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Abstract—The electrocardiogram (ECG) is a non-invasive
method to detect cardiovascular diseases (CVD), the most com-
mon cause of death in the world. The recognition of heartbeat
morphologies present in the ECG signal is an effective way to
detect CVDs prematurely. Many approaches were developed for
this purpose, such as the use of Wavelets, High Order Statis-
tics (HOS), Local Binary Patterns (LBP), Random Projection,
Fiducial points, and Hermite Polynomials. Unfortunately, most
parts of these approaches suffer from the high variability of
ECG signal features and conditions. Also, it is common to use
more than one of them simultaneously, which makes it hard to
infer the contributions of each one. This work presents a new
robust methodology to extract features for heartbeat morphology
classification. Moreover, we introduce new labels for a small set of
morphologies present in MIT-BIH Arrhythmia database, taking
into account only the QRS complex (the 3 more representative
waves of a heartbeat) instead of the whole heartbeat. We evaluate
each approach in isolation and the results show that our method
outperforms other well-known strategies.

Index Terms—ECG signal, QRS morphology, feature extrac-
tion, prediagnosis.

I. INTRODUCTION

Cardiovascular diseases (CVD) are the most common cause
of death globally, producing immense health and economic
burdens. According to the World Health Organization (WHO):
“People with cardiovascular disease or who are at high cardio-
vascular risk need early detection and management using coun-
seling and medicines, as appropriate”. Despite the continuous
advance of medicine, the ECG continues to be a crucial non-
invasive tool to detect CVD. As a result, the ECG data analysis
has become a significant field of study. Most of the useful
information within ECG data is present on the intervals and
amplitudes which characterizes the significant regions (wave
peaks and boundaries) that compose the standard cardiac cycle
(heartbeat) [14]. These characteristic waves occur due to elec-
trical changes caused by depolarization/repolarization cycles
inside the heart. Depolarizations result in atrial contractions,
which are associated with P waves, and ventricular contrac-
tions, which are associated to the QRS complex. Polarization
results in the return of the ventricular mass to the relaxation
state, producing the T waves. The junction of all these waves
forms the PQRST cycle.

During, PQRST complex analysis (shape, duration, interval
patterns and etc.) has received much attention from the re-

search community, resulting in significant advances in many
areas like disease diagnosis [12, 17], heartbeat segmentation
[14], and heartbeat delineation [1, 14, 25]. Incidentally, the
QRS complex is the most characteristic waveform of the
PQRST cycle, presenting, in general, a higher amplitude than
the other waves.

The morphological structure (curve shape) of the QRS
complex is one of the main features of a heartbeat and may
indicate many types of diseases or disorders [2]. In [7],
the authors have demonstrated that morphologies serve to
robustly predict long-term mortality in Left Ventricular Pacing
(LVP) patients. Another important task solved by recognizing
morphologies is detecting arrhythmias [22, 23]. Furthermore,
the correct identification of the heartbeat shape helps on
prognostics: patients that present non-LBBB (Left Bundle
Branch Block) morphology commonly do not respond well for
specifics treatments, like Cardiac Resynchronization Therapy
(CRT)[20]. Finally, the QRS morphology is a better indicator
than the QRS duration for longterm survival, since people with
LBBB morphology present less ischaemic cardiomyopathy
and atrial fibrillation [9].

The importance of the QRS morphology for diagnos-
tics/prognostics motivated many approaches to recognize such
shapes, such as the use of Wavelets [13, 14], Higher-Order
Statistics (HOS) [3, 18, 19], Random Projection [6], Fiducial
points of the heartbeat [17] , and Hermite Polynomial [10].
Unfortunately, most of these features do not perform well
when mismatch data is present, i.e., they need the test instances
to be similar to the training set. Besides, since most parts of
these methodologies are evaluated in conjunction with other
approaches, it is hard to determine the real efficiency of each
one.

