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Abstract—This paper aims to provide a useful framework
for extreme learning machines (ELMs) on Cayley-Dickson alge-
bras. Cayley-Dickson algebras, which include complex numbers,
quaternions, and octonions as particular instances, are hyper-
complex algebras defined using a recursive procedure. Firstly,
we review some basic concepts on Cayley-Dickson algebras
and formulate Cayley-Dickson matrix product using real-valued
linear algebra. Then, we propose the Cayley-Dickson ELMs and
derive their learning using Cayley-Dickson least squares problem.
Lastly, we compare the performance of real-valued and four-
dimensional Cayley-Dickson ELM models, including quaternion-
valued ELM, in an experiment on color image auto-encoding
using the well-known CIFAR dataset.

Index Terms—Feedforward neural network, extreme learning
machine, hypercomplex number system, Cayley-Dickson algebra.

I. INTRODUCTION

Hypercomplex algebras over the real field are known to
be of crucial importance for modern mathematics and appli-
cations. For example, complex numbers are vital for digital
signal processing and information theory [1]. Quaternions are
of unparalleled value for modeling 3-dimensional movement,
such as in graphic design and automated control [2]. Octo-
nions, also known as Cayley’s numbers, are most commonly
used in physics, mainly in string theory, special relativity,
and quantum logic [3]. It turns out that the multiplication on
complex numbers, quaternions, and octonions can be defined
using the Cayley-Dickson construction [4].

The Cayley-Dickson construction is a recursive process
which yields an infinite sequence of algebras known as
Cayley-Dickson algebras [5], [6]. Unfortunately, the Cayley-
Dickson construction results weaker algebras. Namely, we
know that complex numbers are commutative, associative, and
alternative. Quaternions, which can be derived from complex
numbers using the Cayley-Dickson construction, are not com-
mutative but associative and alternative. From quaternions,
the Cayley-Dickson construction yields octonions. Although
alternative, octonions are neither commutative nor associative.
The next algebra, called sedenions, are neither commutative,
associative, nor alternative. Notwithstanding, in this paper we
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show that the Cayley-Dickson algebras can be used to define
effective hypercomplex-valued neural networks.

Hypercomplex-valued neural networks (HvNNs) extend tra-
ditional real-valued neural networks using hypercomplex num-
ber systems. Examples of HvNNs include complex-valued
[7], [8], hyperbolic-valued [9]–[11], quaternion-valued neural
networks [12], [13]. Besides treating high-dimensional data as
a single entity, these neural networks can cope appropriately
with phase information and rotations, for instance. Applica-
tions of HvNNs include signal and image processing [14]–
[23], classification and prediction [24]–[29]. In this paper,
we focus on hypercomplex-valued extreme learning machines
defined on Cayley-Dickson algebras.

Extreme learning machines (ELM) are a type of feedforward
neural networks introduced by Huang [30] in the early 2000s.
This architecture consists of a multilayer perceptron (MLP)
in which all but one layer have fixated randomly initialized
parameters, and training on the last layer is performed by
least squares optimization. This has been proven to main-
tain the universal approximation capabilities of MLP while
also drastically decreasing computational complexity and,
thus, training time [31]–[33]. Complex-valued and quaternion-
valued ELMs have been developed respectively by Li et al.
[34] and Minemoto et al [28] as well as Lv et al. [35].
Furthermore, complex-valued and quaternion-valued ELMs
have outperformed real-valued ELMs with compatible total
number of trainable parameters for certain high-dimensional
data related tasks. This motivated us to investigate ELMs
on Cayley-Dickson algebras as tools for high-dimensional
data processing, common to image processing, time series
forecasting and general classification and regression tasks.
Precisely, in this paper we focus on ELMs defined on four-
dimensional Cayley-Dickson algebras with application as color
image auto-encoders.

