforcement learning
problems. Two different algorithms are used for optimization.
First algorithm is Q-learning which trains gated recurrent units
to learn optimal policies. The second one is genetic algorithm
which searches for the optimal solution by using evolution-
inspired operations. The results show that genetic algorithm
performs better than Q-learning algorithm in general but Q-
learning algorithm finds solutions faster for regular languages.

Index Terms—finite automata, reinforcement learning, neural
network, Q-learning, genetic algorithm

I. INTRODUCTION

Grammatical inference is the process of learning a formal
language from a set of labeled examples. It has various appli-
cations in the fields of pattern recognition, natural language
processing, and computational biology. Its origins date back to
the seminal work of Gold in 1960s [1]. Since then, it has been
investigated by many researchers including Fu [2], Angluine
and Smith [3], Miclet [4].

Considering the different approaches developed for gram-
matical inference, there has been a great interest in learning
languages using recurrent neural networks (RNN). Some early
examples include works of Elman [5] and Cleeremans et al.
[6] where first order RNNs are trained for regular language
recognition. The problem is formulated as sequence prediction
task, where the model is presented a single input symbol
at each time step and predicts the next symbol. Following
the work of Elman and Cleeremans et al., Giles et al. use
second order RNNs to learn and extract finite automata for
regular languages [7]. Challenging harder languages, Das et
al. [8] proposed an RNN model with an external stack to learn
context-free languages.

An important line of research was opened by the study of
long short-term memory (LSTM) [9] networks in language
recognition. Gers et al. [10] showed that LSTM networks
can learn context-free and context-sensitive languages such
as anbn and anbncn. In 2018, Weiss et al. [11] showed that
LSTM is equivalent to a variant of multicounter automata
[12] and hence perform unbounded counting while recognizing

languages like anbncn whereas Gated Recurrent Units (GRU)
[13] can not, when worked under finite precision regime.1

Another related work is due to Zaremba et al. [15] where the
task is not to learn languages, but simple algorithms which can
be carried on by a finite automaton working as a transducer
and they use both supervised and reinforcement learning while
training GRU and LSTM networks to learn finite automata
accomplishing the task.

An alternative method for grammatical inference is the
usage of evolutionary algorithms for inducing automata. Zhou
et al. [16] and Dupont [17] use genetic algorithm [18] to
learn finite automata recognizing regular languages. Later on
Lankhorst [19] and Huijsen [20] apply genetics algorithm
for the inference of context-free grammars and pushdown
automata. Some more recent works on the subject include
[21]–[23].

In this paper, we introduce a new finite automaton model
with multiple heads, namely simple multi-head automaton
(SMA) and show that intelligent agents modeled as SMA
can learn formal languages. The language recognition task
is not defined as sequence prediction task as opposed to
most of the studies from the literature but the automaton
makes the decision of acceptance or rejection as a result of
a sequential processing. Accordingly, we use reinforcement
learning instead of supervised learning, expanding the previous
work on the subject.

Each language is formulated as an environment where
agents can act on. At each timestep, an agent receives ob-
servation from the environment and it performs an action
which either moves one of the heads on the tape or terminates
the environment by accepting or rejecting the input string
according to its policy. After each action, the agent receives
a reward and maximizing this reward leads to the correct and
efficient decision on the input string.

Two different algorithms are implemented to optimize the
policy of the agents while finding optimal SMA for various
languages. The first algorithm is Q-learning, where the policy
of the agents are represented with GRUs and optimized by
storing an experience buffer which is filled upon interacting
with the environment. The second algorithm is genetic algo-

1Note that RNNs with infinite precision are Turing complete in theory [14].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

rithm, which does not improve the policy iteratively but instead
tries to improve the whole population of agents by evaluating
the fitness of each agent and creating new individuals from
the best agents with the hope of creating a better generation.