This work introduces a new approach to extract features
from the QRS complex based on the so-called mathematical
models [5] and presents a comparative study with all method-
ologies previously mentioned. We named our approach as fea-
ture extraction via residuals from modeling with composition
of mathematical functions (RCMF). From five mathematical
models built upon three functions (Rayleigh, Gaussian, and
Mexican-hat), we create a morphological descriptor related
only to the shape of each beat, instead of the amplitude and
duration of its waves.
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To validate our approach, we consider the well-known
public dataset MIT-BIH Arrhythmia database. Typically, this
dataset contains five classes of morphologies representing
arrhythmias: N corresponding to any heartbeat which does not
pertain to other categories, S, supraventricular ectopic beat,
V, ventricular ectopic beat, F, fusion beat, Q, unknown beat.
Different from the previous works, we do not focus on clas-
sifying the entire heartbeat morphology, but only on the QRS
complexes morphology. This classification is already made
implicitly in the other approaches, which generally extract
the QRS complex, apply its descriptor and then classify the
complete cardiac cycle. However, to ascertain the describing
ability of the QRS complex provided by each method, we
will only classify its morphologies. For this purpose, we use a
synthetic ECG simulator to produce artificial ECG data for the
four typical morphologies qRs, RS, rRs and QS to constitute
our training set. After that, we select a small portion of the
MIT-BIH dataset (14 subects) whose QRS complexes contain
the four types of morphologies qRs, RS, rRs, QS and apply
an algorithm to detect QRS complex. The full set of beats is
labeled by a specialist concerning each morphology and serves
as our validation set. The performed experimental results show
that our methodology outperforms other well-know feature
extraction methodologies available in the literature.

The remaining of this paper is organized as follows. Section
II presents the methodology applied for generating artificial
signals and the common features applied for heartbeat classi-
fication. Section III shows the proposed approach based on
mathematical models. Section IV details the corresponding
related work within the literature. Section V describes the
training/test datasets applied in this work. Description of the
experiments and results using the proposed labels for MIT-
BIH can be seen in Section VI. Finally, Section VII presents
our conclusions and comments for future works.

II. ECG DATA SIMULATION

The QRS complex presents a high variability, since both
the shape and the amplitude of the waves are governed by
multiple individual factors, like the shape/position of the heart
and the presence and nature of pathologies, among others [11].
As a result, the QRS complex can be categorized depending
on the shape of its waves. In this study, we use the 4
common variations(qRs, RS, QS and rRs), presented in Fig.
1. Table I presents the average of corresponding wavelengths
and amplitudes.

TABLE I: Wave amplitude/duration for QRS waves [11].

Type of ECG normal values
Wave Amplitude(mV) Duration(Seconds)

Q 0.00 - 0.30 0.06 - 0.10
R 0.60 - 2.10 0.06 - 0.10
S 0.00 - 0.60 0.06 - 0.10

To construct a pattern recognition model based on different
morphologies, the initial knowledge base must be composed
by specific ECG signals of each morphology. Unfortunately,

Fig. 1: Representation of the morphologies of the QRS com-
plex used in this work: from left to right, we have qRs, RS,
QS and rRs morphologies.

Fig. 2: Example of a synthetic PQRST cycle signal produced
by the simulator.
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labeling the ECG signals involves time and the involvement
of a specialist, besides patients’ permission. To mitigate this
problem, a heartbeat simulator has been developed which can
accurately approximate a real beat [15].

The simulator is characterized by a dynamic system based
on three differential equations capable of generating realistic
synthetic ECG signals. It is possible to specify the mean
frequency and the standard deviation of the heart rate, the
power spectrum of the RR time-series, the QRS complex
morphology, Low Frequency (LF) and High Frequency (HF)
bandwidth for heart rate variability along with the LF/HF ratio.
Finally, the amplitudes and modulations of the PQRST cycle
can also be specified, allowing a considerable variability for
generated synthetic ECG signals.

Fig. 2 illustrates an example of a synthetic PQRST complex
containing a QRS-complex with a qRs morphology.

