
Solving Raven’s Progressive Matrices with
Multi-Layer Relation Networks

Marius Jahrens
Institute for Neuro- and Bioinformatics

University of Lübeck
Lübeck, Germany

jahrens@inb.uni-luebeck.de

Thomas Martinetz
Institute for Neuro- and Bioinformatics

University of Lübeck
Lübeck, Germany

martinetz@inb.uni-luebeck.de

Abstract—Raven’s Progressive Matrices are a benchmark orig-
inally designed to test the cognitive abilities of humans. It has
recently been adapted to test relational reasoning in machine
learning systems. For this purpose the so-called Procedurally
Generated Matrices dataset was set up, which is so far one
of the most difficult relational reasoning benchmarks. Here we
show that deep neural networks are capable of solving this
benchmark, reaching an accuracy of 98.0 percent over the
previous state-of-the-art of 62.6 percent by combining Wild
Relation Networks with Multi-Layer Relation Networks and
introducing Magnitude Encoding, an encoding scheme designed
for late fusion architectures.

Index Terms—Raven’s Progressive Matrices, Procedurally
Generated Matrices (PGM), Wild Relation Networks, Multi-
Layer Relation Networks

I. INTRODUCTION AND PREVIOUS WORK

Intelligent behaviour requires the ability to reason about
relations. Several relational reasoning benchmarks for machine
learning were proposed but have been cleared in the meantime
by neural network based approaches with high accuracies in
excess of 95%, e.g. the visual question answering benchmark
CLEVR [4] by [7] and the text-based question answering
benchmark bAbI [9] by [3]. Both benchmarks are challenging
also for humans. So in an attempt to pose a new, harder
challenge, the Procedurally Generated Matrices (PGM) dataset
[1] was proposed. It is based on Raven’s Progressive Matrices
[6], which were originally designed to test cognitive abilities
of humans independent from their level of education. It is
considered to measure abstract reasoning and so-called fluid
intelligence. The authors of the PGM dataset also presented
a couple of neural network models with state-of-the-art archi-
tectures to solve the new benchmark. However, they achieved
only a maximum of 62.6% accuracy under the most general
conditions, hence leaving room for improvements.

Unpublished work by [8] improve on the results of the PGM
authors by generating disentangled feature representations via
a Variational Autoencoder. With this representation the test
accuracy increases to 64.2%. Their main contribution, how-
ever, lies in showing that disentangled representations cause
less of a performance drop when a subset of the relations
is withheld from the training domain. An Attention Relation
Network (ARNe) combining Relation Networks with attention
mechanisms was proposed by [2]. In contrast to this work,

their training uses meta labels as additional training signals,
allowing it to achieve 88.2% test accuracy, but making the
results not directly comparable.

The Relation Network (RN) module introduced in [7] has
proven to be a powerful component for solving these kinds
of problems [7] [3] [1]. So, rather than exploring alternative
architectures, in this work we will demonstrate that the existing
RN based models can be extended to solve the PGM dataset
with 98.0% test accuracy, given the right training method1.

II. PROCEDURALLY GENERATED MATRICES

Like the original Raven’s Progressive Matrices, PGM con-
sists of image sequences that are to be completed logically.
Every sample consists of eight images for context and eight
answer images to choose from, as shown in Fig. 1. The
context forms a 3x3 grid of images where the last image is
missing and needs to be filled in by choosing one from the
eight answer options. The images in the grid are related row-
wise or column-wise through one or more triples of the form
(object type, attribute type, relation type) specifying the
kind of relationship.

• object type ∈ {line, shape}, whether the subject is the
lines in the background or the symbols in the foreground

• attribute type ∈ {color, position, type, number, size},
the attribute the relation applies to

• relation type ∈ {AND,OR,XOR, progression,
consistent union}, the relation type

In the paper detailing the PGM dataset [1], three different
benchmarking modalities are suggested:

1) The image sequences may or may not include distrac-
tors, i.e. image elements or properties which do not hold
any information about the underlying relation. In this
paper the full dataset with distractors is used.

2) The dataset offers different generalization regimes with
entire classes of problems withheld from the training
data. We focus on the neutral regime with the training
data being representative of the test data.

1As supplementary material, the source code to reproduce our results
is available at: http://webmail.inb.uni-luebeck.de/exchange-supplement/PGM
MLRN supplementary.zip.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(a) Context

(b) Options

Fig. 1: A sample from the PGM dataset. In each row of the context the third image has a shape only at the positions
where both the first and the second image in the row have shapes. The correct answer is the top right option. The
shape types, colors and the lines in the background are distractors. This sample is an example for the structure triple
(object type = shape, attribute type = position, relation type = AND).