To obtain results about the performance of each algorithm,
6 different languages are tested: 2 regular, 2 context-free and
2 non-context-free languages. Both the agents trained by Q-
learning and genetic algorithm accomplished to recognize the
regular languages 100% correctly, but the agents trained with
Q-learning achieved the results in a shorter time. For the
other languages, genetic algorithm showed significantly better
performance than Q-learning. Our results suggest that genetic
algorithm deserves more attention in the area of grammatical
inference.

In Section II, we define our new multi-head automaton
model. Section III describes the environment design and how
an agent interacts with it. Section IV and V contain informa-
tion about the insights of Q-learning and genetic algorithm and
further details about implementation. We present the results in
Section VI and conclude with Section VII.

II. SIMPLE MULTI-HEAD FINITE AUTOMATA

As the main purpose of this research is to model finite
automata as learning agents for solving decision problems,
a new model of multi-head finite automata is introduced with
the motivation of reducing the parameter count that is required
to be optimized during the learning process.

A simple multi-head automaton (SMA) is a deterministic
finite automaton that uses multiple heads.

Formally, a two-way simple k-head automaton (2SMA(k))
is a 9-tuple (Q, q0, F , Σ, $, #, δ, k, H) where

• Q is the set of states
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of accept states
• Σ is the input alphabet.
• δ is transition function which maps Q× Σ̃ into Q
• k is the number of heads
• H is the head assignment function which maps Q into
{←−, ◦, −→} × {headi | 0 ≤ i < k}.

A machine is two-way if the tape head can move right (→),
left (←) and stay put (◦). By restricting the head movements to
the set {◦, −→}, we obtain a one-way simple k-head automaton
(1SMA(k)).

SMA uses a single finite input tape and the square with
index 1 corresponds to the first symbol of the input string.
Let n denote the length of the input string. Then, the index 0
contains the start-marker $ and the index (n+ 1) contains the
end-marker #. Note that when the input string is empty, the
index of the end-marker is 1.

Initially, all heads start from the square with index 1 and
the computation starts from the initial state. At each state, first
the head and the direction that are assigned to the state are
determined by the head assignment function H . After that, the
head is moved 1 step in the assigned direction (no movement
if ◦ is assigned) and then the symbol which the head is on

is read. Note that the movement occurs before reading. Also,
moving beyond start and end-markers is not allowed.

After reading the symbol, SMA performs a transition using
δ and enters into a new state. If there are no available
transitions, the machine halts. If the machine halts in an accept
state, the input string is accepted, and rejected otherwise. An
SMA is said to recognize a language L if it accepts all and
only the members of L.

It is easy to see that 1SMA(1) is an ordinary deterministic
finite automaton (DFA) and recognize exactly the class of
regular languages. When compared to the classical multi-head
finite automata (DFA(k)) in which there are k heads reading
from an input tape simultaneously [24], [25], it turns out that
the two models SMA(k) and DFA(k) are equivalent in terms
of language recognition power. The proof is omitted here.
Note that the language recognition power of multi-head finite
automata increase as the number of heads increase both for
one-way and two-way models and two-way models outperform
one-way models for a constant number of heads [25].

III. REINFORCEMENT LEARNING

In this section, we will discuss how the components of the
reinforcement learning algorithm are defined for the task of
language recognition by simple multi-head automata.

A. Environment & Agent

Let’s start by describing the environment and the agent. The
agent is a simple multi-head automaton. It can be one-way or
two-way depending on the setting.

1) Initial State: As it is mentioned while defining SMA,
there is a finite input tape where the first square contains the
start-marker and the last square contains end-marker. When
the environment is reset, all heads of the SMA will be moved
to square 1, which corresponds to the first symbol of the
input string. According to the agent’s actions, these heads will
change their positions on the tape.

2) Observation: The transition function of an SMA dictates
that only a single symbol can be read by a single head at
a time. Note that the current state determines which head
will be active and reading. Furthermore, a desired property
for the observation is that the history of the observations
should give all necessary information about the current state of
the environment. Thus, the observation contains only a single
input symbol, index of the head by which the symbol is read
and the direction in which the head moves.