III. ECG FEATURE EXTRACTION METHODOLOGY

Typical ECG signals are composed by many heartbeats.
Each beat represents one ECG complex, or in other words,
a PQRST cycle. Also, every ECG complex contains a QRS
complex formed by the waves Q, R, and S. For our proposal,
we need to find and extract the QRS-complex held in each
ECG complex. The task of separating each QRS complex of
an ECG signal is named QRS detection.

Among all approaches, Pan Tompkins[4] is a well-known
technique to detect the QRS-complex. The Pan Tompkins
algorithm identifies QRS complexes using digital analysis of
amplitude, width, and slope of the ECG wave. Also, it uses a



patient-specific threshold for QRS peak detection, periodically
adjusted to adapt to the changes in QRS morphology and heart
rate.

After using Pan Tompkins algorithm for beat detection
within the ECG signal, we obtain a set of QRS complexes,
from which the features will be extracted. Our goal is to
classify the morphology present in each QRS complex. Due to
the significant morphological variability of the heartbeats, the
process for feature extraction needs to be accurate and capture
the correct information for each morphology, independent of
amplitude levels, frequency sampling, and intrinsic noise of
the ECG signal.

In our approach, we adopt three different functions that
present a strong correlation with the structures of typical ECG
morphologies presented in Fig. 1. The functions are Gaussian,
Mexican Hat and Rayleigh, respectively defined below:

N (x|µ, σ2) =
1√
2πσ2

e−(x−µ)2/2σ2

, (1)

M(x|λ) = 2√
3λπ

1
4

(
1−

(x
λ

)2
)
e−x

2/2λ2

, (2)

R(x|λ) = x

λ2
e−x

2/2λ2

, (3)

where µ and λ are location parameters and σ2 is the vari-
ance/scale parameter of the functions. Each of these functions
has similarities when compared with some ECG morphologies
and, by combining them, it is possible to find patterns that
identify a high number of morphologies. Fig. 3 shows the
distribution of the cited functions.

Fig. 3: Illustration of the functions Rayleigh, Gaussian and
Mexican Hat.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

Time (seconds)

Vo
lta

ge
(m

V
)

Rayleigh
Gaussian

Mexican Hat

We build five different mathematical models by combining
the individual functions: Gaussian, Mexican Hat, and Rayleigh
. Each model is composed by two of these functions, according
to Table II, the choice of functions was made in order to
represent the largest number of morphologies, with the least
number of models possibleweslley. For simplicity, we will call
A/B, the first and second/functions used to build each model.

To compose models I and II, first we use each compo-
sition function to generate an individual signal model in
which the number of points on the output window is linearly
proportional to the number of points of the QRS complex

TABLE II: Composition of each proposed mathematical
model.

Mathematical Models
Model Function A Function B

I Gaussian Gaussian
II Mexican Hat Mexican Hat
III Rayleigh (-1)Rayleigh
IV (-1)*Rayleigh Rayleigh
V Rayleigh Rayleigh

window. We do this process as follows: given the size of
the QRS complex window w, we build two models, A and
B, with length sa and sb, respectively. The length of the
models (i.e., the number of points) is chosen from the range
[0.5w, 0.7w, 0.9w, 1.1w, . . . , 1.9w, 2w]. Then, we remove the
first/last k points of the models A and B, where k is chosen
from [0.1s, 0.2s, . . . , 0.5s, 0.6s]. The process for selecting the
parameters will be discussed in detail later. Besides that, we
extend the models A and B by repeating their first/last value
w times. After that, we select the peak with most significant
absolute value for models A and B, and normalize them,
forcing their peaks to have the same value. Finally, we merge
the models overlapping both peaks. More specifically, the left
part of the final model has the same distribution of the left
part of the composition function A centered on their most
significant peak, while the right part of the model has the same
distribution of the right part of the function B, also centered
in their most significant peak. Fig. 4 shows the final model
merged from models A and B. From this point, for the sake
of simplicity, we will omit that the left and right parts of a
signal are always related to its most significant peak.

