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Abstract—Biological brains still far exceed artificial intelli-
gence systems, both in terms of control capabilities and power
consumption. Spiking neural networks (SNNs) are a promising
model, inspired by neuroscience and functionally closer to the
way neurons process information. While recent advancements
in neuromorphic hardware allow energy efficient synthesis of
spiking networks, the training of such networks remains an open
problem. In this work we focus on reinforcement learning with
sparse and delayed rewards. The proposed architecture has four
distinct layers and addresses the limitation of previous models in
terms of scalability with input dimensions. Our SNN is evaluated
on classical reinforcement learning and control tasks and is
compared to two common RL algorithms: Q-learning and deep
Q-network (DQN). Experiments demonstrate that the proposed
network outperforms Q-learning on a task with six-dimensional
observation space and compares favorably to the evaluated DQN
configurations in terms of stability and memory requirements.

Index Terms—Reinforcement learning, spiking neural net-
works, reward-modulated STDP

I. INTRODUCTION

Reinforcement learning (RL) closely resembles, and is
inspired by, the way animals learn [1]. It is a very flexible
paradigm that can be used to train an agent to perform a task
without previous knowledge of how to execute it step by step
— a reward by the end of a successful trial is enough. Recent
advances in RL include algorithms that are able to play video
games better than humans [2], as well as learning agile and
dynamic motor skills for legged robots [3].

Despite great advancements in robotics and machine learn-
ing, artificial systems still have significant disadvantages when
compared to their biological counterparts. First, while ani-
mals can quickly adapt and learn new behaviors, training
an artificial neural network (ANNs) is time-consuming and
typically requires a large collection of examples. Secondly,
inference on an already trained ANN is power-demanding and
can considerably reduce autonomy on mobile applications with
a limited power source, such as space exploration, robotics
and wearable devices [4]. For instance, while the human
brain consumes about 20 watts, the Human Brain Project’s
simulation of the cortex is expected to consume 500 MW,
which is roughly equivalent to 250 thousand households [5],
[6].

Traditional ANNs use neural models that receive and trans-
mit continuous signals, essentially working as universal func-
tion approximators. On the other hand, biological neurons send
and receive information via discrete spikes. Based on insights

from neuroscience, the artificial spiking neural network (SNN)
is a promising alternative to leverage both spatio-temporal
information processing and low energy demand. State-of-the-
art low power neuromorphic hardware is able to simulate
between 105 to 106 spiking neurons in real time [6]. A notable
recent work proposes and implements a fully optical spiking
neural network, potentially further increasing bandwidth and
processing speed of SNNs [7].

Training of traditional ANNs usually involves gradient
descent methods. Even when used in an RL framework,
an ANN is trained through back-propagation on a sequence
of previously observed samples from the environment [2].
While it is possible to train SNNs using modified gradient-
based optimization, this does not leverage the low-power
requirements of biological neurons [8]. Instead of computing
a global gradient over all of the synapses, SNNs can employ
a biologically plausible process called spike-timing-dependent
plasticity (STDP). This synaptic plasticity rule only requires
each synapse to be aware of corresponding pre- and post-
synaptic neurons. STDP is illustrated in Figure 1 and can
be applied to a network of neurons. Additionally, STDP can
be modulated by a global reward signal (R-STDP) and has
been shown to solve reinforcement learning problems without
the need for explicit gradient computation over the synapses.
In the present work we focus on RL tasks with delayed and
sparse rewards, resembling how animals are provided with a
food reward after a successful task completion.

Fig. 1: Illustration of the spike-timing-dependent plasticity
(STDP). Neuron A repeatedly causes neuron B to fire, after a
small delay. Over time, the connection from neuron A to B is
strengthened, as a function of the delay between spikes.

An analysis of related works, presented in Section II, sug-
gests that previously proposed spiking networks for RL do not
scale well with an increased number of sensors. Furthermore,
the plasticity is usually restricted to a single layer and linearly
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separable problems. The main goal of this work is to present
and evaluate a novel spiking architecture, overcoming the
limitations of previous models in sensory space scalability. Our
model is intended for future implementations on hardware.
As such, we follow a strategy similar to recent works [9],
[10] and use simplified neural and synaptic plasticity models,
prioritizing compactness over biological realism.