3) Processing the Action: After receiving the observation,
the agent will decide on its action. If the agent wants to
terminate, which corresponds to the case where there is no
valid transition in the current state, the agent can accept and
terminate or reject and terminate. If it decides to continue,
then it has to determine which head to move and its direction.
Therefore, there are (d · h) possible head actions, where d is
the number of directions and h is the number of heads.

4) Termination & Reward: Theoretically, an SMA may
never halt. Due to practical reasons, we put a limit on the
maximum number of actions N that the agent can perform
during each episode. We set N as (2 ·M + 1) · k + 1 where
k is the number of heads and M is the maximum length of
the input string. This limit allows agent to move all heads to
the end-marker and back to the start-marker before making
a decision. Note that the maximum length of input strings is
also limited because of practical reasons.

The environment is terminated when the number of actions
performed by the agent reaches N or if the agent decides
to terminate early. After each reset, a new input string is
generated and it is determined whether it is a member string
or not by a hand-crafted test function. When the environment
is terminated, the agent receives a reward of +1 if it answers
correctly, that is, accepts a member string or rejects a non-
member string. It receives a reward of -1 if the answer is
wrong, and no reward for actions without termination. There
are 2 special cases for terminal rewards: If the agent answers
wrong without reaching the end-marker, it is encouraged to
read the whole input string before terminating to make sure
that it has the correct answer and therefore it receives a reward
of -10. If the agent waits until the very end of the episode
to reject a string, it receives only a reward of 0.1 which
discourages the agent from waiting too long if it is sure about
the answer.

IV. Q-AGENTS

One way to optimize the policy of an agent is Q-learning.
The agents trained using Q-learning algorithm will be called
Q-agents. In this section, we will describe the details of the
Q-learning algorithm.

A. Deep Q-Learning

Q-value is a measure of how good is it to perform action
a in state q. The function Q(q, a) is defined as

Q(q, a) = R(q, a) + γ · V (qnext)

where R is the immediate reward received by performing the
action a in state q, γ is the discount factor which makes the
rewards that are received sooner more favorable and qnext is
the next state the agent moves in after performing the action.

According to the Bellman Equation [26], the value V of a
state q is simply the maximum Q-value the agent can get in
a given state by performing any action.

V (q) = maxa(Q(q, a))

To learn the optimal Q function, it is possible to use either
arrays or a neural network to approximate the function. In deep
Q-learning, a deep neural network is used to approximate the
Q function.

B. GRU vs. LSTM

In order to provide internal memory for Q-learning agents,
gated recurrent units (GRU) are used in this paper. GRU is a
simpler alternative to long short-term memory (LSTM). It is
known that LSTM is more successful in language recognition
as it can perform unbounded counting [11]. The reason why
GRU is preferred over LSTM in this paper is to test a new
multi-head automaton model focusing on the effect of multiple
heads and ability of moving left. As a recurrent neural network
model which can perform counting can easily learn languages
like anbn or anbncn using a single-head and moving in a
single direction, GRUs which cannot perform counting suit
better the purpose of this paper.

C. Modeling SMA with Neural Networks

The automata defined in this paper have discrete states.
However, a continuous state space is needed to train neural
networks using gradient descent method.

In the discrete case, each state can be represented by an
integer and a boolean lookup table can be used to determine
which states are accepting.

In the continuous case, a state can be represented by a
real vector. Thus, the transition function δ takes as input no
longer an integer but a vector and the one-hot encoding of an
input symbol, and outputs a vector. Instead of a lookup table
for determining the acceptance of a state, a new function A
maps the state vector to a 3 dimensional stochastic vector,
representing a probability distribution over three types of
states:

i. rejecting but not halting,
ii. rejecting and halting,

iii. accepting and halting.
So, the function A randomly samples one of these types
according to the probability distribution and assigns it as the
type of the input state.

Similarly for the head-movement, a function M maps an
input state vector to a 2k-dimensional and 3k-dimensional
stochastic vector for 1SMA(k) and 2SMA(k), respectively.
Then, the function M randomly samples the action for the
head movement and assigns it to the input state.