The paper is organized as follows: Section II reviews basic
concepts of Cayley-Dickson algebras. Matrix operations in
Cayley-Dickson algebras and their equivalence to real linear
algebra are detailed in Section III. Section IV introduces
the Cayley-Dickson ELMs as well as their training algo-
rithm. Computational experiments concerning color image
auto-encoding are decribed in Section V. The paper finishes
with the concluding remarks in Section VI.
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II. A BRIEF REVIEW ON CAYLEY-DICKSON ALGEBRAS

Let us begin by recalling the origins of Cayley-Dickson
algebras. Basically, the Cayley-Dickson algebras generalize
the complex-numbers, quaternions, and octonions. Although
octonions have been discovered by Graves [3], they are
also called Cayley numbers due to the works of Cayley in
mid 19th century. In 1919, Dickson formulated a recursive
process from which complex numbers are obtained from real
numbers, quaternions are obtained from complex numbers, and
octonions are obtained from quaternions [36]. Later, in 1922,
Albert formalized this iterative process which is known as
the Cayley-Dickson construction [37]. Albert’s work allows
for the construction of an infinitely long sequence of algebras
with doubling dimension, as observed in complex-numbers C,
quaternions Q, and octonions O of dimensions respectively 2,
4, and 8.

In this section we review the basic definitions regarding
the Cayley-Dickson construction. Although Cayley-Dickson
algebras can be defined on an arbitrary field F, in this paper we
only consider real numbers as the ground field. Furthermore,
we shall adopt the generalized construction presented in [6].

Definition 1 (Generalized Cayley-Dickson Algebras). The first
Cayley-Dickson algebra is A0 = R, the real numbers, with the
identity mapping as the conjugate. Given a non-zero scalar
γk ∈ R called generator, the kth Cayley-Dickson algebra is
defined recursively as the Cartesian product Ak−1 × Ak−1,
that is,

Ak = {(x, y) : x, y ∈ Ak−1}, k ≥ 1, (1)

where addition, scalar product, multiplication, and conjugate
are defined, using the operations from Ak−1, as follows for
all (x, y), (z, w) ∈ Ak and α ∈ R:
• Addition:

(x, y) + (z, w) = (x+ z, y + w). (2)

• Scalar product:

α(x, y) = (αx, αy). (3)

• Multiplication:

(x, y)(z, w) = (xz + γkw
∗y, wx+ yz∗). (4)

• Conjugation:
(x, y)∗ = (x∗,−y). (5)

It can be easily verified that algebras derived from the
Cayley-Dickson construction satisfy

dimAk = 2 dimAk−1 = 2k dimR = 2k.

Therefore, the dimension of the algebras obtained by Defini-
tion 1 is a power of two.

Remark 1. The Cayley-Dickson algebra depends on the
previous algebra Ak−1 and the generator γk. Therefore, we
can write

Ak ≡ Ak−1[γk]. (6)

TABLE I
MULTIPLICATION TABLE OF QUATERNIONS.

R [−1,−1] e1 e2 e3 e4
e1 e1 e2 e3 e4
e2 e2 −e1 e4 −e3
e3 e3 −e4 −e1 e2
e4 e4 e3 −e2 −e1

More generally, we can derive the Cayley-Dickson algebra
Ak from R using generators γ1, γ2, . . . , γk. In other words,
we have

Ak ≡ R[γ1, γ2, . . . , γk]. (7)

As pointed out previously, Definition 1 is obtained using
the generalized construction presented in [5], [6]. Many re-
searchers, however, consider generators γk = −1 for all k ≥ 1.
Aiming to keep the formulation as general as possible, we
consider γk as a non-zero scalar.

In analogy to complex numbers, an element (x, y) ∈ Ak

can be written as x+yuk, where uk ∈ Ak is a hypercomplex
unit in Ak [6]. This hypercomplex unit is defined by uk =
(0, 1), where 0 and 1 denote respectively the zero and the
identity element of Ak−1. Furthermore, it satisfies the equation
u2
k = γk, where γk is the generator of Ak. The element (1, 0),

denoted by 1 ∈ Ak, is the identity of Ak.
Alternatively, we can represent an element x ∈ Ak using an

appropriate hypercomplex basis [5]. Precisely, the addition and
the scalar product of Ak yields a vector space of dimension
n = 2k. Using the canonical basis, we can write

x = x1e1 + x2e2 + . . .+ xnen, (8)

where e1 = (1, 0, . . . , 0) corresponds to the identity and
e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 1) are hypercomplex
units. The product of any two hypercomplex units define a
multiplication table. The multiplication table also characterizes
the hypercomplex algebra [38], [39].