II. RELATED WORK

Early versions of SNNs with reward-modulated plasticity
are independently proposed by Izhikevich [11] and Florian
[12]. In both instances, eligibility traces and STDP are em-
ployed. In particular, Florian [12] demonstrates that a fully
connected multilayered network of spiking neurons can solve
a temporally coded XOR problem with delayed reward.

Portjans et al. [13] propose the first spiking network to
implement an actor-critic framework, a classical RL algorithm.
The network’s functionality is demonstrated on a discrete
grid-world environment, where the agent is able to move in
four cardinal directions to reach a target position. Frémaux,
Sprekeler and Gerstner [14] also propose a continuous time
actor-critic model with temporal difference (TD) error driven
plasticity. The proposed neuromodulation is later included in
a more general three-factor learning rule in [15]. The network
is evaluated on a larger grid-world task with obstacles, as well
as two control tasks, including an acrobot. It should be noted
that both [13] and [14] implemented a spiking network with
no hidden layers. Thus, each neuron in the input layer, also
called place neurons, is used to encode a specific state of
the environment. For instance, in order to keep the acrobot
problem computationally tractable and limit the number of
input neurons, [14] uses a custom encoding to reduce the
dimensionality of the environment and limit the resolution per
sensor. Despite this, the number of place neurons still reaches
11,025 for a four dimensional state space. The present work
proposes a novel architecture that does not significantly in-
crease the number of neurons for higher dimensional problems.
For instance, 60 input neurons is enough for an acrobot task
with six-dimensional observations.

Nakano et al. [16] tackle the input dimensionality problem
by proposing an SNN version of a restricted Boltzmann
machine (RBM) with memory. The network is able to navigate
on a T-maze by using visual cues from 28×28 binary images.
While this approach is successful on a high dimensional task,
the network is previously trained for visual processing in
a supervised manner. Thus it is unclear whether such an
architecture could be applied to high dimensional control
problems and continuous learning.

Rueckert et al. [17] introduce an SNN with a model-based
RL, including separate state and context neural populations.
While this network is able to solve planning tasks, it is still
limited to a few input dimentions. A related, but more scalable
learning rule through imitation is introduced by Tannenberg et
al. [18]. The present work takes inspiration from the models
proposed by [17] [18], while maintaining the reinforcement

learning paradigm and introducing a population coding that
can be scaled well to more than four dimensions.

Wilson et al. [19] evaluate different versions of R-STDP
with randomly connected Izhikevich neurons, introducing vari-
able dopamine concentration over time and space. The network
is trained for locomotion of virtual aquatic animals and is
distributed over the agent’s body. Variable spatio-temporal
dopamine concentration seems to significantly outperform
standard R-STDP [11]. The network is trained with a sparse
reward signal, although continuous reward is also evaluated
with less success. A trained network is able to correlate the
input stimulus with output neurons in order to maximize
motion speed. In order to induce movement of the animat’s
body, the input of the network is a set of fixed periodic signals,
without sensory information.

Bing et al. [20] show that R-STDP outperforms other state-
of-the-art algorithms based on SNNs for a line-following
robotic task. A similar, but multilayered SNN model is demon-
strated on a virtual snake robot in [21], outperforming a
single layer counterpart. In both works, the reward signal is
continuously provided for correction and the learning process
is not aimed at distal rewards.

The power consumption advantage of neuromorphic hard-
ware is demonstrated by Wunderlich et al. [22], where a small
spiking network with R-STDP learns to play a pong game on
a BrainScaleS 2 neuromorphic system. As with the previous
related works, the input layer is used to encode all of the
system’s states.

A synaptic plasticity rule with two types of synapses is
proposed by Yuan et al. [23]. This rules is intended to better
approximate the biological plasticity mechanisms and involves
stochastic and deterministic synapses. While it is a novel
learning rule, providing insight into how the brain performs
RL, the scalability of the neural architecture is not addressed.

