
Data augmentation process to improve deep
learning-based NER task in the automotive industry

field
Abdenacer KERAGHEL

Lizeo IT
42 Quai Rambaud, 69002 Lyon

Lyon, France
abdenacer.keraghel@lizeo-group.com

Khalid BENABDESLEM
Lyon 1 university

43, Bd du 11 Novembre 1918
Villeurbanne, Cedex 69622, France
khalid.benabdeslem@univ-lyon1.fr

Bruno CANITIA
Lizeo IT

42 Quai Rambaud, 69002 Lyon
Lyon, France

bruno.canitia@lizeo-group.com

Abstract—Searching and extracting information in a textual
sequence drawn from scientific articles, queries on a search
engine and posts in a discussion forum necessitate a process called
Named Entity Recognition (NER). Nevertheless, the data avail-
able to achieve this process diverge depending on their nature and
field of study. In this article, we look at the performance of Named
Entity Recognition systems, and their complexity and ability to
process data from different backgrounds. A comparative study
between several state-of-the-art approaches, applied to different
types of data (search engine queries and discussion forum posts)
related to the automotive industry field, is proposed in order to
select the approach that will best suit our instance. To do this, we
shall rely on the results of metrics evaluating machine learning
models such as precision, recall and F-score.

I. INTRODUCTION

The «Named Entity» (NE) term is a referential linguistic
unit, it is widely used in Natural Language Processing (NLP),
which is coined for the Message Understanding Conference
(MUC) [7]. At that time, MUC was focusing on Information
Extraction (IE) tasks, where structured information of com-
pany activities and defense related activities is extracted from
unstructured text1. NE is essential to recognize information
units like names, including person (PER) as «Barack Obama»
and organization (ORG) as «Google» and location (LOC)
as «London». Identifying references to these entities in text
was recognized as one of important sub-tasks of Information
Extraction and was called «Named Entity Recognition» [15].
In this paper, we look at automotive industry field, whose
entities are selected referring to the type and brand of vehicle,
the size and season of tyre, etc.

The principle of our Named Entity Recognition system is
the same as the traditional one (extraction of units called
named entities from textual sequences). The difference lies
in the set of named entities, instead of LOC, PERS, ORG (cf.
Tab. II) we have Vehicle-Maker, Vehicle-Segment, Vehicle-
Cartype, Tyre-Dimension, etc (cf. Tab. III). And also in the
nature of the text to be processed (search engine queries in
our case).

1Unstructured text is often user-generated information such as email or
instant messages, social media postings or search engine queries

An unambiguously named entity recognition system is de-
signed to analyze input data (via tokenization2 and confidence
score calculation) to detect their associated classes. In this
case, a token3 of a sequence may belong to several classes,
hence the need for a stage of disambiguation. The latter aims
to determine the right class of this token. After a review of
prevailing literature, the main approaches to existing named
entity recognition are the following (see Fig. 1).

Two families caught our attention:
• The Probabilistic family alike the hidden Markov chains

(HMMs) [20], [21] and the CRFs (Conditional Random
Fields) [13]. This family consists of representing the
named entity recognition problem under the form of an
unoriented graph, where nodes correspond to the named
entity classes and edges to transition probabilities. The
goal is to predict the most likely class sequence using
the set of transition probabilities. This corresponds to the
observed token sequence (a query on a search engine in
our case);

• The Deep Learning family [1], [8], [9]. It is a family
of neural networks of different types: recurrent (LSTM,
GRU) or hybrid (hybridization of convolutional (CNN)
and recurrent neural networks). It consists of learning
long-term dependencies between the different classes
of named entities possible in the learning stage. The
objective of this family is to predict the subsequent class
of entity named in a sequence, from the previous classes.

The Machine Learning family was discarded because it
seemed overall to be less efficient than the previous two (Deep
Learning and probabilistic). The time constraints and those
imposed by the application domain (multi-support, heterogene-
ity of the universes of named entities) made any additional
experimentation impossible.