Example 1 (Complex Numbers, Quaternions, and Octonions).
By taking γ1 = −1, we obtain

A1 = R[−1] = {x+ yu1 : u2
1 = −1, x, y ∈ R} ' C

where ' means that there exists an isomorphism between A1

and C. In other words, R[−1] and C are equivalent. In a similar
fashion, by taking γ2 = −1, we obtain

A2 = A1[−1] = {x+ yu2 : u2
2 = −1, x, y ∈ A1}.

It is not hard to show that the algebra A2 = R[−1,−1] is
equivalent to the quaternions, denoted by Q. The multiplica-
tion table of the quaternions is given in Table I. The next
Cayley-Dickson algebra A3 = R[−1,−1,−1], obtained from
the generator γ3 = −1, is equivalent to the octonions, denoted
by O and also known as Cayley numbers [3].

Example 1 illustrates an important fact about the Cayley-
Dickson construction: The next algebra added in the sequence
suffers a loss of properties. For instance, complex numbers



are not an ordered set as are real numbers. The product in the
quaternions is not commutative, even though complex product
is. The product in the octonions is not associative, a property
possessed by R, C and Q. Despite the loss of properties, which
may discourage the use of higher Cayley-Dickson algebras,
the next sections show that this is not a problem for the
development of effective feedforward neural networks. Before
addressing neural networks, however, we would like to address
the four dimensional Cayley-Dickson algebras.

Example 2 (Four Dimensional Cayley-Dickson Algebras). In
analogy to the quaternions, Table II shows the multiplication
tables of the Cayley-Dickson algebras R[+1,+1], R[−1,+1],
and R[+1,−1], which have dimension 4. The multiplication
table of the algebra R[−1,+1] reveals that this algebra is
equivalent to the algebra of coquaternions, also called split-
quaternions, introduced by Cockle in 1849 [40]. Note, at the
diagonal of the multiplication tables, that e21 = e1, e22 = γ1e1,
e23 = γ2e1, and e24 = −(γ1γ2)e1.

Definition 2 (Cayley-Dickson Norm [6]). The Cayley-Dickson
norm in Ak is defined by

n(x) = xx∗, ∀x ∈ Ak. (9)

It is not hard to show that n(x) is a multiple of the identity
e1 of Ak for all x ∈ A[γ]. As a consequence, we can interpret
n(x) as a scalar. Also, we can alternatively define n(x) = x∗x.
Moreover, an element x ∈ Ak has an inverse if n(x) 6= 0. In
this case, the inverse of x is x−1 = n(x)−1x∗ and its norm is
n(x−1) = n(x)−1, where n(x) is interpreted as a real number.

Example 3. Consider the algebra A1 = R[−1], which is
equivalent to the complex numbers. The norm and the inverse
of an element z = (x, y) ∈ A1 are respectively

n(z) = (x2+y2, 0) ≡ x2+y2 and z−1 =
1

x2 + y2
(x,−y).

Note that n(z) corresponds to the square of the absolute value
of the complex number z = x+ yi.

Remark 2. We would like to emphasize that the Cayley-
Dickson norm is not a norm in the linear algebra and func-
tional analysis sense. In fact, we may have n(x) = 0 for
some x 6= 0 in some Cayley-Dickson algebras. The following
example illustrate this remark.

Example 4 (Hyperbolic Numbers). Hyperbolic numbers, also
called double numbers or split-complex numbers, have many
applications in geometry and interval algebra [41], [42]. They
are equivalent to the algebra R[+1], obtained from R by
choosing the generator γ1 = 1. A simple calculation in R[+1]
yields

n(z) = x2 − y2, ∀z = (x, y).

Clearly n(z) = 0 for all z = (±x,±x). This shows that (9)
does not satisfy the definition of norm in linear algebra, which
requires n(z) = 0 if and only if z = (0, 0).