III. PROPOSED SPIKING NETWORK

A diagram of the proposed SNN is shown in Figure 2.
The illustrated environment is a 3×3 grid and the agent
receives positional information from two sensors. The input
layer contains Ni = nd × ns neurons, where a group of
nd neurons is used to encode signal intensity from each of
ns sensors in a one-hot configuration. This way, the input
layer produces ns spikes at any given timestep. Four discrete
actions are possible, representing movement in each cardinal
direction. The following sections describe in more details the
neural model and the structure of the proposed network.



Fig. 2: Diagram of the proposed spiking network. In this setup
there are three neurons per dimension (nd = 3) and the agent
chooses between four possible actions. For legibility, only the
connections from active input neurons are shown.

A. Neural Model

Except for the input layer, the neural model is a stochas-
tic leaky integrate-and-fire (LIF). The neuron accumulates a
charge from presynaptic spikes and emits a spike to postsy-
naptic neurons when the internal potential reaches a threshold.
Throughout this paper, j is used to refer to the presynaptic
neuron and i is used for the postsynaptic one. A discrete-time
update rule of neuron i is as follows:

vi(t) = vi(t− 1)− vi(t− 1)

τm
+ ξi(t) +

∑
j

wj,isj(t− 1)

(1)

where vi(t) is the potential of neuron i, τm is the membrane
discharge time constant and ξi(t) is the Gaussian noise.
This noise is centered at zero with 0.2 standard deviation
and applied only to neurons in Place and Output layers.
The term wj,isj(t − 1) is the potential induced in neuron i
from presynaptic spike by neuron j, weighted by the synaptic
efficacy between neurons i and j.

B. Synaptic Plasticity

The following is a simplified version of the reward-
modulated STDP plasticity rule introduced by Florian [12].
When postsynaptic neuron i fires, the eligibility trace Zj,i

is set to the value of the presynaptic trace P−, decaying
exponentially with a time constant τe:

Zj,i(t) = Zj,i(t− 1)− Zj,i(t− 1)

τe
. (2)

Fig. 3: The synaptic plasticity model. Presynaptic trace P−
is used to indicate that neuron j has produced a spike on
the previous time step. Spiking of the postsynaptic neuron
i triggers an update of the eligibility trace Zj,i. Subsequent
broadcast of the reward signal r prompts an update to the
synaptic efficacy wj,i

The change in synaptic strength between two neurons depends
on presynaptic and postsynaptic spike times, as well as on the
reward signal:

wj,i(t) = wj,i(t− 1)− wj,i(t− 1)

τs
+ α r(t) Zj,i(t), (3)

where τs is the synaptic tag discharge time constant and α
is the learning rate. The reward signal r(t) is broadcasted to
all plastic synapses. The above rule is illustrated in Figure 3.
Note that the time constants τe and τs are adjusted according
to the duration of a trial for a specific task.

C. Hidden Layer

The hidden layer allows the network to solve problems that
are not linearly separable in the feature space. This layer
contains Nh neurons. Each neuron in the input layer sends
n+ excitatory and n− inhibitory synapses to randomly chosen
neurons in the hidden layer. For example, in Figure 2 each
input neuron sends two excitatory and two inhibitory synapses.
In other words, input and hidden layers are sparsely connected
with Ni × (n+ + n−) synapses, where n+ and n− are much
smaller than Nh. In the experiments presented in this work
the weights of these synapses are kept constant (+1 or -1) and
are not subject to modulation by reward.

D. Place Neurons

This layer is inspired by the neuronal activity of the
hippocampus and represents the position of the agent in the
sensory space [24]. In some of the related works it is also
the input layer and fully describes the state of the system.
In the proposed model there are Np neurons, which is much
smaller than the number of all possible input states (nns

d ).
Thus, unlike in previous works, place neurons do not encode
all possible positions in the sensory space, but rather the ones
that the agent has visited leading to a reward. An intuitive
and experimentally supported [25] reasoning is that we expect
an animal in a labyrinth to better remember a path that leads
to successive rewards rather than other available routes. The
hidden layer and place neurons are fully connected with plastic
synapses, following the update rule from Equation 3, with
presynaptic trace P− resetting to −n+. While a number of



hidden neurons can produce a spike at each time step, only
the place neuron with the highest potential sends a spike to
the output layer. This is similar to lateral inhibition found in
[14] or a global max-pooling layer in [9] and increases the
robustness of the learning process.

