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Abstract—The development of accurate models to forecast
electricity energy prices is a challenge due to the number
of factors which can affect this commodity. In this paper, a
hybrid multi-stage approach is proposed to forecast multi-step-
ahead (one, two and three-month-ahead) Brazilian commercial
and residential electricity energy prices. The proposed data
analysis combines the pre-processing named complementary
ensemble empirical mode decomposition (CEEMD) in the first
stage coupled with the coyote optimization algorithm (COA)
to define the CEEMD’s hyperparameters, aiming to deal with
time series non-linearities and enhance the model’s performance.
On the next stage, four machine learning models named ex-
treme learning machine, Gaussian process, gradient boosting
machine, and relevance vector machine are employed to train
and predict the CEEMD’s components. Finally, in the final
stage, the results of the previous step are directly integrated
to compose a heterogeneous ensemble learning of components
to obtain the final forecasts. In this case, a grid of models is
obtained. The best model is one that has better generalization
out-of-sample. Through developed comparisons, results showed
that combining COA-CEEMD with a heterogeneous ensemble
learning can develop accurate forecasts. The modeling developed
in this paper is promising and can support decision making in
electricity energy price forecasting.

Index Terms—Decomposition, electricity prices, ensemble
learning, forecasting, optimization.

I. INTRODUCTION

The electricity power systems plays a key role in the
citizen’s life as well as in the economy of society. The
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analysis of the energy market, especially electricity price
forecasting plays a crucial role in families and commerce’s
strategic planning. This analysis allows families and managers
to use the forecasting information to adjust their finances.
Indeed, the developing of high-accurate forecast models for
electricity energy prices are important, but hard due to these
data presenting high frequency, volatility, non-linearity, and
seasonality [1]. Moreover, other factors such as weather and
energy demand, and the impact of renewable energy sources
[2] make the forecasting process a challenge.

Considering the developing of efficient forecasting models,
the most common strategies are adopting ensemble of models
as well as to hybridize several approaches such as pre-
processing (decomposition methods), optimization (single and
multi-objective algorithms), and artificial intelligence models
(nonlinear/machine learning models) [3]–[6]. An ensemble
of models works on the divide-and-conquer scheme. In this
structure, a set of weak models are used to solve the same task
and when combined (average rule for regression problems)
they generate a strong model [7]. Indeed, pre-processing
approaches such as decomposition methods aim to extract
the data noise and non-linearities, where the original signal
is decomposed into certain signals (namely components) with
different frequencies [8]. In this respect, in the forecasting
field, different models (heterogeneous ensemble of compo-
nents) or the same model (homogeneous ensemble of com-
ponents) can be used to train and predict each decomposed
component. The final forecast can be obtained by aggregation
(directly aggregation) of the results of the previous step
[9]. Alongside this, evolutionary algorithms can be used to
obtain the hyperparameters of machine learning models [10]
or hyperparameters of decomposition methods [11], aiming to
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make the model more accurate.
In the field of electricity energy price forecasting, to obtain

efficient models, much of the attention in previous research
has been given to hybrid forecasting models. Firstly, [12]
combined the decomposition methods variational mode de-
composition (VMD) and improved complementary ensemble
empirical mode decomposition with adaptive noise. Subse-
quently, each component was trained and predicted by partially
recurrent Elman neural network optimized by a multi-objective
grey wolf optimizer. In the same way, [13] used VMD with
hyperparameters defined by self-adaptive particle swarm opti-
mization. To forecast the modes in a single horizon, seasonal
autoregressive integrated moving average and deep belief
network were adopted to forecast regular and irregular modes,
respectively. Adjacent to the previous studies, [14] adopted
wavelet transform coupled with stacked autoencoder and long
short-term memory to forecast residential, commercial and
industrial electricity prices. Many other studies such as [15]–
[17] discussed the feasibility of hybrid models to forecast
electricity energy prices. As limitations of most of the previous
studies can be highlighted: the definition of decomposition
methods’ hyperparameters by trial and error, and the use of a
homogeneous ensemble of components.