Fig. 4: Fitting the original signal above extented version of
model II. In green line: the heartbeat; Black pointed line:
RCMF model; Cut A: cut point for function A. Cut B: cut
point for function B. Start/end beat represent the limits of
heartbeat window.
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As illustrated by Figs. 5a, 5b, 5c and 5d, for the models III,
IV, and V, the intersection of the two composition functions
is the first point with zero value after/before respectively from
the corresponding most significant peak of the functions A
and B. The highest peaks from both functions are preserved



(note that they do not need to have the same value). The only
procedure differences to build models I, II from III, IV, and IV
is the way to merge the left and right parts. The first models
have merged crossing their most significant values instead of
the zero-crossing values.

Each composition function is tuned as follows. First, we
define a range of parameters to experiment and construct
the current model using the composition functions A and B,
usually µ = 0, σ2 and λ ∈ {0.1, 0.5, 1, 1.5, . . . 9.5, 10}. After
building the model, it is necessary to find the R peak (for
inverse R peaks like on QS morphology, we multiply the signal
by -1) of a given heartbeat and the most significant peak of
the model to normalize them in such a way that both maxima
are at the same point. The construction of the proposed model
guarantees that the size of the model is greater than or equal
to the size of the QRS complex window. To correct this, we
cut the remaining portion of the model based on a window of
size equal to the QRS complex window, centered on the most
significant value of the model.

At this point, both the signals, the heartbeat and the model,
have the same length. To evaluate the selected parameters, we
calculate the Mean Square Error (MSE) for the left/right part
of the heartbeat/model. There is no difference in calculating
the MSE separately for segmented parts of the ECG heartbeat,
but since their morphology is not symmetric, it is possible
to acquire some information concerning how differently the
model fits different portions of the signal.

After the previous step, we have ten features composed
by the evaluation errors of the mathematical models for each
heartbeat piece. A normalization procedure is than applied for
the feature set, to force the interval range [0, 1]. This procedure
ensures that the features do not represent absolute errors, but
relative indicators concerning the performance of the different
models for fitting a given heartbeat.

Finally, we add a variable indicator concerning the sign of
the R peak to the feature set. This indicator will help to decide
between morphologies with opposite signs but with very
similar relative errors. Algorithm 1 summarize the proposed
method.

IV. RELATED WORK

Prevention of death by heart disorders is an essential field
in medicine. The advances of computer-aided diagnosis propel
different works to detect/prevent such diseases. Among all
approaches, heartbeat shape recognition has shown promising
results when applied to identify a variety of heart disorders.
Wavelet-based approaches have been one of the first family of
techniques proposed for identifying heartbeat morphologies.
In Martı́nez et al. [14], a Wavelet-based ECG delineator
was proposed to deal with motion artifacts, muscular noise,
baseline wandering, and changes in the QRS morphology. In
that work, the morphology of QRS complexes depends on
the number of negative/positive peaks, which are governed
by thresholds, at scales 21, 22, 23, 24, 25 related to filtered
versions of the ECG signal [14]. However, detecting peaks
is a task very sensitive to noise presence. Another common

Algorithm 1 Feature extraction via residuals from modeling
with composition of mathematical functions (RCMF)

Input: QRS complex.
Output: the best found MSE (left and right parts) for each

mathematical model. Original sing of R peak.
1: for each function in Eq. (1), Eq. (2) and Eq. (3) do
2: for each parameter set (w, s, k, λ µ, σ2) do
3: Build the models A and B from composition func-

tions A and B and QRS window of size w.
4: Remove the first/last k points on the models A and

B.
5: Repeat the first/last w points on the models A and

B.
6: Normalize the models A and B.
7: Combine the models by overlapping their most sig-

nificant peak peaks for models I and II and preserving
both peaks for models III, IV and V.

8: Match the most significant value of the final model
and the inputted QRS complex.

9: Cut the remaining points on the final model to build
a model with window of size w.

10: Find the most significant peak of the final model.
11: Calculate the MSE from left/right part of the

model/heartbeat matching the most significant peak
of the final model and the R peak of the QRS
complex.

12: end for
13: Select the best MSE (sum of the MSE of left and right

parts) among all tested possibilities.
14: end for
15: Calculate the sign of the R peak.

wavelet approach is to consider Daubechies wavelet (db1) to
extract features according to Mar et al. [13]. As in [17], we
have opted to use a 3-level decomposition to build a 23-feature
array.