3) Training labels may or may not include details about the
underlying relation, serving as additional hints/training
signals. No such information was used in this paper.

The dataset has 1.2 million training samples, a validation
set of size 20k, and 200k test samples.

III. WILD RELATION NETWORK

The Wild Relation Network (WReN) was proposed by [1] as
a neural network based approach for solving the PGM bench-
mark. Each of the eight choice options is scored independently,
as shown in Fig. 2. Each context and choice panel image is fed
into a Convolutional Neural Network (CNN) and represented
by an embedding vector, which also includes a 9-dimensional
one-hot vector to encode the image position within the 3x3
grid. For every score, embeddings of the eight context images
as well as an embedding of one of the answer options are
used to form pairwise inputs for a Relation Network module,
as introduced in [7]. The whole neural network consisting of
CNN and RN is trained end-to-end.

The authors have shown that the RN module at the core
of the model makes a crucial contribution to its performance.
However, the single pairwise evaluation has been shown to be
a limiting factor in the past [3]. We will see that this is also
one reason for the suboptimal results achieved in [1]. In the
following we will introduce several measures for significant
improvements.

IV. MEASURES FOR IMPROVEMENT

A. Wild Multi-Layer Relation Networks

To be able to learn more complex relations, in [3] the RN
was extended to a Multi-Layer Relation Network (MLRN).
This was shown to be crucial for solving some of the tasks
in the bAbI benchmark [9], [3]. We expect this extension also
to be crucial in the PGM benchmark. While the vanilla RN
reduces all pairwise results to a single vector, the MLRN
only combines results relating to the same image into the
same vector. That way a new representation of each image
is generated, enriched with information about how it relates

to the other images in the grid. These new representations are
then used as inputs for the next relational layer, as shown in
Fig. 3. The Wild Multi-Layer Relation Network is then based
on the MLRN analogous to the single-layer WReN based on
vanilla RN.

B. Regularization

Originally, the WReN model in [1] was trained with
dropout. However, RNs and more generally MLRNs have
previously been shown to work well with L2 regularization on
the weights for other problems [7] [3]. Therefore, we apply
L2 regularization as well and compare it with dropout.

C. Magnitude Encoding

As we will see later in the experiments, samples incorpo-
rating the color attribute have a much lower accuracy than all
other attributes, and additional relational layers do not help to
improve it. Since the features of multiple images are only fused
from the relation layers onward, we conjecture that the color
information is not well preserved in the image embeddings.
The relational layers using the image embeddings seem to
lack information to determine the change in colors across
images. To test this hypothesis, we encoded the intensities
of the grayscale images in such a way, that different intensity
levels are reflected in different input features, rather than a
single scalar per pixel. We will call this encoding scheme
Magnitude Encoding (ME) and denote the dimensionality d
of the vector representation as MEd, e.g. ME20 for d = 20.

Assuming samples x being in the domain x ∈ [−1, 1]n,
then every scalar input xi is encoded independently via the
gaussian encoding:

x̃i,j = exp

(
−
(xi − (2 j

d−1 − 1))2

2σ2

)
(1)

The encoding yields a tensor x̃ ∈ [0, 1]n×d holding the vec-
torial representations of the input scalars. The hyperparameter
σ can be chosen freely, however, while a smaller value gives

C
on

te
xt

 P
an

el
s

Choice Panel B

Score-B

...

+

C
on

te
xt

 P
an

el
s

Choice Panel A

CNN

RN

Score-A

Panel Embeddings

...

Panel
Embedding

Pairs

+

softmax Answer: A

meta-target
prediction

.64

.22

+ sigmoid

Fig. 2: The Wild Relation Network for solving the PGM benchmark. A CNN module forms panel embeddings for each panel
image from context and choice. Panel embedding pairs are the input for a Relation Network (RN) module. Each choice option
is scored independently, and the option with the highest score is chosen as answer (figure taken from [1] with permission from
the authors).

gθ

gθ

gθ

gθ

gθ

gθ

gθ

gθ

gθ

Σ

Σ

Σ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

Σ output
fφ

Fig. 3: A Multi-Layer Relation Network with two layers: On the left the relations for pairs of image embeddings (red, green,
blue) are evaluated and all relations for the same base image are combined to form new intermediate representations (red/white,
green/white, blue/white). The intermediate representations are then used as input for the next relational layer on the right.

a sharper signal, this also reduces the number of weights of
neighboring values that can learn from the sample. A visual
representation of the scheme is shown in Fig. 4.