In respect to the gaps in the above-mentioned studies,
this paper focuses on the development of a hybrid multi-
stage model. Are coupled the methods: complementary ensem-
ble empirical mode decomposition (CEEMD) [18], a recent
proposed metaheuristic coyote optimization algorithm (COA)
[19] and machine learning models to develop a multi-stage
heterogeneous ensemble model, to perform multi-step-ahead
(one, two and three months-ahead) forecasting of commercial
and residential electricity prices in Brazil. Firstly, the COA
optimizer is applied to define the CEEMD’s hyperparameters,
and subsequently, CEEMD decompose the series of electricity
energy prices (commercial and residential). Thereafter, the
components obtained in the previous step (intrinsic mode
functions - IMF and one residue) are trained using extreme
learning machines (ELM) [20], relevance vector machines
(RVM) [21], Gaussian process (GP) [22] and gradient boosting
machines (GBM) [23]. The hyperparameters of each model are
obtained by grid-search during leave-one-out time slice cross-
validation. Finally, the prediction results of different compo-
nents are directly integrated to generate the final electricity
price. Afterward, by the grid of models, the most adequate
multi-stage model is the one with the best generalization out-
of-sample capacity in terms of mean absolute error (MAE)
and mean squared error (RRMSE).

The contribution of this work to the literature is three-
fold, which are described as follows: (i) Firstly, this paper
contributes to field of time series pre-processing by coupling
the CEEMD with recent proposed bio-inspired metaheuristic
named COA to extract CEEMD’s hyperparameters (number
of ensembles, noise amplitude and number of components);
(ii) Second, with the combination of the different nonlinear
models (ELM, RVM, GP, and GBM), to train and predict
each component of the decomposed stage, the heterogeneous

developed model can learn the data patterns and reflect the
high-frequency of electricity price data; and (iii) Finally, this
paper contributes to the literature of models used to forecasting
electricity prices by investigating the performance of multi-
stage models coupled with optimization and heterogeneous
ensemble of components over multi-stage homogeneous en-
semble models associated with optimization as well as with
individual models. Alongside this, the performance of the
developed framework was examined based on the Brazilian’s
electricity commercial and residential price data into three
different forecasting horizons. The criteria RRMSE and MAE,
as well as the Diebold-Mariano test, were adopted.

The organization of the present paper is as follows: Sec-
tion II-A presents the datasets adopted in this paper. Sec-
tion II-B brings a brief description of the adopted methods.
Section III details the procedures of the research methodology.
Section IV describes the results and discussions. Finally,
Section V concludes the paper with final considerations,
limitations of the study and proposals of future works.

II. MATERIAL & METHODS

This Section presents the description of the data (subsection
II-A) and methods applied in this paper (subection II-B).

A. Material

The datasets analyzed in this paper refers to Brazil’s com-
mercial and residential electricity prices (Brazilian currency
- Real - R$) by megawatt-hora (MWh). The datasets consist
of 306 monthly observations from April 1994 to September
2019. These data were obtained from the website of the
Institute of Applied Economics Research (IPEA) (Instituto
de Pesquisa Econômica Aplicada, in Portuguese) available
in http://www.ipeadata.gov.br/Default.aspx. The data was split
into Training and Testing sets in the proportion of 70% and
30%, respectively. In Table I is presented a summary of the
statistical indicators of commercial and residential electricity
prices.

TABLE I
DESCRIPTIVE MEASURES FOR BRAZILIAN COMMERCIAL AND

RESIDENTIAL ELECTRICITY PRICE (R$)

Dataset Set # of Samples Statistical Indicator
Minimum Median Mean Maximum Standard Deviation

All set 306 32.89 271.05 258.47 570.80 126.86
Commercial Training set 214 83.00 204.27 199.58 302.14 79.74

Test set 92 254.58 434.42 399.09 570.80 95.76
All set 306 28.50 286.56 273.35 803.11 131.31

Residential Training set 214 68.40 226.34 213.53 333.15 84.26
Test set 92 275.42 445.31 416.91 803.11 99.79

The electricity energy prices series are illustrated in Fig-
ure 1. The high value presented by residential electricity prices
in 2013 October can be seen as an outlier and it can be
attributed to climate, political factors or measurement errors.

B. Methods

This subsection describes the methods employed in this
paper.
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Fig. 1. Brazilian commercial and residential electricity prices (R$)

1) Coyote Optimization Algorithm: The COA optimizer is
a recent proposed evolutionary algorithm that considers the
social relations inside the packs of the Canis latrans species
proposed by [19]. In the COA approach, the population is
divided into Np packs with Nc coyotes each. The optimiza-
tion process starts when the global population of coyotes is
defined (all candidate solutions). In the sequence, the coyotes’
adaptation in the current social condition (set of decision
variables, or in this case, current hyperparameters value) is
evaluated using the objective function (in this paper the inverse
of orthogonality index - described in subsection II-B2). In it is
turning, the alpha coyote of the pack is defined and the social
tendency is stated. For each coyote, based on social tendency,
the social condition is updated, evaluated and its adaptation
verified. Taken into account biological events of life, the birth
and death of coyotes are stated. Subsequently, the transition
between packs and coyotes’ age (in years) is updated. The
process ends when the best coyote (solution) is selected.