Apart from the Cayley-Dickson norm defined by (9), let us
define the absolute value of x = x1e1 + . . .+ xnen ∈ Ak by
means of the following equation:

|x| =

√√√√ n∑
i=1

|xi|2. (10)

In contrast to the Cayley-Dickson norm, the absolute value
satisfies |x| = 0 if and only if x = 0.

III. CAYLEY-DICKSON MATRIX ALGEBRA

Let us turn our attention to operations on matrices whose
entries are elements of a Cayley-Dickson algebra Ak. Such as
real-valued linear algebra, the product of two matrices A ∈
AM×L

k and B ∈ AL×N
k is a new matrix C ∈ AM×N

k with
entries defined by

cij =

L∑
`=1

ai`b`j , (11)

where i = 1, . . . ,M and j = 1, . . . , N . Here, ai` and b`j are
entries of the matrices A and B, respectively.

In order to take advantage of fast scientific computing
softwares, in practice, we compute the Cayley-Dickson matrix
product using real-valued linear algebra as follows. First, (8)
allow us to establish an isomorphism between Ak and Rn,
where n = 2k, by means of the following equation

ϕ(x) =


x1
x2
...
xn

 , ∀x ∈ Ak. (12)

Since the multiplication on Ak is a linear operator, it admits
matrix representation in Rn. Specifically, let a ∈ Ak be a
fixed element. The multiplication to the left by a yields a
linear operator AL : Ak → Ak defined by AL(x) = ax for
all x ∈ Ak. From the isomorphism ϕ, we conclude that

ϕ (AL(x)) = ΦL(a)ϕ(x), (13)

where ΦL : Ak → Rn×n is the matrix representation of AL

with respect to the canonical basis [43], that is,

ΦL(a) =

 | | |
ϕ(ae1) ϕ(ae2) . . . ϕ(aen)
| | |

 . (14)

Now, from (12), an entry cij of the Cayley-Dickson valued
matrix C given by (11) satisfies

ϕ(cij) =
∑
`=1

ΦL(ai`)ϕ(b`j)

=
[
ΦL(ai1 ΦL(ai2) . . . ΦL(aiL)

]

ϕ(b1j)
ϕ(b2j)

...
ϕ(bLj)

 .
Equivalently, using real-valued matrix operations, we have

ϕ(C) = ΦL(A)ϕ(B), (15)



TABLE II
MULTIPLICATION TABLES OF THREE FOUR-DIMENSIONAL CAYLEY-DICKSON ALGEBRAS.

R [+1,+1] e1 e2 e3 e4
e1 e1 e2 e3 e4
e2 e2 e1 e4 e3
e3 e3 −e4 e1 −e2
e4 e4 −e3 e2 −e1

R [−1,+1] e1 e2 e3 e4
e1 e1 e2 e3 e4
e2 e2 −e1 e4 −e3
e3 e3 −e4 e1 −e2
e4 e4 e3 e2 e1

R [+1,−1] e1 e2 e3 e4
e1 e1 e2 e3 e4
e2 e2 e1 e4 e3
e3 e3 −e4 −e1 e2
e4 e4 −e3 −e2 e1

where ΦL and φ are defined as follows for Cayley-Dickson
matrix arguments:

ΦL(A) =

 ΦL(a11) ΦL(a12) . . . ΦL(a1L)
...

...
. . .

...
ΦL(aM1) ΦL(aM2) . . . ΦL(aML)

 , (16)

and

ϕ(B) =


ϕ(b11) . . . ϕ(b1N )
ϕ(b21) . . . ϕ(b2N )

...
. . .

...
ϕ(bL1) . . . ϕ(bLN )

 . (17)

Note that ΦL(A) ∈ R(nM)×(nL) and ϕ(B) ∈ R(nL)×N . The
real-valued matrix ϕ(C) ∈ R(nM)×N is defined analogously
to (17). Furthermore, the Cayley-Dickson matrix C ∈ AM×N

k

is obtained reorganizing the elements of ϕ(C). Formally,
reorganizing the elements of ϕ(C) defines the inverse mapping
ϕ−1 : R(nM)×N → AM×N

k . More importantly, we have

C = ϕ−1 (ΦL(A)ϕ(B)) , (18)

which provides an effective formula for the computation of
Cayley-Dickson matrix product using the real-valued linear
algebra often available in scientific computing softwares.