The reasoning behind the gaussian encoding is that all
vector entries contain contributions from the encoded value.
This can be especially useful if at any point ME is to be used
to encode features inside a network instead of the network
inputs, so that all components can carry gradients. For this
dataset encoding the intensities as 20-dimensional vectors has
proven to work well. Using larger vector representations did
not yield any change in performance over ME20, and ME10
performed worse than ME20, though still better than not using
ME at all. In the listed results only ME20 is used.

A similar encoding can be achieved with ReLUs. Then
instead of Gaussians, for the encoding triangles are constructed
out of the ReLUs. Both schemes show equal performance. The
reported results are based on the Gaussian ME.

D. Alternative Optimizer

The WReN model in [1] was trained with the adaptive
learning rate optimizer Adam [5]. As we will see later, the
training and validation loss curves tend to exhibit a consider-
able amount of noise with this architecture. When inspecting
the activations in different relational layers, a difference in
the activation levels of multiple orders of magnitude can
be observed. Therefore, we evaluate the layer-wise adaptive

−1 −0.5 0 0.5 1
0

0.5

1

input value xi

x̃
i,
j

j = 0 j = 1 j = 2 j = 3 j = 4

Fig. 4: Visualization of magnitude encoding with d = 5
dimensions. The index j represents the vector components x̃i,j
for the vectorial representation x̃i of scalar value xi.

moments optimizer LAMB [10] as an alternative to the Adam
optimizer. The LAMB optimizer copes with highly varying
activation levels by normalizing the corresponding gradients
by each layer’s weights’ norm.

When using the LAMB optimizer, an additional warmup
period for the learning rate as well as additional activation
penalty loss terms are required in order for weights to not
approach infinity, especially when using mixed precision train-
ing. We will see that the training and validation loss curves
are much smoother compared to the training using Adam.

V. EXPERIMENTS

A. Architecture and Training

The images in the PGM dataset have a resolution
of 160 × 160 pixels. However, downscaled versions with
80 × 80 pixels are used instead, since the lower resolution
does not harm the models’ performance but reduces the
computational cost.

For magnitude encoding σ = 0.28 is chosen. The CNN
for generating image embeddings has four convolution layers,
each generating 32 feature maps using 3 × 3 kernels and
a stride of 2. The CNN’s output is transformed into a 247
dimensional vector by a single linear layer and concatenated
with a 9-dimensional one-hot vector to encode the image
position in the grid, yielding a 256 dimensional embedding
vector per image.

The first relation layer uses a multi-layer perceptron (MLP)
with [512, 512, 512, 256] neurons in the respective layers,
while the second and third relation layers both have MLPs
with [256, 256, 256] neurons. For the final MLP fφ producing
the score, an MLP with [256, 256, 1] neurons is used.

The batch size is 512 and the learning rate when using the
LAMB optimizer is 2e-3 with a weight decay factor of 2e-1
on all weights (not applied to biases). Gradients are clipped
to 1e1, and the clipping inside LAMB is deactivated. The
optimizer’s trust ratio’s denominator has an offset of 1e-6 to
avoid division by zero. Since mixed precision training was
used, a warmup period of 8 epochs is applied, that is linearly
scaling the learning rate up on every iteration. Finally, an
activation loss term is added for the activations in the inputs
and outputs of fφ, the last MLP in the model, which helps
avoiding weights approaching infinity, especially during mixed

precision training. The activation loss uses the mean square of
the activations and adds to the total loss with factor 2e-3.

Training the models takes about 240 epochs, which equals
27 hours for the 3-layer model on four RTX 2080 Ti graphics
cards.

B. Results

Table I presents the improvements by the different measures
listed above compared to the original results by [1] with
WReN (first column in Table I). The second column shows
the results with L2 regularization instead of dropout. Keeping
everything the same as in [1] except for the regularization,
the performance increases already drastically. The total error
is reduced by a factor of 2. Only samples based on the color,
shape, or size attributes and samples based on XOR relations
still pose a problem.

While the XOR relation is by far the most difficult relation
type for the single layer architecture, Table I shows that
introducing additional relational layers closes the gap. With
two additional layers in the Relation Network mainly the XOR
problem class wins (column 3). This reinforces the notion
from previous observations [3], that deeper MLRNs promote
learning of more complex relations.

The main additional improvement is achieved when using
ME for the color attribute. The residual error is reduced by
a factor of 4 (from column 3 to column 4). This supports the
conjecture that using vectorial representations of scalar inputs
with architectures employing late fusion of inputs is crucial. It
is worth noting that with the LAMB optimizer the single layer
RN is able to learn samples with the color attribute properly
also without using ME (column 5). In fact, using the single
layer RN with ME decreases its performance (column 6). For
architectures with multiple relational layers, ME is still crucial.