This stochastic population-based algorithm has recently
been applied to define the hyperparameters of three-diode
photovoltaic models [24], heavy-duty gas turbine [25], and
photovoltaic cells [26]. Also, it has reached better results
than the genetic algorithm, differential evolution, and particle
swarm optimization approaches in the aforementioned studies.
Due to the promising potentials results, a search of the
literature reveals that the COA has not yet to be applied for
the CEEMD’s hyperparameters definition, then it is adopted.

2) Complementary Ensemble Empirical Mode Decomposi-
tion: Over the last decades, empirical mode decomposition
(EMD) [27] and its improvements such as ensemble empirical
mode decomposition (EEMD) and CEEMD [18] were pro-
posed to deal with non-linearity and non-stationarity of time
series.

The EMD separates the original signal into IMF and one
residual component. The main drawback of this decomposi-
tion is named mode mixed problem (MMP). The MMP is
characterized by the fact that disparate scales could appear
in one IMF. Next, to overcome this disadvantage EEMD was
proposed, and in the sequence CEEMD. In spite of the fact
of EEMD has effectively resolved the MMP, the residue noise

in the signal reconstruction has been raised, and the noise
is independent and identically distributed [28]. To improve
EEMD, [18] proposed the CEEMD, in which the paired noises
are perfectly anti-correlated and have an exact cancellation of
the residual noise in the reconstruction of the signal. Due to
the effectiveness of CEEMD in several domains of knowledge
[29], [30], this paper will employ this decomposition approach
to preprocess the electricity energy prices.

The CEEMD has three main hyperparameters named num-
ber of trials or number o ensembles, number of components
and noise amplitude. Especially, the noise amplitude is de-
signed to be some percentage of the data standard deviation.
In most of the cases, these hyperparameters are defined by
trial and error [29], [30]. To solve this question, this paper
proposes the use of the COA approach to minimize the
inverse of the orthogonal index (OI) [11]. The OI is used
to measure the orthogonality of the EMD numerically, and
a value close of zero is desirable. A smaller OI indicates the
best decomposition result [27].

The OI can be computed as follows:

OI =

T∑
t=0

 k∑
i=1

k∑
j=1

IMFi(t) IMFj(t)/x
2(t)

 , (1)

in which T is the number of time series observations, IMFi
and IMFj are the i-th and j-th components, k is the number of
components, x(t) is the original signal at time t = 0, . . . , T .

3) Extreme Learning Machine: The ELM is a learning
algorithm proposed by [20] designed for single-hidden layer
feedforward neural networks. In this approach, hidden nodes
are chosen randomly and outputs are obtained analytically.
Good generalization and learning speed are the main ad-
vantages of ELM. The input weights and hidden biases are
specified arbitrarily and then are fixed. The output weights are
obtained by solving the multiplication of the Moore-Penrose
Generalized inverse matrix and output variable matrix [10].

4) Gradient Boosting Machine: The GBM is an ensemble
approach that employs a sequential learning process to build an
efficient classification or regression model [23]. A regression
tree is initially fitted to the data and, on this basis, predictions
and the initial residue are computed. A new model is fitted to
the previous residuals, a new prediction, to which the initial
forecast is added, and then a new residue is obtained. This
process is repeated iteratively until a convergence criterion
been met. In each iteration, a new model is fitted to the
data, aiming to compensate for the weaknesses of the previous
model [5].

5) Gaussian Process: A GP is a stochastic process, in
which every set of the random variable is multivariate normally
distributed. In this respect, a GP is entirely specified by its
statistical orders mean and covariance or kernel function.
Through kernel function, it is possible to maps the similarity
between points of the training set with the purpose of to predict
new observations [22].