We would like to point out that, in a similar fashion, we
can compute the Cayley-Dickson matrix product C = AB
by considering in (11) the multiplication from the right by b`j
instead of the multiplication from the left by ai`. Formally,
the multiplication from the right by b ∈ Ak yields a mapping
BR(x) = xb for all x ∈ Ak. In analogy to (18) but using the
matrix representation ΦR of BR, we obtain the identity

C = φ−1 (ΦR(B)φ(A)) . (19)

From the computational point of view, the difference between
(18) and (19) is the construction of the real-valued matrices
ΦL(A) and ΦR(B). Hence, (18) is faster than (19) if the
matrix A has less entries than B. We implemented both (18)
and (19) in a single code that computes the Cayley-Dickson
product using the fastest formula.

Let us now address the linear least square problem on
Cayley-Dickson algebra, a key concept for training extreme
learning machines (ELMs). First, in analogy to the real-valued
case [44], the Frobenius norm of a matrix A ∈ AM×N

k is given
by

‖A‖F =

√√√√ M∑
i=1

N∑
j=1

|aij |2, (20)

where |aij | denotes the absolute value of aij ∈ Ak given by
(10). From (10) and (12), we have |x| = ‖ϕ(x)‖2, where ‖·‖2
denotes the usual Euclidean norm. Therefore, we have

‖A‖F = ‖ϕ(A)‖F . (21)

Using the Frobenius norm, we define the linear least saquare
problem as follows:

Definition 3 (Cayley-Dickson Least Square Problem). Given
matrices A ∈ AM×L

k and B ∈ AM×N
k , the Cayley-Dickson

least squares problem consists of finding the minimal Frobe-
nius norm solution to the problem

min
{
‖AX −B‖F : X ∈ AL×N

k

}
. (22)

Like the matrix product, in practice we solve a Cayley-
Dickson linear least squares problem using real-valued linear
algebra. Precisely, from (21) and (15), we obtain

‖AX −B‖F = ‖ϕ(AX −B)‖F = ‖ϕ(AX)− ϕ(B)‖F
= ‖ΦL(A)ϕ(X)− ϕ(B)‖F .

Therefore, the solution of the Cayley-Dickson least squares
problem is equivalent to the unique minimal solution to the
real-valued problem:

min{‖ΦL(A)X(r) − ϕ(B)‖F : X(r) ∈ R(nL)×N}, (23)

where n = 2k. It turns out, however, that the solution of (23)
is

X(r) = ΦL(A)†ϕ(B), (24)

where ΦL(A)† denotes the pseudoinverse of the real-valued
matrix ΦL(A) [44]. Concluding, analogously to (18), the
solution of the Cayley-Dickson least squares problem (22)
is given by the following equation using real-valued matrix
computations:

X = ϕ−1
(
ΦL(A)†ϕ(B)

)
. (25)

From the computational point of view, the computation of
the matrix X ∈ AL×N

k given by (25) is dominated by the
construction of the matrix ΦL(A) and the computation of
its pseudo-inverse. In general terms, the computation of the
pseudo-inverse of the real-valued matrix Φ(A) ∈ R(nM)×(nL)

requires O(2nM2L) arithmetic operations, where n = 2k,
when M > L [44].



IV. EXTREME LEARNING MACHINES ON
CAYLEY-DICKSON ALGEBRAS

Extreme learning machines (ELMs) are feedforward neural
network models well known for their extremely low compu-
tational cost [30]–[32], [45]. This characteristic is due to the
parameters of all hidden layers being randomly generated and
fixated. The free trainable parameters of the network are all
present in the output layer. Moreover, training the output layer
is often formulated as a least squares problem and, thus, it is
achieved in a finite number of operations.