D. Implementation

As explained in Section III-A, the number of possible
actions A for the agent is 2 + (d · k), where d is the number
of directions and k is the number of heads. Therefore, there
is a Q-network that takes the current internal state, which is
the output of the last recurrent unit, as input. Then, there are
fully-connected hidden layers, the layer count and the number
of neurons in each layer are hyperparameters. The final layer
is the output layer with dimension A.

We use two methods to improve the stability and con-
vergence of deep Q-networks. First, it is possible to store
experiences in a buffer [26]. An experience is a tuple (st,
action, reward, st+1, done) where st is the observation
before performing the action, st+1 is the observation after
performing the action and done represents if the environment

is terminated after the action. While training, a batch of
experiences is sampled uniformly from this buffer.

The second method is using fixed target network [27]. Q-
learning uses the estimation for the next state while updating
Q-value of the current state. With this method, the estimation
will not be taken from the network which is currently being
trained but from a fixed Q-network and the weights of the
trained Q-network is copied onto the target network periodi-
cally.

During training, an agent plays many episodes to fill up
the experience buffer. After the buffer is fulled, the neural
network is optimized using the data in the buffer. At the start
of each episode, the input string on the tape is changed. Thus,
the experience buffer contains different strings with different
lengths, which helps the agent to generalize better.

Moreover, Q-learning agents use ε-greedy exploration. That
is, with ε probability an agent chooses a random action and
with (1 − ε) probability it chooses the best action. This
hyperparameter handles the exploration-exploitation trade-off:
exploration is for trying different actions to achieve better
rewards and exploitation is for using the agent’s current
knowledge to maximize the rewards.

V. G-AGENTS

Another approach for policy optimization in a reinforcement
learning problem is using genetic algorithm. Agents trained
with genetic algorithm will be called G-agents.

A. Genetic Algorithm

Genetic algorithm is a black-box optimization technique
which uses operations inspired by biological evolution [28].
A population of individuals is randomly initialized and each
individual corresponds to a chromosome which is a chain
consisting of genes. There exists a fitness function which takes
a chromosome as input and returns its fitness value, that is,
the performance measure of the chromosome for the given
problem. Genetic algorithm works by improving the initial
population at each generation.

In this approach, each SMA is represented with a chro-
mosome and its performance is evaluated with a fitness
function. Then, at each iteration a collection of chromosomes
is improved by eliminating bad solutions and creating new
chromosomes using the good solutions, with the aim of finding
the most optimal automaton recognizing the language trained
for.

B. Representation of SMA with Chromosome

To apply genetic algorithm, we need to represent an SMA
with a string of integers making up a chromosome. The
individual integers are called the genes.

Let n be the number of states in the SMA and let |Σ̃| = m
where Σ̃ = Σ ∪ {$,#}. There might be a transition between
any pair of two states with any one of the m symbols as its
label. For each state, each possible transition is represented
with a gene g−→ which holds the information about the target
state of the transition. The range of each gene is [0, n], where 0

means that there is no transition and the remaining integers are
the indices of the states. For each state, m genes are required
to represent all possible outgoing transitions from the state for
each symbol.

Moreover, head assignment function which assigns the head
and the direction for each state is stored with a single gene
gk in the range [0, d · k), where d is the number of directions
and k is the number of heads. Lastly, for each state a single
gene ga in the range [0, 1] is required to store whether it is an
accept state or not. As a result, a chromosome is a sequence
of genes

(m · g−→) · n+ gk · n+ ga · n

where multiply represents duplication and plus represents
concatenation.

C. Fitness

Initially, a training set is formed with N strings which are
generated randomly by the environment. This training set is
used for computing the fitness value of an individual.

Each individual is tested for N different episodes, which
contain the input strings on the tape chosen from the training
set. For each episode, the total episode reward is stored and
the sum of all episode rewards is used as the fitness value.
Similar to Q-learning algorithm, the rewards are multiplied by
a discount factor γ to make sooner rewards more favorable.