6) Relevance Vector Machines: The RVM is a probabilis-
tic version of support vector machines [31], [32] that uses
Bayesian inference. It has some advantages regarding the SVM
framework, such as: avoid the set of free hyperparameters
to be defined, the predictions are probabilistic, reduce the
computational complexity, and the kernel function does not
need to satisfy the Merce’s condition. In this framework,
probabilistic modeling is conducted and a priori is introduced
over the weights. Sparsity is achieved is this approach, once
that in the practice the posterior distributions of weights are
close of zero [21].

C. Performance Indicators

To check the models’ performance, the MAE and RRMSE
criteria are used. These measures are described in Table II.

TABLE II
SUMMARY OF PERFORMANCE INDICATORS

Metric Equation Definition

MAE
n∑

i=1

∣∣∣∣yi − ŷi

n

∣∣∣∣ The average absolute forecast error
of n times forecast results

RRMSE

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

1

n

n∑
i=1

yi

The relative root mean squared error

IP 100× Mp −Mc
Mc

Improvement percentage index

The n represents the number of observations, yi and ŷi are
the i-th observed and predicted values, respectively. Also, the
Mc and Mp represent the performance measure of compared
and proposed model, respectively.

D. Diebold-Mariano Test

The DM test [33] is applied in this paper to compare the
forecasting errors of proposed versus compared models. The
hypotheses and DM test statistic are given by (2),

H :

{
H0 : εpi = εci
H1 : εpi < εci ,

DM =

n∑
i=1

[L(εpi )− L(εci )]

n√
s2

n

s2,

(2)
in which L is a loss function that can estimate the accuracy
of each model, εpi is the error of the proposed model, εci is
the error of the compared model, and s2 is an estimate for the
variance of di = L(εpi )−L(εci ). The null hypothesis is rejected
if DM < -zα, being zα the percentile of normal distribution
and α the significance level.

III. THE PROPOSED HYBRID MULTI-STAGE FORECASTING
SYSTEM

This section presents the steps adopted to develop the
proposed hybrid multi-stage forecasting model.

Step 1: Firstly, the COA is coupled with CEEMD to define
the CEEMD’s hyperparameters. For COA optimizer, the num-
ber of coyotes and packs are defined as 5 and 10, respectively.
These values are selected by the trial and error, once that
there is no guideline for the definition of COA parameters
[19]. Moreover, if an increase in the number of packs, and/or
coyotes is considered, the optimization time will also increase
due to the greater number of evaluations to be carried out.
However, for this problem, it was observed that the accuracy
does not improve significantly. In this way, the initial values
adopted for these parameters are fixed, for both problems.
Table III shows the CEEMD’s hyperparameters defined by
COA. Finally, the original electricity price is decomposed.

TABLE III
SEARCH BOUNDARIES OF THE CEEMD PARAMETERS.

Hyperparameter Boundaries Select Hyperparameters
Lower bound Upper Bound Commercial Residential

Number of Ensembles 50 100 50 52
Number of Components 2 5 4 4
Noise amplitude 0.2 0.5 0.4918 0.4923

The decomposed commercial and residential electricity
prices are illustrated in Figures 2a and 2b, respectively.
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Fig. 2. Decomposed series

The behavior observed in the residual component of both
series is due to the growing trend in prices.

Step 2: Second, each component obtained in step III (three
IMFs and one residue) is trained using ELM, GBM, GP, and
RVM. In the training stage, leave-one-out cross-validation with
time slice is adopted. The inputs are defined by autocorrelation
and partial autocorrelation analysis. The data are centered by
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its mean value and divided by its standard deviation. The
training structure is stated as follows:

y(t+1,k) = f
{
y(t,k), . . . , y(t−ny,k)

}
+ ε ε ∼ N(0, σ2), (3)

and forecast electricity energy prices one-month-ahead (4),
two-months-ahead (5), and three-months-ahead (6) according
to:

ŷ(t+h,k) = f
{
y(t+h−1,k), y(t+h−2,k), y(t+h−3,k)

}
(4)

ŷ(t+h,k) = f
{
ŷ(t+h−1,k), y(t+h−2,k), y(t+h−3,k)

}
(5)

ŷ(t+h,k) = f
{
ŷ(t+h−1,k), ŷ(t+h−2,k), y(t+h−3,k)

}
(6)

in which f is a function related to the adopted model in the
training stage, ŷ(t+h,k) is the forecast value for k-th component
obtained in the decomposition stage (k = 1,. . . ,4) on time t and
forecast horizon h (h = 1, 2, 3), y(t+h−ny,k) are the previously
prices lagged in ny = 1, . . . , 3 and ε is the random error.