With 3 layers, ME and L2 regularization we obtain a total
accuracy of 96.41% (column 4). Only XOR is not yet above
90%. A significant final step yields the LAMB optimizer. The
total accuracy with 3 layers, ME, L2 regularization and LAMB
is 98.03% (last column). Every single accuracy now exceeds
95%, except for XOR with 93.89%, but most of them by far.

C. Local Minima

When training models with ME, two distinct performance
levels can be observed, each with a probability of about 50%.
This is the case for both, Adam and LAMB optimizer. Figure
5 shows training and validation curves for different runs. The
two points of convergence are not only different in test per-
formance, but the training curves also exhibit the two distinct
levels. This means there are two points in the parameter space
that the model can converge to, so the two points behave
like local minima. One of them is indistinguishable from
the non-ME model, showing poor performance on the color
attribute, while the other displays the expected improvement
in performance. This phenomenon is likely owed to the fact
that the scalar representation can easily be reconstructed, or
at least approximated, from its vectorial representation by a
linear layer.

TABLE I: Performance comparison with and without Magnitude Encoding (ME). Models in the left section are trained using
Adam, models on the right use the LAMB optimizer. Vanilla WReN results use dropout instead of L2 regularization. The three
sections show the test accuracies for single categories.

Architecture vanilla
WReN [1]

1-layer
MLRN

3-layer
MLRN

3-layer
MLRN

1-layer
MLRN

1-layer
MLRN

2-layer
MLRN

2-layer
MLRN

3-layer
MLRN

3-layer
MLRN

Using L2 reg. × X X X X X X X X X
Using ME × × × X × X × X × X

Using LAMB × × × × X X X X X X

line 78.3 97.08 97.96 99.26 98.18 97.61 99.20 99.00 99.09 98.84
shape 46.2 71.33 73.92 93.30 89.83 86.37 80.96 94.92 81.30 96.86
color 58.9 71.95 71.83 93.82 91.79 86.79 73.58 93.72 73.60 96.71

position 77.3 93.56 99.26 99.57 97.50 96.81 99.68 99.57 99.70 99.76
type 61.0 91.24 92.67 97.08 94.73 95.42 99.51 99.27 99.67 98.41

number 80.1 99.08 99.86 99.59 99.04 97.41 99.77 99.31 98.63 99.85
size 26.4 77.66 83.86 95.33 90.56 87.63 94.91 95.10 96.56 95.91

AND 63.2 86.20 86.68 96.27 95.91 93.05 90.26 96.58 90.43 97.52
cons union 60.1 91.09 90.75 99.58 98.66 98.10 91.99 99.37 91.52 99.68

XOR 53.2 69.22 78.05 89.60 81.50 78.29 88.16 91.76 89.02 93.89
OR 64.7 86.85 86.94 97.02 95.84 92.94 90.95 98.09 91.27 98.74

progression 55.4 87.89 86.99 99.36 98.93 98.60 88.38 99.36 88.00 99.69
All single acc 68.5 84.17 85.90 96.27 94.00 91.97 90.05 96.95 90.17 97.85

Total acc 62.6 82.31 84.28 96.41 94.14 92.15 88.53 97.18 88.60 98.03
Total error 37.4 17.69 15.72 3.59 5.86 7.85 11.47 2.82 11.40 1.97

40 60 80 100 120 140 160 180 200 220 240
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

epoch

a
cc
u
ra
cy

Training run 1 Validation run 1
Training run 2 Validation run 2
Training run 3 Validation run 3
Training run 4 Validation run 4
Training run 5 Validation run 5

Fig. 5: Training and validation curves for 3-layer MLRN based models with L2 regularization, ME20 and LAMB optimizer.
All runs used the same hyperparameters. Nevertheless, the same model can converge towards two distinct states with distinct
performance levels. The lower performance level is indistinguishable from non-ME models.

D. Remarks on Generalization

The results discussed so far only involved test samples
drawn from the same data distribution as the training set.
This is the so-called ”neutral split”. However, since cognitive
abilities are often associated with learning first principles and
transfering them to other problem domains, the PGM dataset
also contains training sets with some problem classes withheld
to test more advanced generalization capabilities.

Table II shows that the new model optimized for the
neutral generalization regime is even slightly worse for the

TABLE II: Comparison of generalization performance in three
different regimes.