Moreover, when the best individual in a generation achieves
100% correct prediction rate, a new training set is formed and
all fitness values are recomputed so that if there exist some
strings that are not accepted even by the best individual, the
individual can improve itself further.

VI. RESULTS

A. Languages

During training, agents are taught 6 different languages:
i. L1 = { 0w1 | w ∈ {0, 1}∗}

ii. L2 = { w | w ∈ {0, 1}∗ and length of w is even }
iii. L3 = { anbn | n ≥ 0}
iv. L4 = { w | w ∈ {0, 1}∗ and w is palindrome }
v. L5 = { anbncn | n ≥ 0}

vi. L6 = { ww | w ∈ {0, 1}∗}

Note that L1 and L2 are regular and both can be recognized by
1SMA(1). L3 and L4 are non-regular but context-free and L5

and L6 are non-context-free languages. L3 can be recognized
by a 1SMA(2) but for L4, 2SMA(2) is needed as the tape head
should be able to move to both directions. L5 is recognized
by a 1SMA(2) and L6 is recognized either by a 1SMA(3) or
2SMA(2) but not with a 1SMA(1).

All languages except L4 are trained on a 1SMA. L1 and
L2 are trained with a single head, L4 with 2 heads and finally
L5 and L6 are trained with 3 heads. Note that for L5 an extra
head is added to test whether the algorithms can optimize and
use less heads.

B. Hyperparameters

The hyperparameters for Q-learning are given below:
• The output size of a recurrent unit is 32.
• The discount factor γ is 0.999.
• The Q-network which takes the output of the last recur-

rent unit as input has 1 hidden layer with 32 neurons that
use arctan activation function.

• The experience buffer size is 25000.
• ε for exploration is 0.05.
The hyperparameters for genetic algorithm are as follows:
• The population size is 100.
• The state size of SMA is 32.
• The chromosome length C of an individual is

(m+ 2) · n, where m is the number of symbols and n is
the number of states.

• The maximum number of mutations is 3 for regular
languages, (C/20) for other languages.

• The discount factor γ is 0.999.
• The training set size is 1000.

C. Discussion

Fig. 1 shows the performance of different algorithms for
different languages. First column is the model name, second
column is the average reward, third column is the correct
prediction rate and the fourth column is the average episode
length. The data is collected by running the algorithms for
10000 episodes, that is, for 10000 different input strings. Note
that the maximum length of the input strings is set to 20,
because of practical reasons mentioned before.

The number in the model name represents the language the
agent is taught and the rightmost letter represents the algorithm
that the agent uses. R is the random algorithm that performs
a random action at each step, Q and G represent the Q-agent
and G-agent respectively.

An algorithm is commonly evaluated according to 3 criteria:
correctness, memory usage and running time. The solutions
found by Q-agent and G-agent can be also evaluated similarly.
In the results, correct prediction rate shows the correctness of
the solution and the average episode length shows the running
time. Note that optimizing the memory usage is not a concern
in this paper.

The table in Fig. 2 further supports this result. This table
provides statistics about head movement in different solutions.
First column is the model name which represents the same
models as in Fig. 1, next three columns show the usage of
each head compared to others and the last three columns show
which direction the heads are moved mostly.

1) Random Algorithm: The result of the random algorithm
is included in order to better assess the performance of the
other two algorithms. A random agent has no knowledge of
the environment and it does not change its policy according
to the state it is currently in. Any well designed algorithm is
expected to perform better than the random algorithm.

As expected, the random agents for all languages performed
the worst. Note that the correct prediction rates for random

Model Avg. Reward Pred. Rate Avg. Ep. Length
L1R -4.193 0.498 2.0
L1Q 1.000 1.000 8.6
L1G 0.988 1.000 12.8
L2R -4.151 0.504 2.0
L2Q 0.995 1.000 12.8
L2G 0.984 1.000 16.8
L3R -4.156 0.498 3.0
L3Q -1.480 0.731 4.2
L3G 0.989 1.000 11.1
L4R -4.027 0.511 4.0
L4Q -3.208 0.457 8.8
L4G 0.724 0.866 14.5
L5R -4.089 0.499 4.0
L5Q -0.341 0.329 13.2
L5G 0.991 0.999 10.1
L6R -4.172 0.490 4.0
L6Q -0.672 0.445 10.6
L6G 0.795 0.903 17.3

Fig. 1. Performance of models for different languages.