Table IV presents the models’ hyperparameters obtained by
grid-search.

Also, for the GP approach, there are no hyperparameters
for tuning and the linear kernel function is used. Moreover,
for GBM the shrinkage and minimum number of terminal
node size are held constant equal 0.1 and 10, respectively.
Finally, for RVM the radial basis kernel function is adopted.
The kernels of GP and RVM were defined by grid-search.

TABLE IV
HYPERPARAMETERS OBTAINED BY GRID-SEARCH FOR EACH MODEL

Dataset Component
Model

ELM RVM GBM
Active Function Neurons Weights Initialization Sigma Boosting Iteractions Max Tree Depth

Commercial

IMF1 Hardlin 17 Normal Gaussian 0.6250 50 3
IMF2 Hardlin 13 Uniform Negative 0.6845 100 1
IMF3 Hardlin 13 Uniform Negative 0.5682 50 1
Residue Sigmoide 17 Normal Gaussian 10.3476 250 5
Non-decomposed Sigmoide 9 Normal Gaussian 19.6809 150 3

Residential

IMF1 Sine 13 Uniform Positive 0.6071 150 1
IMF2 Rectifier Linear Unit 12 Uniform Negative 0.6641 250 1
IMF3 Rectifier Linear Unit 13 Uniform Negative 0.4929 100 2
Residue Sigmoide 13 Normal Gaussian 10.3089 250 5
Non-decomposed Sigmoide 14 Normal Gaussian 22.9609 150 3

Step 3: Finally, the forecasts of different models used
for each component are directly integrated (simple sum) to
generate final electricity price values. Afterward, by the grid
of models, the most adequate multi-stage model is the one
with the best generalization out-of-sample capacity in terms
of MAE and RRMSE. Table V describes the models used for
each component.

TABLE V
MODELS ADOPTED BY EACH COMPONENT IN EACH DATASET

Dataset Component Forecasting Horizon
One-month-ahead Two-months-ahead Three-months-ahead

Commercial

IMF1 ELM ELM ELM
IMF2 GP ELM RVM
IMF3 GBM GP GBM

Residue GP GP GP

Residential

IMF1 GP GP RVM
IMF2 GP ELM GBM
IMF3 ELM ELM RVM

Residue GP GP GP



Step 4: Obtaining forecasts out-of-sample (test set), per-
formance indicators defined in II-C are computed and two
kinds of comparisons are conducted. The first is the compari-
son of multi-stage heterogeneous ensemble model and multi-
stage homogeneous ensemble model. Second, a comparison
of multi-stage heterogeneous ensemble model and models
without consider decomposition is developed. Finally, the DM
test described in subsection II-D is employed.

Figure 3 summarize the main steps used in the data analysis.
The results presented in Section IV are generated using the R
software [34].

IV. RESULTS

This section describes the results of the developed experi-
ments in three ways in forecasts out-of-sample (test set). First,
subsection IV-A is designed to compare the results of the
proposed multi-stage heterogeneous ensemble model and a
multi-stage homogeneous ensemble model. In the sequence,
subsection IV-B is used to compare the performance of devel-
oped approaches and models without previous decomposition.
To finish, subsection IV-C presents DM test to statistically
evaluate the errors of the proposed approach versus other
models. Additionally, Figures 4 and 5 illustrate the relation
between observed and predicted values, and the magnitude of
the sum of standardized squared errors, respectively. In Table
VI and VII, the best results are presented in bold

A. Comparison of multi-stage heterogeneous ensemble and
multi-stage homogeneous ensemble models

Table VI illustrates the performance or developed model and
multi-stage homogeneous ensembles named COA-CEEMD-
GP, COA-CEEMD-ELM, COA-CEEMD-RVM, and COA-
CEEMD-GBM.