E. Output Layer

The output layer in the proposed architecture is very similar
to previous works, such as [13], [15], [20] and has No neurons,
each representing a possible discrete action. As in the place
layer, in order to ensure a single action choice only the neuron
with highest potential is allowed to spike at each time step.

The synapses coming to this layer are subject to the same
learning rule as in the previous layer. An intuitive explanation
is as follows. Suppose that the agent visits a number of states,
performing an action choice at each state. This is translated to
corresponding place and action neurons producing a spike. As
described by Equation 2, the synapses between these neurons
will be tagged by the eligibility trace Zj,i and gradually
discharge at rate τe. When a state transition leads to a reward,
the synaptic weight will be increased proportionally to the
eligibility trace, following Equation 3. In other words, state-
action choices that happened closer to the reward signal
become more likely to occur in the future trials. Over time,
more distant choices also become increasingly likely as the
corresponding synaptic weights are successively increased.

Exploration/exploitation balance is also important for a suc-
cessful learning. Typically the agent starts randomly exploring
the environment until a reward is provided. Over time, as the
plastic connections between hidden, place and action layers are
reinforced, the choice of actions becomes more deterministic.
Thus, a policy is learned and exploited by successive trials.
A minimum random choice of action is used to ensure some
level of exploration even after multiple rewarded trials. The
experiments described in Section IV use a constant 2% random
action probability.

IV. EXPERIMENTS

A. Setup

The proposed model is compared against baseline algo-
rithms on two simulated tasks: maze and acrobot. Both envi-
ronments provide a sparse and binary reward upon successfully
reaching the goal state, but require different capabilities from
the agent. A detailed description of these environments is
provided below.

1) Maze task: The Morris water-maze is a classical neuro-
science experiment, in which a mouse swims in a pool with
opaque water, looking for a submerged platform. Variations
of this task are found in several related works, such as [13]
and [14]. This environment is illustrated in Figure 4. In order
to learn the task, an agent has to perform a long sequence of
discrete actions and reach a goal that comprises 0.04% of all
possible states in a 50×50 maze. A binary reward is received
upon reaching the target position.

Preliminary experiments were also conducted with varia-
tions of this task, such as different maze sizes, no walls and

Fig. 4: Illustration of the maze task. Only the state in the
center is rewarded (+1). The agent (A) starts in the upper-left
corner and can move in four cardinal directions. Collisions
with the U-shaped wall or with the borders of the maze are
not penalized but will make the agent return to the previous
position.

up to 5 dimensions. The proposed SNN performed well in
these exploratory experiments and the limiting factor seemed
to be the probability of randomly finding the target, which
becomes exponentially harder as the number of dimensions is
increased. As described in the following section, the acrobot
environment is more suitable to evaluate scalability with higher
dimensional observations.

2) Acrobot: In order to demonstrate control over a higher
and more dynamic state space, we turn to another classical
problem in RL literature. The setup is illustrated in Figure 5
and the goal is to lift the tip of the robot to a certain level. The
environment provides sine and cosine of both joint angles, as
well as the respective angular velocities. The second joint is
weakly actuated and the system includes gravitational pull. To
solve this task, the agent has to consistently swing the actuated
joint, building up the energy. In contrast with the maze, the
acrobot problem does not have a single target state, but the
search is performed over a higher, six-dimensional state space.
In order to encourage policies that reduce the time it takes to
reach the target state, the agent receives a binary reward signal
when the target is reached with lower latency than the last
100 trials. This environment is equivalent to the one provided
by OpenAI Gym [26], except for the reward policy, which is
modified to be binary and sparse.