Later, statistical ECG descriptors were proposed in [3, 19],
both based on the second, third, and fourth-order cumulants,
with robustness to additive noise and capable of extracting in-
formation for nonlinear behavior. On the other hand, additional
assumptions are needed, like a zero mean of the heartbeat
signal. As in [17], each heartbeat was split into five bins and
had their kurtosis and skewness extracted, resulting in a 10-
feature array.

Concomitantly, [16] presented a curve fitting methodology
for on-line heartbeat type recognition. After the QRS detec-
tion, the heartbeat was fitted using Hermite basis functions,
which have the coefficients extracted and applied as features
to characterize the shape of the signal. The main idea of
this work is based on [10], which considers the similarity
of the forms between fitted Hermite polynomials and QRS
complexes. Unfortunately, it is possible to insert unusable
features, since not all coefficients need to represent QRS
morphologies well.
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(a) Model built upon two Gaussian functions.

0 5 · 10−2 0.1 0.15 0.2 0.25
−0.5

0

0.5

1

Time (seconds)

Vo
lta

ge
(m

V
)

M. Hat 1
M. Hat 2

(b) Model built upon two Mexican hats.
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(c) Model built upon two Rayleigh functions.
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(d) Model built upon two Rayleigh functions.

Fig. 5: Mathematical models built using composition functions. The mathematical model IV is identical to model III, but its
peaks are inverted. Note that model V differs from III only by the signal of the Rayleigh functions.

Moreover, many other approaches were proposed to classify
arrhythmia. The first one is the 1D-local binary patterns (a
variant of 2D-local binary pattern [8]) where each point of
the heartbeat is compared with the neighbors producing a
binary code. The histogram of the frequency of each binary
pattern is used as a feature. The original work proposes an
8-neighbor 1D-LBP built 59-dimensional descriptor for a 180-
dimensional heartbeat [17]. Secondly, in [6], an ensemble
of SVM’s with multiple random projections was applied to
heartbeat classification. The features can be understood as
multiple independent groups of random features. In our work,
we reproduce the author’s experiment using 15 classifiers with
50 features for each projection and using the majority vote
to predict the classes. Finally, Mondéjar-Guerra et al. [17]
recently proposed a morphological descriptor of the PQRST
complex based on four windows. For a heartbeat with a
window size of 180 samples (500ms) (centered on the R peak),
the morphological descriptor is calculated using the Euclidean
distance between the R peak and the points below:

1) max(beat[0:40])
2) min(beat[75:85])
3) min(beat[95:105])
4) max(beat[150:180])

After that, all features are normalized between 0 and 1.
Nevertheless, all of these approaches are severely affected by

noise incidence.
Finally, many deep neural networks were proposed showing

promising results [21, 24].In this work, we reproduce the CNN
1D network at [21], with seven blocks of convolutional lay-
ers(128 filters, width 5), max-pooling, and dropout(rate=0.5).
In the end, a global average pooling, 3 Full connected layers
with (256/128/64), and softmax. weslley

V. DATASET AND PRE-PROCESSING

We apply a pre-processing step before extracting features
from the available data. Following most of the previous works,
for each signal we remove the baseline. We use a high order
(10) polynomial to calculate our baseline. Then, we subtract
it from the original signal. Similarly to [17], we have opted
not to add any other noise filter or modification to preserve
most of the original signal.

After extracting the heartbeats, we select the QRS segment
as 71 data points around the R peak (31 points before and 35
ones after). Since the data sample rate is 360 Hz, a window
of 71 points gives us approximately 200 ms, which is long
enough to cover all the QRS complexes experimented in this
work.