TABLE VI
PERFORMANCE MEASURES OF PROPOSED AND COMPARED MODELS USED

TO FORECASTING BRAZILIAN ELECTRICITY PRICE MULTI-STEP-AHEAD

Dataset Model
Forecasting Horizon

One-month-ahead Two-months-ahead Three-months-ahead
MAE RRMSE MAE RRMSE MAE RRMSE

Commercial

Proposed 9.1191 0.0272 12.5722 0.0415 14.0000 0.0501
COA-CEEMD-GP 9.8200 0.0295 12.6248 0.0417 14.2700 0.0510
COA-CEEMD-ELM 38.0209 0.1289 68.6489 0.2489 83.8030 0.2926
COA-CEEMD-GBM 108.6709 0.3490 109.1811 0.3500 109.6404 0.3500
COA-CEEMD-RVM 303.1389 0.9202 314.3207 0.9431 322.8980 0.9522

Residential

Proposed 8.9811 0.0305 11.0507 0.0381 13.2598 0.0460
COA-CEEMD-GP 9.0935 0.0310 11.1217 0.0390 13.2872 0.0473
COA-CEEMD-ELM 35.0976 0.1146 52.1548 0.1786 60.5261 0.2000
COA-CEEMD-GBM 103.2843 0.3175 103.5004 0.3174 104.3387 0.3176
COA-CEEMD-RVM 310.2537 0.9146 327.5563 0.9344 334.7754 0.9444

Through Table VI it should be noted that the use of different
models to compose an ensemble of components improves the
final accuracy of the model. This is verified for the case
of commercial as well as residential electricity prices. The
observed superiority of the proposed approach regarding these
compared models should be attributed to the fact that diversity
of heterogeneous ensembles is higher than homogeneous en-
sembles, which plays an important role in ensemble learning
[35].

By investigating the improvement on the errors of the
proposed model regarding compared COA-CEEMD homoge-

neous ensemble models, it is possible to infer that the im-
provement in MAE criterion ranged between 7.14% - 96.99%,
0.42% - 96%, and 1.89% - 95.66%, for commercial electricity
price on one, two and three-months-ahead forecasting, respec-
tively. In the residential context, the same pattern is observed,
since the reduction on RRMSE is ranged between 1.61% -
96.67%, 2.31% - 95.92%, and 2.75% - 95.13% in horizons
of one up to three-months-ahead, respectively. In both cases,
similar behavior can be observed between adopted criteria.

B. Comparison of multi-stage heterogeneous ensemble and
non-decomposed models

Table VII shows the performance of the developed model
and models without considering CEEMD as preprocess, named
GP, ELM, RVM, and GBM.

TABLE VII
PERFORMANCE MEASURES OF PROPOSED AND COMPARED MODELS USED

TO FORECASTING BRAZILIAN ELECTRICITY PRICE MULTI-STEP-AHEAD

Dataset Model
Forecasting Horizon

One-month-ahead Two-months-ahead Three-months-ahead
MAE RRMSE MAE RRMSE MAE RRMSE

Commercial

Proposed 9.1191 0.0272 12.5722 0.0415 14.0000 0.0501
GP 10.1264 0.0366 13.0655 0.0487 15.4955 0.0577
ELM 61.8013 0.2107 51.7893 0.1774 66.5200 0.2331
GBM 109.7469 0.3525 110.3789 0.3529 111.0765 0.3531
RVM 320.8700 0.9463 331.5674 0.9605 334.7101 0.9640

Residential

Proposed 8.9811 0.0305 11.0507 0.0381 13.2598 0.0460
GP 9.4405 0.0342 12.1558 0.0451 14.4413 0.0552
ELM 52.9344 0.1721 95.2086 0.3413 91.7472 0.3177
GBM 105.467 0.3231 106.5075 0.3258 106.9078 0.3259
RVM 325.8226 0.9275 348.0082 0.9558 360.2490 0.9681

In respect of the results presented in Table VII, the outcomes
of this paper reinforce findings presented by [36] and [37],
which point out the benefits of using decomposition techniques
as a way of pre-processing time series. In particular, the use of
the COA-CEEMD approach is important for the development
of an effective model for forecasting electricity prices. Second,
to [18], the use of decomposition as pre-processing is useful in
the time series field because through the use of this technique
it is possible to deal with non-stationarity and non-linearity of
the data. Also, the results described in this section corroborate
the findings of [38], since the ensemble models achieve better
accuracy than its members.

Concerning the enhancement of hybrid model regarding
non-decomposed models, seen the MAE in one-month-ahead
forecasting, the reduction is ranged between 9.95% - 97.16%
and 4.87% - 97.24% in commercial and residential electricity
prices, respectively. Similarly behavior is observed for the
other two time windows. In respect of the reduction of the
RRMSE criterion, for the commercial dataset, the improve-
ment is ranged 25.68% - 97.12%, 14.78% - 95.67%, and
13.17% - 94.80% in one, two, and three-months-ahead, re-
spectively. In it is turn, for the residential dataset, the RRMSE
improvement is ranged between 10.82% - 96.71%, 15.52% -
96.01%, and 16.67% - 95.25% in one, two and three-months-
ahead forecasting, respectively.