B. Baseline Models

As seen in Section II, existing spiking architectures would
require an impractical number of state neurons for control
tasks with more than four sensors. Thus, the proposed architec-
ture is compared to Q-learning [27], a classical RL algorithm,
as well as its more recent variation, Deep Q Network (DQN)
[2], both described below. It is worth noting that the present
work is not intended as an advance in general reinforcement
learning. A competitive comparison between spiking and state-
of-the-art neural networks for RL is left for future works and
should include a multiobjective analysis of performance as
well as memory and power requirements.



Fig. 5: Illustration of the acrobot task.

1) Q-learning: this is a classical model-free RL algorithm,
proposed by Watkins [27], itself derived from temporal differ-
ence (TD) learning [28]. An agent tries an action at at a state
st, following a transition to a new state st+1 and a reward r.
By trying actions in different states, the agent eventually can
learn which state-action tuples are more likely to lead to a
future reward. The estimation of this likelihood is stored in a
Q-table Q(st, at). The update is performed after the transition
to the state st+1 as follows:

Q(st, at) = Q(st, at) + α(r + γQmax(st+1)−Q(st, at)),
(4)

where α is the learning rate, γ is the discount factor and
Qmax(st+1) is the maximum Q-value at the state st+1. The
Q-table is randomly initialized with a uniform distribution
between -1 and 1. To induce exploration, the selected action
is not always determined by its value:

at =

argmax
i

Q(st, ai), if R > ε

Random, otherwise,
(5)

where R is a random number and ε is the exploration proba-
bility. A common strategy is to start learning with a high value
of ε and gradually decrease it to a small baseline.

2) DQN: the traditional Q-learning algorithm works well
with a limited number of states and actions, but as demon-
strated in Section IV-D, becomes inefficient for problems
with multiple dimensions. One common solution is to re-
place a Q-table, representing all possible states and actions,
with a parameterized function θ, such as a neural network:
Q(st, at;θt). Then, the update rule in the Equation 4 becomes:

θt+1 = θt + α(Y Q
t −Q(st, at;θt))∇θtQ(st, at;θt) (6)

Y Q
t = r + γQmax(st+1;θt), (7)

where Y Q
t is a target value for Q(st, at;θt), representing

expected value from taking action at on state st.
The deep Q network (DQN) algorithm, proposed by Mnih

et al. [2], introduces two new techniques that significantly im-
prove learning: periodic target network update and experience
replay. This way the target value Y Q

t is computed with an
offline copy of the parameters θt, which is updated every τu
steps. The online neural network is trained through gradient
descent using batches, sampled from a large memory bank of
observed (st, at, r, st+1) transitions.

It is worth pointing to a distinction between Q-learning
and the DQN algorithms. While both Q-learning and the
proposed spiking network learn from discrete inputs, DQN
uses a multilayer perceptron to approximate the Q-function.
On the maze task, this means that DQN would receive as
an input the XY coordinates of the agent. A discrete one-
hot encoding could also be used, as with the proposed spiking
architecture. However, the latter approach greatly increases the
number of input neurons, slowing down the learning process
significantly. On the other hand, when using two neurons as an
input for XY coordinates, a large maze would require pinpoint
accuracy for the agent not to miss the relatively small target
area (0.04% of a 50×50 maze). In both encoding methods,
albeit for different reasons, DQN was found to struggle to find
a path in the maze environment larger than 10× 10. Because
Q-learning is a classical baseline for low dimensional tasks,
DQN was used as a baseline for the acrobot environment only,
where it outperforms Q-learning.

C. Hyperparameters

Hyperparameter selection is an important part of training a
model and usually has significant influence on performance.
A grid search over all possible combinations of parameters is
often impractical due to the computational cost of a single
simulation. Manual tuning is a viable alternative but it is
often not better than performing random trials [29]. Thus,
in order to ensure a fair comparison, the hyperparameters of
the baseline algorithms are optimized. Note that the proposed
spiking network is adjusted manually and optimization is left
for future works.

Considering the large number of parameters and the high
computational cost per evaluation, automatic hyperparameter
search is often preferred. In the present work we employ a
commonly used Tree-of-Parzen-Estimators (TPE) algorithm,
introduced by Bergstra et al. [29]. The hyperparameters are it-
eratively evaluated and optimized to minimize a cost function.
For both the maze and acrobot tasks the cost function is the
area under the latency curve of a trial (see Figures 6 and 8).