A. Artificial dataset

Using the previously described ECG data simulator, 10
synthetic signals were created for the morphologies qRs, RS,



QS, and rRs, composing a total of 40 signals with varying
amplitudes and durations, according to Table I. The frequency
of the signals was set at 360 Hz, with the heart rate ranging
from 60 to 100 beats per minute and LF/HF ratio of 0.5
and approximately 2 hours in duration. For each signal, we
apply the Pan Tompkins method to extract 25 heartbeats,
which had the P and Q waves removed, leaving only the
QRS complex. This results in a total of 1000 heartbeats, 250
for each morphology. For each beat, a window of size 35
samples centered around its R peak was used to extract the
QRS complex.

B. MIT-BIH Dataset

The MIT-BIH Arrhythmia dataset contains 48 half-hour
excerpts of two-channel ambulatory ECG recordings obtained
from 47 subjects studied by the BIH Arrhythmia Laboratory
between 1975 and 1979. To build our test dataset, we select
fourteen subjects (100-lead 1, 100-lead 2, 101-lead 1, 103-lead
1, 105-lead 2, 106-lead 1, 108-lead 2, 111-lead 2, 215-lead 1,
116-lead 2, 117-lead 1 219-lead 1, 219-lead 2, 121-lead 2,
223-lead 2, 123-lead 2) that contain the morphologies qRs,
RS, QS, and rRs. Then, we apply the Pan Tompkins method
to extract a set of heartbeats for each subject/morphology
class. After that, the extracted QRS complex windows with
71 samples, or approximately 200ms, were manually labeled
by a specialist, forming a dataset with 240 QRS complexes
(60 for each morphology).

VI. EXPERIMENTAL RESULTS

To investigate the efficiency of the proposed features, we
conducted two experiment designs that aim to compare our
proposed work and other standard feature extraction tech-
niques used on ECG signal classification.

In the first one, we assessed the efficiency of all feature
extraction methods using only the simulated data provided
by the synthetic generator. We randomly selected 2/3 of the
instances for training and 1/3 for testing, ensuring that QRS
complexes of the same time-series must be present only on
training or testing set, but not on both at the same time. We
chose Support Vector Machine (SVM) as the learning model,
with the hyperparameters tuned following a 5-fold cross-
validation in a grid-search procedure. For the hyperparameter
search space, we chose C ∈ {2−1, 2−1, 2−1, . . . , 212, 215} and
γ ∈ {2−15, 2−13, 2−11, . . . , 21, 213} for the Gaussian kernel,
and C ∈ {2−1, 2−1, 2−1, . . . , 212, 215} for the linear kernel.
The experiment was repeated 20 times.

To promote a fair comparison, we propose some adapta-
tions for each approach when necessary. At first, since the
morphological descriptor by Mondéjar-Guerra et al. [17] was
designated for a heartbeat with length 180 samples (500ms)
instead of 71 (∼200ms), a rescale interpolation was applied to
ensure the correct length. Besides that, the original methodol-
ogy was designated for the whole heartbeat (including the P
and T waves) choosing 4 regions to extract their features. In
this work, we set the first and four regions on the extremities,
and move the second and third regions, both with window
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Fig. 6: Noise levels of a real heartbeat.

size of 10 samples along the time axis in opposite directions,
skipping the same time of their window. Finally, we repeat this
procedure increasing their window(second and third fuducial
regions) size for 20, 30 and 40.

The original approach of Hermite Polynomials extends the
QRS complex by adding 45 zero values to each of their
extremities. Then, all QRS complexes are linearly normalized
in the range [−1, 1], and finally, the mean level of the first
and the last data points is subtracted. We choose not apply
this preprocessing step, since, in our preliminary experiments,
it achieved poor results.

For the wavelet approach by Martı́nez et al. [14], the hyper-
parameter α was tuned within the values [0.4, 0.5, 0.55, 0.6].
This hyperparameter represents a threshold to identify real
peaks instead of noise. The remaining methods were used
without any modifications. We emphasize that only the ar-
tificially labeled data were used to select the hyperparameters.

It is interesting to note that according to Table III, all feature
extraction methods achieve a good performance. In fact, only
the 1D-LBP method had an accuracy lower than 90%. This
finding confirms our initial hypothesis that artificial data can be
learned by well-known heartbeat feature extraction methods.