First of all, let us clarify how a single-layer feed-forward
neural network is defined on a Cayley-Dickson algebra Ak.
The parameters of a hidden layer with L neurons are rep-
resented by a Cayley-Dickson matrix W ∈ AD×L

k . Given a
Cayley-Dickson row vector x = [x1, . . . , xD] ∈ AD

k as input,
the feed-forward step through the hidden layer yields

h = f(xW ) ∈ AL
k , (26)

where f : Ak → Ak is a non-linear activation function defined
in an entry-wise manner for matrices. The activation function
f is generally taken as a split function, i.e., a real-valued non-
linear function applied separately to each component of the
multi-dimensional element. For example, the split hyperbolic
tangent function tanh : Ak → Ak is defined as follows for
any x = x1e1 + . . .+ xnen ∈ Ak, n = 2k:

tanh(x) = tanh(x1)e1 + . . .+ tanh(xn)en. (27)

Similarly, the output layer parameters are represented by a
matrix M ∈ AL×N

k . As usual, there is no activation function
in the output layer of a Cayley-Dickson ELM. Thus, the output
of the CD-ELM is given by the vector-matrix product

y = hM ∈ AN
k . (28)

Analogously to real-valued models, ELMs on Cayley-
Dickson algebras (CD-ELMs) have randomly generated
Cayley-Dickson parameters in hidden layers while output layer
parameters are trained using the Cayley-Dickson least squares
problem (see Definition 3). Specifically, given a training set
T = {(xi, ti) : i = 1, . . . ,M} ⊂ AD

k × AN
k , let us organize

the M input and target samples as rows of Cayley-Dickson
matrices X ∈ AM×D

k and T ∈ AM×N
k , respectively. The

parameters of the hidden layer are randomly generated in
AD×L

k . For example, we can consider

wij = α(randne1 + . . .+ randnen), (29)

where α is a scaling factor and randn yields a normally
distributed random number with mean 0 and variance 1.
In our implementations, knowing a priori that the entries
xi = xi1e1 + . . . + xinen, i = 1, . . . , D, of an input x
satisfy −1 ≤ xij ≤ +1 for all i and j = 1, . . . , n, we used
α = 10/D. Hence, the output h of the hidden layer does
not have many saturated values. Finally, the parameters of the
output layer are determined by solving the Cayley-Dickson
least squares problem

min{‖HM − T ‖F : M ∈ AL×N
k }, (30)

where H = f(XW ) is the hidden layer output matrix of the
Cayley-Dickson neural network. From (25), we have

M = ϕ−1
(
ΦL(H)†ϕ(T )

)
, (31)

where ΦL and ϕ are the operators defined respectively by
(16) and (17) and ΦL(H)† is the pseudoinverse of ΦL(H).
Recall that, apart from the transformations ΦL, ϕ, and ϕ−1,
the computation of ΦL(H)† requires O(23kM2L) operations
when M > L.

V. COMPUTATIONAL EXPERIMENTS - COLOR IMAGE
AUTO-ENCODER

An experiment on color image auto-encoding was conducted
in order to evaluate the Cayley-Dickson ELMs capabilities. We
also compared the performance of the hypercomplex-valued
models with a real-valued ELM. To this end, we considered the
CIFAR-10 as it is an open common benchmark dataset [46].
This database consists of 60,000 natural 32 × 32 8-bit RGB-
encoded images originally designed for classification tasks.
Elements in the CIFAR-10 fall into 10 different classes. The
original training data has 50,000 elements split into 5 batches,
the remaining 10,000 images are a test batch.

Despite the CIFAR-10 being conceived as a classification
benchmark dataset, several works have performed encoding
tasks using this set [28], [47], [48]. Auto-encoding is one
such task of particular interest. It consists of the task of
training the network by presenting it pairs where the input
and desired output images are the same, while the dimension
of the hidden layer is lesser than the dimension of the input.
This forces the model to select a subset of important features
of the input and later reconstruct a higher dimensional object
with fewer signals. There is a clear interest in this task from
the standpoint of information theory because it allows the ex-
changing of compressed minimal-loss information. Moreover,
auto-encoders are powerful feature detectors and, thus, they
can be used for unsupervised pre-training on large datasets.
Finally, some auto-encoders can also be used as generative
models [49].