The hyperparameter search spaces for the Q-learning and
DQN algorithms are described in Tables I and II. The ex-
ploration fraction refers to the portion of the total number of
trials that the exploration factor takes to decrease linearly from
initial 100% to a baseline of 2%. The search space is based
on values commonly found in related literature, as well as on
preliminary experiments.



TABLE I: Q-learning hyperparameters search space

Hyperparameter Search Space
Learning rate α [0.01, 0.1, 0.2, 0.5]
Discount factor γ [0.5, 0.8, 0.9, 0.95, 0.99]
Exploration fraction [0.01, 0.1, 0.2, 0.5]

TABLE II: DQN hyperparameters search space.

Hyperparameter Search Space
Learning rate α [1e-6, 1e-5, 1e-4, 1e-3]
Discount factor γ [0.9, 0.95, 0.99, 1.0]
Exploration fraction [0.1, 0.2, 0.5]
Activation function [relu, sigmoid, tanh]
Number of hidden layers [1, 2]
Neurons per hidden layer [16, 32, 64, 128, 256]
Optimizer [GD, Adam]
Replay buffer size [1000, 10000, 50000]
Mini-batch size [16, 32, 64, 128, 256]
Update period τa (steps) [500, 1000, 2000]

The optimization algorithm is executed for a minimum of
100 trials and the evaluation is terminated when no better
configuration is proposed in the last 50 iterations. Each op-
timization trial contains 1,000 episodes for the maze task and
2,000 episodes for the acrobot task. The final configurations
for each algorithm are listed below.

Q-learning is used as a baseline for both maze and acrobot
tasks:

• Learning rate α – maze/acrobot: 0.2
• Discount factor γ – maze: 0.95, acrobot: 0.9
• Exploration fraction – maze/acrobot: 0.1
The DQN algorithm is optimized on the acrobot task. We

also evaluate the default parameters provided by OpenAI
Baselines [30], shown in parentheses:

• Learning rate α – 1e-3 (5e-4)
• Discount factor γ – 0.95 (1.0)
• Exploration fraction – 0.1
• Activation function – relu (tanh)
• Number of hidden layers – 2 (1)
• Neurons per hidden layer – 256 (64)
• Optimizer – Adam
• Replay buffer size – 50000
• Mini-batch size – 256 (32)
• Update period τa – 500 (1000)
The manually adjusted parameters of the proposed SNN are

presented in Table III.

TABLE III: Hyperparameters of the proposed SNN

Hyperparameter Maze Acrobot
# of input neurons Ni 100 60
# of hidden neurons Nh 300 300
# of place neurons Np 300 500
# of output neurons No 4 3
Input-hidden n+ and n− 15 15
Hidden-place τe 65 102

Hidden-place τs 106 105

Place-action τe 20 65
Place-action τs 105 104

Fig. 6: Average latency on the maze task. Shaded region is
the standard deviation over 10 trials.

D. Results

The proposed spiking network and the Q-learning algorithm
are evaluated on the 50×50 maze task, described in Section
IV-A1. We measure the latency of each agent — the number of
states it takes to reach the target. Figure 6 shows the average
latency as a function of episodes. The latency is averaged
continuously with a running window of 100 episodes. An
episode is terminated if the agent reaches the goal state or
performs over 2,500 actions. A trial comprises the training of
a single agent over 2,000 episodes and the presented curves
are an average of 10 trials.

As seen in Figure 6, the agent controlled by our multilayer
SNN takes longer than Q-learning to start exploiting a policy,
although both reach a stable latency at about 1,300 episodes.
This result contrasts with previous works, where single layer
spiking networks achieved similar latency decay to TD learn-
ing [13] [14]. A possible explanation is that while the single
layer networks implement a spiking version of TD learning,
our network follows a different approach and relies on synaptic
traces for temporal back-propagation.