TABLE III: Test results with artificial data.

Methods Accuracy
Mondéjar-Guerra et al. [17] 0.980 ± 0.015
Wavelets Martı́nez et al. [14] 0.930 ± 0.030
Wavelets Mar et al. [13] 0.981 ± 0.054
Random Projection 1.000 ± 0.000
RCMF 0.997 ± 0.003
1D-lBP 0.898 ± 0.035
Hermite Polynomial 0.961 ± 0.051
1D CNN 0.982 ± 0.031
High Order Statistics 0.991 ± 0.018

The second experiment consists of using the artificial data
to train the models and then evaluate them using the real data.
We tuned all parameters using a 5 k-fold cross-validation with
the artificial data set. Besides that, we repeat the experiment
20 times. To make the artificial data as more realistic as pos-
sible, for each extracted heartbeat, we repeat the experiment



adding a Gaussian noise with mean 0 and variance within the
values [0, 0.2rms(s), 0.3rms(s), 0.4rms(s)], where rms(s)
represent the root mean square level of the heartbeat. Fig. 6
illustrates the noise levels considered in this experiment.

Initially, we expected that all methods would have similar
performance on the first and second experiments. However,
as shown in Table IV, the feature sets obtained by wavelets
and 1D-LBP achieved a poor performance in the second
experiment when compared to the first experiment. Thus,
we can hypothesize that these methods cannot handle slight
differences between training and test sets. For instance, the
wavelet features are based on peak detection, being therefore
very sensitive to noise addition.

Apart from this slight discordance, the other methods
performed well with accuracy greater or equal than 70%,
including the other wavelet approaches. As expected, the
artificial noise on the training data set provided a significant
impact on the performance of the methods. It can be noticed
that in most cases there were improvements in the accuracy for
the 1◦ and 2◦ noise levels, possibly indicating that those noisy
artificial signals are better approximations of real heartbeats
with muscle noise.

It is important to note that Hermite polynomial and RCMF
(our approach) acquired the best results among all the tech-
niques. Both methodologies are based on fitting curves, which
explain why they can better recognize the shape of the heart-
beats. Our approach is the best in 3 of 4 scenarios, and it has
obtained equal statistical results in one. This finding reinforces
the efficiency of the proposed method. To support this, we
have used the Kolmogorov-Smirnov test to verify whether two
empirical data distributions are the same. In our experiments,
it was used to compare pairs of classifiers and assess if the
performance of any classifier is significantly different. Table V
shows the results for our approach and Hermite Polynomials,
for all noise levels.

According to the performed Kolmogorov-Smirnov test, we
cannot reject the null hypothesis (two samples are drawn
from the same distribution) if the p-value is greater than
0.05, which means that the performance of two models is
significantly different. Considering this definition, we can
verify that the RCMF approach significantly outperformed
Hermite polynomial in the first 3 of 4 scenarios and it has
statistically equal results on the other one. In summary, RCMF
constitutes a valid alternative to other standard approaches,
since they present a better or equal accuracy.

VII. CONCLUSION

Early detection of cardiovascular diseases (CVD) is a rel-
evant field in medicine. The current approaches have many
drawbacks, such as being noise sensitive or presenting poor
generalization on unseen data. To overcome those issues, we
proposed a new method, named feature extraction via residuals
from modeling with composition of mathematical functions
(RCMF), for the classification of the QRS morphology in ECG
signals.

Based on the results obtained from computational exper-
iments, we have verified that the RCMF approach achieved
better accuracies when compared to other well-known feature
extraction techniques for heartbeat classification. Additionally,
we proposed new labels for some records of the MIT-BIH
Arrhythmia database.

Future work may include new compositions of functions,
like beta, triangular and bimodal distributions, aiming to
extract information for new morphologies.
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Guillermo Cámara-Chávez, and David Menotti. Ecg-
based heartbeat classification for arrhythmia detection: A
survey. Computer methods and programs in biomedicine,
127:144–164, 2016.

[13] Tanis Mar, Sebastian Zaunseder, Juan Pablo Martı́nez,
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