Model h1 h2 h3 ←− ◦ −→
L1Q 1.00 0 1.00
L1G 1.00 0.25 0.75
L2Q 1.00 0.10 0.90
L2G 1.00 0.25 0.75
L3Q 0.71 0.29 0.00 1.00
L3G 0.65 0.35 0.15 0.85
L4Q 0.17 0.83 0.09 0.02 0.89
L4G 0.79 0.21 0.07 0.05 0.88
L5Q 0.04 0.61 0.35 0.06 0.94
L5G 0.53 0.00 0.47 0.08 0.92
L6Q 0.91 0.09 0.00 0.09 0.91
L6G 0.36 0.00 0.64 0.04 0.96

Fig. 2. Statistics about head movement.

agents are approximately 0.5, which means they made the
correct decision for half of the strings. This is expected as with
probability 0.5, the input string is chosen from the language
whereas with probability 0.5 it is generated randomly.

2) Regular Languages: For the regular languages L1 and
L2, both Q-agent and G-agent achieved 100% correct predic-
tion. For the Q-agent, the average reward is higher and the
average episode length is smaller in each case which shows
that the Q-agent have learned more efficient solutions for these
languages.

Figure 3 and Figure 4 display prediction rates during
training for G-agents and Q-agents respectively. Note that
during training, the average correct prediction rates for Q-
learning algorithm can be lower as the agents perform random

actions with ε probability due to ε-greedy exploration.

0 10 20 30 40 50 60 70 80 90
0.45

0.5

0.75

0.8

0.9

0.95

1

Generation

C
or

re
ct

Pr
ed

ic
tio

n
R

at
e

Prediction rates of genetic algorithm for L1 and L2.

L1

L2

Fig. 3. Correct prediction rates of the best individuals in each generation
during the training of regular languages with genetic algorithm.

0 200 400 600 800 1,000 1,300 1,625
0.35

0.45
0.5

0.75
0.8

0.9
0.95

1

Timesteps (1k)

A
vg

.C
or

re
ct

Pr
ed

ic
tio

n
R

at
e

Prediction rates of Q-learning algorithm for L1 and L2.

L1

L2

Fig. 4. The change of the average correct prediction rates for the regular
languages during training with Q-learning algorithm.

As the head is allowed to stay or move in both directions
while processing the input string, moving the heads efficiently
reduces the time to reach the answer. Since L1 and L2 are
regular, by definition they can be recognized by a real-time
DFA in which the head always moves right. Looking at Figure
2, we see that Q-agent always moved the head right for L1

whereas the G-agent stayed at the same position for 25% of
the steps. This explains how the Q-agent can terminate earlier
for L1.

Early termination is another factor which reduces the so-
lution time. For instance, in L1 there is no string that starts

with a 1, and therefore it is possible to terminate immediately
if the automaton reads 1 at the beginning. However, in L2 the
automaton has to read all the input string to check whether the
length of string is even or not. In fact the results show that
the agents took less time to reach the answer for L1. Figure
5 displays the average episode length during training of the
Q-agents for both languages.

0 200 400 600 800 1,000 1,300 1,625
1

5

10

15

20

25

Timesteps (1k)

A
vg

.E
pi

so
de

L
en

gt
h

Avg. episode lengths during training of Q-learning.

L1

L2

Fig. 5. The change of the average episode lengths for the regular languages
during training with Q-learning algorithm.

3) Nonregular Languages: Even though Q-agent per-
formed better for regular languages, it was not successful
for the remaining languages. Nevertheless, for all languages
it gained more reward than the random agent and it is
possible to say that the agents managed to find sub-optimal
solutions. However, this does not necessarily imply higher
correct prediction rates. Q-agent has higher correct prediction
rate than random agent only for L3.