C. Statistical tests to compare proposed multi-stage heteroge-
neous ensemble model and other models

To demonstrate the statistical comparisons between errors of
the proposed and compared models described in subsections
IV-A and IV-B, in Table VIII can be seen the statistic of
DM test, as well as when the comparisons are statistically
significant.

TABLE VIII
STATISTIC OF DM TEST FOR STATISTICAL COMPARISON OF PROPOSED

APPROACH VERSUS OTHER MODELS

Model
Forecasting Horizon

One-month-ahead Two-monhts-ahead Three-months-ahead
Commercial Residential Commercial Residential Commercial Residential

COA-CEEMD-ELM -5.93*** -5.95*** -4.83*** -4.14*** -3.71*** -3.31***
COA-CEEMD-RVM -11.78*** -11.73*** -7.27*** -7.49*** -5.87*** -6.06***
COA-CEEMD-GP -1.99* -1.63* -0.19 -0.86 -1.31* -1.34*
COA-CEEMD-GBM -8.79*** -8.87*** -5.17*** -5.11*** -4.04*** -3.96***
ELM -7.05*** -7.01*** -4.90*** -4.87*** -4.49*** -3.84***
RVM -12.78*** -12.41*** -7.85*** -8.35*** -6.10*** -6.95***
GP -1.91* -1.12* -1.45* -1.41* -1.99** -1.95**
GBM -8.98*** -8.91*** -5.22*** -5.15*** -4.06*** -4.00***
Note: ***1% significance level; **5% significance level; * 10% significance level.

Through the DM test, it can be stated that in 95.83% of the
cases, the proposed approach reached statistically lower errors
than the other models. The RVM based approaches reached
high differences between the errors, and GP based approaches
reach similar errors regarding the proposed framework. These
findings are valid for all datasets and forecast horizons.

Figures 4a and 4b expose that the multi-stage heterogeneous
ensemble model learns the data behavior, being able to obtain
forecast prices similar to observed values. For commercial and
residential datasets, the good performance (regarding RRMSE
and MAE) in the training set is maintained in the test set.
Exceptionally, for the outlier of the test set for the residential
case, the proposed model was not able to capture the high
variability

Finally, considering the illustrated by the radars plots (Fig-
ures 5b and 5b), the results exposed in previous sections
are reinforced. Best models reached the sum of standardized
squared errors close to the center of the plot.

V. CONCLUSION

In this paper, a hybrid multi-stage heterogeneous ensemble
model was proposed to forecast multi-step-ahead (one, two,
and three-months-ahead) Brazilian commercial and residential
electric energy prices. In the first stage, the COA optimizer
was adopted to define the hyperparameters of pre-processing
CEEMD. In the sequence, the four obtained components (three
IMF and one residual) by COA-CEEMD were trained and
predict by different models (ELM, GBM, GP, and RVM).
To choose the most suitable model for each component, the
grid-search approach was conducted. The final forecasts were
obtained through a heterogeneous ensemble of components
directly integrated.

Our findings suggest that: (i) The use of COA-CEEMD
improves the final results regarding not applying decom-
position; (ii) The use of different models for components
allow to improve the final accuracy concerning the use of a
homogeneous ensemble model of components; and (iii) The
proposed approach reaches better accuracy than the compared
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Fig. 4. Electricity energy price observed versus forecast multi-step-ahead

(a) Commercial electricity price

(b) Residential electricity price

Fig. 5. Radar plot for standardized sum of squared errors

models, and the good performance is constant when the
forecast horizon is expanded;

Even with good results achieved, this study has the follow-



ing limitations: (i) The political, climatic and demand factors
were not taken into account in the data analysis; and (ii) The
proposed model was not able to capture the variability of
an extreme observation for the set of data referring to the
price of residential electricity (iii) The parameters of COA
optimizer were selected by trial and error. For future works,
it is desirable: (i) the adoption of robust techniques to deal
with outliers; (ii) hybridization of decomposition techniques;
(iii) reconstruct the decomposed signal through the weighted
integration considering the no negative constraint theory; (iv)
selection of the models for components through optimization
techniques; and (v) developing an adaptive version of COA to
define the number of coyotes and packs.
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