Additionally, the proposed network has more layers and
synapses that are subject to modulation by reward. While this
slows down learning, the spiking network is ultimately able
to learn the necessary series of actions to increase reward
incidence and reduce latency. A sample path is illustrated in
Figure 7.

We now evaluate the proposed SNN, Q-learning and the
deep Q network on the acrobot problem. This task requires
accurate control over a 6 dimensional observation space, as
described in Section IV-A2. While DQN networks are trained
on continuous input from the six sensors, both Q-learning and
SNN receive a discrete input with 10 levels for each sensor,
i.e. a 106 state space. The discrete control output is the same
for all agents — apply left, right or no torque.

Despite this being a more challenging task, our SNN agent
is able to learn a control strategy, as shown in Figure 8. As



Fig. 7: Sample paths followed by an SNN on the maze task.
Color codes correspond to episodes from the same trial.

Fig. 8: Average latency on the acrobot task. Shaded region
is the standard deviation over 10 trials. Standard deviation is
high for the default DQN and is not shown for readability.

in the maze task, the presented latency is averaged over 100
episodes. The termination of a single episode is achieved after
500 steps or when the acrobot is able to reach the target height,
illustrated in Figure 5. As this is a more difficult task, a trial
lasts for 10,000 episodes.

An analysis of Figure 8 shows that Q-learning is unable
to find efficient control strategies. This is expected, as on
this task the Q-table has 3 × 106 entries, accounting for all
possible state-action combinations. Executing the algorithm
for significantly longer (100,000 episodes) also does not
improve the average latency. On the other hand, the proposed
SNN is able to bring the average latency down to about 300
steps. An example of a successful episode is shown in Figure
9.

Note that both Q-learning and the SNN perform control over
the same discrete space. Surprisingly, the default configuration
of DQN struggles to learn a stable controller, although at times
it can reach better solutions on average than the SNN agent.

Fig. 9: Time-lapse of a successful episode with the SNN
controller. The agent reaches the goal height in the final step.
A video sample is available at https://youtu.be/r5BZMZ4hb_o.

The DQN with optimized hyperparameters is more stable than
default version and learns faster than other agents, although it
is still less stable than the spiking network.

V. CONCLUSION AND FUTURE WORK

The present work advances the field by presenting a new
spiking architecture that overcomes a limitation of previous
models in terms of sensory space scalability. Additionally,
the proposed network is aimed for implementation on neuro-
morphic hardware by using sparse connectivity and simplified
neural and plasticity models.

Experimental evaluation shows that our SNN outperforms
traditional Q-learning on an acrobot task with six-dimensional
observations, using 60 input and 800 hidden neurons. Such
task would require 106 input neurons in the previously pro-
posed models [13]–[15], [19]. While an optimized deep Q-
network is able to find better solutions on this task, the spiking
controller is more stable and does not require a large memory
bank. It is also worth noting that our network is trained through
simplified STDP instead of gradient descent, which greatly
improves potential energy requirements [22].

Future endeavors could focus on improving some aspects
of the proposed architecture:

• Action space scalability – most interesting problems also
involve large action spaces. Hierarchical organization [31]
and MAP-Elites [32] are two promising methods for
learning in complex action spaces and could be combined
with the proposed spiking network.

• Place neurons – the current plasticity rule between hidden
and place layers could be improved to make more effi-
cient use of the neurons. For instance, similar states that
do not require a distinct action could gradually converge
on a single place neuron.

https://youtu.be/r5BZMZ4hb_o


• Spatio-temporal processing – in the current implemen-
tation, the agent is provided at any time with enough
sensory information to perform the task. For example, an
acrobot agent receives both angles and angular velocities
of the joints at each time step. In future work, we plan to
use additional synaptic traces and delays in order to learn
the necessary spatio-temporal filters from raw sensory
data.

• Hyperparameter optimization – a multiobjective opti-
mization of hyperparameters would be an interesting
research direction, leveraging, for example, learning per-
formance and model complexity. Additionally, evolution-
ary algorithms such as NEAT [33] have been shown
to generate efficient spiking controllers for simple tasks
[34]. An evolutionary algorithm could be complementary
to the online synaptic plasticity presented here.
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