The reward function punishes heavily the agents which
answer wrong without reading the whole input string. So, for
an agent which can not find the correct answer, it is better
to reach the end of the string first before terminating. This
is how the Q-agents may have gained higher rewards than
random agents.

On the other hand, G-agents performed significantly better
for non-regular languages. For L3 G-agent achieved 100%
correct prediction rate and for L5 it rarely answers wrong.
There is an important detail in Fig. 2 for L5G. Even though
there are 3 heads, the second head is not used at all which
is expected for an efficient agent as theoretically L5 can be
recognized by a 2SMA(2).

Furthermore, there is a critical observation about the input
generation algorithm. As discussed earlier, half of the time
the input string is generated randomly and half of the time it
is chosen from the language, and the maximum length of the
generated strings is 20. So, if agents can understand if a string

is randomly-generated or not, then they can easily understand
whether it is a member string or not.

There is an important difference between L5, and L4 and
L6. In L4 and L6, first half of the string can actually be random
and only the second half must obey some format regarding the
first half. Therefore, it is possible to say that strings that are
in L4 and L6 look more random than L5. For instance, if a
string starts with 5 a’s and continues with 5 b’s, then it already
looks like a very organized string, thus an agent may assume
the rest of the string will contain 5 c’s. So, at that step the
agent may guess that the string is in the language and most
of the time makes a correct guess.

This can also explain why G-agents performed the worst in
L4 and L6. As determining if the input string is random or
not is harder for these languages, learning these languages is
harder for the agents.

VII. CONCLUSION

In this paper, two different algorithms are analyzed and
tested for training simple multi-head automata to recognize
several decision problems. According to the results, genetic
algorithm performed better overall.

A. Q-Learning vs. Genetic

Since Q-learning algorithm uses neural networks and ap-
plies gradient descent to optimize weights, it involves calcula-
tion with continuous values and calculus. On the other hand,
genetic algorithm involves integers and uses evolution-inspired
operations for optimization.

Running a neural network is more costly while in genetic
algorithm, integer arrays are used for simulating the automata
making it faster. Additional cost of the neural networks could
be justified with higher correct prediction rates whereas this
is not the case. In fact, agents that use neural networks only
learned to recognize regular languages. Thus, it is possible to
say that the genetic algorithm turned out to be more effective
and more efficient.

B. Future Work

In this paper, it is shown that a state of an automaton can be
represented with continuous values and the transition function
can map a state vector into another. This can also be done
for the alphabet. Currently, a head reads a symbol which is a
member of the finite set named alphabet. However, a symbol
can actually be a real number.

Continuous symbols are not necessarily useful for decision
problems but can be useful when there is an output tape. A
transducer automaton can write symbols on an output tape
[29]. In future work, a new transducer automaton model can be
defined which optionally uses continuous states or continuous
input/output symbols to learn different algorithms.

Furthermore, as genetic algorithm looks promising, more
advanced algorithms for population management and different
methods for creating new individuals can be investigated. Also,
testing with harder languages which require more than 3 heads
and changing the input generation algorithm in a way that

it tries to find corner cases for agents which they fail can
improve the effectiveness of training and thus help the agents
to generalize better.

REFERENCES

[1] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447 – 474, 1967.

[2] K. Fu, Syntactic Pattern Recognition and Applications, ser. Prentice-Hall
Advanced Reference Series: Computer Science. Prentice-Hall, 1982.

[3] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”
ACM Comput. Surv., vol. 15, no. 3, pp. 237–269, Sep. 1983.

[4] L. Miclet, “Grammatical inference,” in Syntactic and Structural Pattern
Recognition—Theory and Applications. World Scientific, 1990, pp.
237–290.

[5] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179 – 211, 1990.

[6] A. Cleeremans, D. Servan-Schreiber, and J. Mcclelland, “Finite state
automata and simple recurrent networks,” Neural Computation - NECO,
vol. 1, pp. 372–381, Sep. 1989.