In this experiment, one real-valued ELM and four
four-dimensional Cayley-Dickson algebra-valued ELMs were
trained with a single batch of the CIFAR-10 dataset, i.e.,
using a total of 10,000 color images. The four Cayley-Dickson
algebras used are R[±1,±1], that is, the quaternions and the
three algebras whose multiplication tables are given by Table
II.

A 32 × 32 8bit RGB-encoded image I has been converted
into a real-valued vector x(r) of length 3072 by concatenating
the red, green, and blue channel and re-scaling the pixel
values to the interval [−1,+1]. The color image I has also
been converted into a four-dimensional Cayley-Dickson vector
x(CD) of length 1024 whose components are

x
(CD)
i =

(
2IRi
255
− 1

)
e2 +

(
2IGi
255
− 1

)
e3 +

(
2IBi
255
− 1

)
e4,

where IRi , IGi , and IBi denote respectively the red, green, and
blue values of the ith pixel of the image, for i = 1, . . . , 1024.



Both real-valued and Cayley-Dickson ELMs have a single
hidden layer with L neurons. The size of the hidden layer for
each network has been determined using the total number of
parameters (TNP). The TNP is calculated as the sum of the
number of free trainable parameters and randomly generated
fixed parameters. Therefore, a real-valued network with L(r)

neurons in the hidden layer has

TNP(r) = 2D(r)L(r)

parameters, where D(r) = 3072 corresponds to the dimension
of the real-valued input vectors. The multiplication factor 2
appears because in an auto-encoding task the desired output
is equal to the input, that is, ti = xi for all i = 1, . . . , 10000.
Thus, each network has D neurons in the output layer.
Analogously, a Cayley-Dickson ELM has

TNP(CD) = 4(2D(CD)L(CD))

parameters, where D(CD) = 1024 is the dimension of the
Cayley-Dickson input vectors. Based on [28], which proposed
real and quaternion-valued ELMs for auto-encoding CIFAR
color images, the number of hidden layer neurons for the real-
valued and Cayley-Dickson ELMs have been set respectively
as L(r) = 600 and L(CD) = 450. As a consequence,
both real and hypercomplex-valued networks have TNP(r) =
3, 686, 400.

The (split) hyperbolic tangent has been used as the activa-
tion function on the hidden layer of the ELM models. Fur-
thermore, the parameters of the hidden layer were randomly
generated according to a standard normal distribution and re-
scaled by a constant α relative to the dimension of the images.
We used α(r) = 30/3072 and α(CS) = 10/1024 for the real-
valued and Cayley-Dickson valued models, respectively. This
was done to ensure the output values of hyperbolic tangent
would not be saturated.

One test batch of the CIFAR-10, also containing 10,000
images, was used as test set for the experiment. For illustrative
purposes, Figs 1 shows original color images from the CIFAR
dataset and the corresponding color images decoded by the real
and Cayley-Dickson ELM auto-encoders. The first and second
rows correspond respectively to training and testing images.
Visually, the five auto-encoders performed well in both training
and test images.

To evaluate quantitatively the performance of the ELM auto-
encoders two metrics have been used: the peak noise-to-signal
ratio (PSNR) and the structural similarity index (SSIM) [50].
The PSNR is a logarithmic scale inversely proportional to the
mean squared error. Thus, a higher PSNR value means a higher
quality of reconstruction. The structural similarity index is a
value in the interval [−1, 1], in which 1 represents perfect
similarity between the original and the reconstructed image.
We consider the PSNR and SSIM to be fairly different yet
robust metrics for the auto-encoding task. The results obtained
by the ELM auto-encoders are reported in Table III as well as
the boxplots shown in Fig. 2.

It is clear from Table III that all models presented similar
PSNR and SSIM rates when comparing training and test

TABLE III
AVERAGE PSNR AND SSIM RATES ACHIEVED BY REAL-VALUED AND

CAYLEY-DICKSON ELM AUTO-ENCODERS IN THE TRAIN AND TEST SETS.