Generalization neutral interpolation extrapolation
vanilla WReN [1] 62.6 64.4 17.2

3-layer MLRN+L2 +ME 98.0 57.8 14.9

more advanced generalization tests than the original WReN.
It remains for future work to investigate whether the model
changes discussed in this paper are sufficient to achieve good
results for the other regimes, if hyperparameter search is done

50 100 150 200 250
0.8

0.85

0.9

0.95

1

epoch

a
cc
u
ra
cy

Adam training Adam validation
LAMB training LAMB validation

Fig. 6: Training and validation curves for 3-layer MLRN
based models with L2 regularization and ME20. Training
with the Adam optimizer exhibits significantly more noise in
the validation curve compared to training with the LAMB
optimizer. The kink in the curves for the Adam optimizer
occurs on every run.

on their respective training and validation sets. Also, the fact
that the models with more relational layers are not showing
much improvement in performance might hint at problems
lying in overfitting of the embedding layers.

VI. DISCUSSION

So far several benchmark datasets for relational reasoning
have been introduced. Most of them could be solved by
purely neural network based models, except for the PGM
dataset based on Raven’s Progressive Matrices. With this work
that benchmark is also solved now, at least for the standard
setting, the so-called ”neutral split”. Compared to the state-
of-the-art, the error could be reduced by a factor of 20. This
is achieved by combining alternative regularization, a new
optimizer, additional relational layers and a vectorial encoding
of scalar inputs (pixel colors).

The PGM dataset has an additional emphasis on learning
the transfer of first principles by testing the performance on
relations or attributes that are withheld from the training set.
This is still an open problem and has also not yet been
solved with our approach. Nevertheless, while this remains a
long-term goal, examining models which perform well on the
neutral test set is a prerequisite to determine how shortcomings
in learning first principles can be overcome.

The experiments show a vast difference in difficulty between
various relation types. The results are further evidence that
Multi-Layer Relation Networks are capable of learning more
complex relations. It is further shown that late fusion models
can have difficulties preserving low level features up to the
point where the features are fused. This is mitigated by using
a data agnostic encoding scheme, but the local minima that

are introduced might make early fusion models more desirable
instead.

Lastly, using the LAMB optimizer rather than Adam not
only improves the test accuracy by a significant margin, but
also makes the training loss and accuracy curves smoother, as
can be seen in Fig. 6. Whether this can be attributed to the
vastly different activation levels in the relation layers remains
to be studied in more detail.

In combination the techniques solve the PGM benchmark on
the neutral generalization regime beyond 98.0% test accuracy,
which makes it reasonable to shift the focus to the other gen-
eralization regimes going forward. In the meantime, a second
benchmark dataset based on Raven’s Progressive Matrices was
introduced, called the RAVEN dataset [11], which seems to be
a good candidate to test even harder generalization problems
in abstract reasoning without using different distributions for
training and test data. It should be noted that while these kinds
of benchmarks are not exactly comparable to human IQ tests
due to the large number of training samples, they are still
an important measure for the potency of models on abstract
reasoning tasks.

REFERENCES

[1] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy
Lillicrap. Measuring abstract reasoning in neural networks. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 511–520, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[2] Lukas Hahne, Timo Lüddecke, Florentin Wörgötter, and David Kappel.
Attention on abstract visual reasoning. 2020. Unpublished.

[3] Marius Jahrens and Thomas Martinetz. Multi-layer relation networks for
relational reasoning. In Proceedings of the 2Nd International Conference
on Applications of Intelligent Systems, APPIS ’19, pages 10:1–10:5, New
York, NY, USA, 2019. ACM.

[4] Johanna E. Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-
Fei, C. Lawrence Zitnick, and Ross B. Girshick. Clevr: A diagnostic
dataset for compositional language and elementary visual reasoning.
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1988–1997, 2016.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. 3rd International Conference for Learning Representations,
2014.

[6] J. C. Raven. Raven’s progressive matrices. Western Psychological
Services, 1938.

[7] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski,
Razvan Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural
network module for relational reasoning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages
4967–4976. Curran Associates, Inc., 2017.

[8] Xander Steenbrugge, Tim Verbelen, Sam Leroux, and Bart Dhoedt.
Improving generalization for abstract reasoning tasks using disentangled
feature representations. 2018. Unpublished.

[9] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov.
Towards ai-complete question answering: A set of prerequisite toy tasks.
CoRR, abs/1502.05698, 2015. Unpublished.

[10] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and
Cho-Jui Hsieh. Large batch optimization for deep learning: Training
BERT in 76 minutes. CoRR, abs/1904.00962, 2019. In press.

[11] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu.
Raven: A dataset for relational and analogical visual reasoning. In
CVPR, 2019.