[7] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.
Lee, “Learning and extracting finite state automata with second-order
recurrent neural networks,” Neural Computation, vol. 4, no. 3, pp. 393–
405, May 1992.

[8] S. Das, C. L. Giles, and G. Sun, “Learning context-free grammars:
Capabilities and limitations of a recurrent neural network with an
external stack memory,” in Proceedings of The Fourteenth Annual
Conference of Cognitive Science Society. Indiana University, 1992, p. 14.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[10] F. A. Gers and E. Schmidhuber, “Lstm recurrent networks learn simple
context-free and context-sensitive languages,” IEEE Transactions on
Neural Networks, vol. 12, no. 6, pp. 1333–1340, Nov. 2001.

[11] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical computational
power of finite precision RNNs for language recognition,” in Proceed-
ings of the 56th Annual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume
2: Short Papers, I. Gurevych and Y. Miyao, Eds. Association for
Computational Linguistics, 2018, pp. 740–745.

[12] P. Fischer, A. Meyer, and A. Rosenberg, “Counter machines and counter
languages,” Theory of Computing Systems, vol. 2, pp. 265–283, Sep.
1968.

[13] K. Cho et al., “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[14] H. Siegelmann and E. Sontag, “On the computational power of neural
nets,” Journal of Computer and System Sciences, vol. 50, no. 1, pp. 132
– 150, 1995.

[15] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus, “Learning simple
algorithms from examples,” in International Conference on Machine
Learning, 2016, pp. 421–429.

[16] H. Zhou and J. J. Grefenstette, “Induction of finite automata by genetic
algorithms,” in Proceedings of the 1986 IEEE International Conference
on Systems, Man and Cybernetics, 1986, pp. 170–174.

[17] P. Dupont, “Regular grammatical inference from positive and negative
samples by genetic search: the gig method,” in Grammatical Inference
and Applications, R. C. Carrasco and J. Oncina, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1994, pp. 236–245.

[18] J. H. Holland, Genetic Algorithms and Adaptation. Boston, MA:
Springer US, 1984, pp. 317–333.

[19] M. M. Lankhorst, Genetic algorithms in data analysis. Rijksuniversiteit
Groningen, 1996.

[20] W. Huijsen, “Genetic grammatical inference,” in CLIN IV: Papers from
the Fourth CLIN Meeting. Citeseer, 1993, pp. 59–72.

[21] S. Lucas and T. Reynolds, “Learning deterministic finite automata with
a smart state labeling evolutionary algorithm,” IEEE transactions on
pattern analysis and machine intelligence, vol. 27, pp. 1063–74, Aug.
2005.

[22] J. Gómez, “An incremental-evolutionary approach for learning deter-
ministic finite automata,” in 2006 IEEE International Conference on
Evolutionary Computation. IEEE, 2006, pp. 362–369.

[23] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Active learning
approaches for learning regular expressions with genetic programming,”
in Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, 2016, pp. 97–102.

[24] A. Rosenberg, “On multi-head finite automata,” IBM Journal of Research
and Development, vol. 10, pp. 388–394, Sep. 1966.

[25] M. Holzer, M. Kutrib, and A. Malcher, “Multi-head finite automata:
Characterizations, concepts and open problems,” Electronic Proceedings
in Theoretical Computer Science, vol. 1, p. 93–107, Jun. 2009.

[26] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.
[27] ——, “Human-level control through deep reinforcement learning,” Na-

ture, vol. 518, no. 7540, p. 529, 2015.
[28] A. Thengade and R. Dondal, “Genetic algorithm-survey paper,” in MPGI

National Multi Conference. Citeseer, 2012, pp. 7–8.
[29] A. Esmoris, C. I. Chesñevar, and M. P. González, “Tags: A software

tool for simulating transducer automata,” The International Journal of
Electrical Engineering & Education, vol. 42, no. 4, pp. 338–349, 2005.