Train Set Test Set

Model PSNR SSIM PSNR SSIM

Real-valued 27.3± 2.4 0.90± .05 26.8± 2.7 0.89± .05

R[−1,−1] 28.9± 2.5 0.93± .04 28.5± 2.7 0.92± .05

R[−1,+1] 31.0± 2.5 0.95± .03 30.5± 2.7 0.95± .04

R[+1,−1] 31.2± 2.5 0.95± .03 30.7± 2.7 0.95± .04

R[+1,+1] 30.9± 2.5 0.95± .03 30.4± 2.7 0.95± .04

set results. Therefore, the five ELM auto-encoder exhibited
adequate generalization performance. Let us now compare the
real-valued and Cayley-Dickson models. In agreement with the
results provided by Minemoto et al. [28], the hypercomplex-
valued networks outperformed the real-valued model by a
significant margin. Except for the quaternion-valued ELM,
the Cayley-Dickson models showed minimal loss in terms of
the SSIM index. Moreover, the ELM auto-encoder based on
the Cayley-Dickson algebra R [+1,−1] presented the largest
PSNR rates, slightly outperforming the ones based on the
algebras R[−1,+1] and R[+1,+1]. In fact, based on paired
Stundent t-test as well as Wilcoxon signed-rank test, there
is enough evidence to claim that the Cayley-Dickson ELM
based on R[+1,−1] outperformed the other auto-encoders
considered in this experiment with respect to both PSNR and
SSIM measures on the test set at 99% confidence level.

Finally, from the computational point of view, the Cayley-
Dickson ELMs are much more time demanding than the real-
valued ELM model mainly due to the transformations ΦL and
ΦR required on (18), (19), and (25). Precisely, in our com-
putational experiments, the training phase of the real-valued
ELM have been concluded in approximately 3.77s while
the training of the hypercomplex-valued ELM on R[+1,−1]
required approximately 263.05s, approximately 70 times more
time demanding than the real-valued model. Moreover, 77% of
the time required to train the Cayley-Dickson ELM (204.24s
of 263.05s) was spent to determine the real-valued matrix
ΦL(H). At this point, however, we would like to point out
that we implemented general purpose recursive codes for
computing the Cayley-Dickson multiplication and conjugation
based on Definition 1. We believe that the time required
by the Cayley-Dickson ELMs can be significantly reduced
by implementing application specific hypercomplex-valued
operations.

VI. CONCLUDING REMARKS

In this paper we explored the concept of extreme learning
machines (ELMs) on Cayley-Dickson algebras. It has been
shown that quaternion ELMs are a valuable tool and per-
form better than real-valued ELMs in some situations [28].
Definition 1 encompasses a more general family of algebras.
We showed that quaternions are a particular element of this
family on Example 1. By means of (12)-(17) we established a



a) Original b) Real-valued c) R[−1,−1] d) R[−1,+1] e) R[+1,−1] f) R[+1,+1]

Fig. 1. Original color images and the corresponding images decoded by the real-valued and Cayley-Dickson ELM auto-encoders. First row: training image.
Second row: testing image.
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Fig. 2. PSNR and SSIM rates produced by the real-valued and Cayley-Dickson ELM auto-encoders in the test set.

framework to evaluate matrix products on Cayley-Dickson al-
gebras as simpler real-valued matrix products. We extended the
ELM concept to Cayley-Dickson algebras, explicitly showing
the equivalence of the training step to a Cayley-Dickson least
squares problem (30) that can be solved using (31). We then
proceeded to evaluate four ELMs defined on four-dimensional
Cayley-Dickson algebras as well as a real-valued ELM on a
color image auto-encoding task on the CIFAR dataset.

Our preliminary experiments showed clearly that
hypercomplex-valued networks vastly outperform their
real-valued counterpart using a similar number of trainable
parameters. This stems from the compact representation of
information regarding the same object, a core characteristic
of hypercomplex algebras (see Definition 1). Furthermore,
the best results have been obtained from an unusual Cayley-
Dickson algebra, namely the algebra R[+1,−1]. The reason
for this fact is still unclear and the results reported in this
paper may instigate further research on Cayley-Dickson
neural networks for which at least one generator γ1, . . . , γk
is positive.
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