In this article, we will first present the families of ap-
proaches we have chosen in order to draw up a comparative
study. We will then present our test datasets as well as

2The operation consists of cutting a text into tokens, most often words.
3A lexical unit.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 1: Main approaches of named entity recognition.

our experimental protocol before making a restitution of the
results.

II. LEARNING METHODS FOR NAMED ENTITY
RECOGNITION

Based on the complexity and the capacity of the models
to process data from different origins, our choice fell on the
following five approaches (without exhaustiveness):

A. Conditional Random Filed (CRF)

CRFs4 are non-directed statistical graphical models, of
which a particular case is a linear chain which corresponds to
a finite state automaton (HMM or hidden Markov chain), con-
ditionally trained on a dataset previously annotated by experts.
These types of models are well suited for sequential analysis,
and CRFs in particular have proven useful for partial speech
tagging (Lafferty and al. 2001) and named entity recognition
for press wire data [13]. They have also been applied to the
task of recognizing mentions of genes and proteins (McDonald
and Pereira. 2004), with interesting preliminary results [14]
(86.4% as precision and 78.7% as recall and 82.4% as F-
score).

B. Long Short-Term Memory (LSTM)

This model3 is a special case of RNN (Recurrent Neural
Network), the only difference is that it contains memory cells
allowing it to keep information for a theoretically indefinite
period. It makes it easy to learn long term dependencies for
sequential labeling tasks such as voice recognition or named
entity recognition [8]. The goal of an LSTM is to create a
memory cell for each of the words in the sequence, the latter
containing the context of the associated word, which allows
easy recognition of its named entity class.

4Our implementation cannot be released due to intellectual property rea-
sons.

C. GRU-CNN

It is a hybridization3 of two neural networks. The first
is an RNN using the GRU (Gated Recurrent Units) [10]
Architecture, which aims at solving the vanishing gradient
problem of an RNN. GRU uses its oblivion doors to decide
what information should be passed to the exit. It is able to
store information from the distant past without losing it over
time, which is relevant for predicting named feature classes.

The second (CNN) [12] is a Convolutional Neural Network
whose purpose is to extract a matrix of characteristics of fixed
size for each input and to filter the noise using a product of
convolution. The objective of this hybridization is to be able to
keep both the history and the characteristics of a given word,
which in turn will allow us to easily identify the equivalence
classes (words which belong to the same class).

D. LSTM-CNN

It is a hybridization5 of the two neural networks CNN and
LSTM previously defined. The objective is the same as that
of the GRU-CNN, consisting in preserving without loss of
characteristics of the sequence as well as the context of each
word (its history from the past to the future). This makes it
easy to identify and predict the corresponding named entity
class. This type of models is well suited for the detection
of anomalies in the time series, and also for the recognition
of named entity [1] For press wire data as well as informal
sequences6.

E. BLSTM-CNN

This model is based on the LSTM-CNN with bidirectional
functionality7 [1]. The purpose of this functionality is to be
able to keep the history of a given word in both directions,
from past to future and from future to past. This will strengthen

5Code adapted from: https: //github.com/kamalkraj/Named-Entity-
Recognition-with-Bidirectional-LSTM-CNNs.

6Text sequences containing abbreviations such as tweets, blogs, discussion
forum posts, etc.

7Code adapted from: https: //github.com/kamalkraj/Named-Entity-
Recognition-with-Bidirectional-LSTM-CNNs.



the decision of the model in terms of predicting the equiva-
lence classes of named entities.

III. DATA SOURCES

In order to carry out our comparative study, we used the
following two datasets:

A. CONLL-2003

It is a public dataset8, comprising news articles, cut into
sentences in the form of posts. It is used to calibrate an
automatic learning model on the named entity recognition
task. It consists of eight files covering the two languages:
German and English. In our case, we only used English. For
each language, we have 3 main files: learning, testing, and
validation. The following two tables illustrate the description
and the volume [16] of each of them.

TABLE I: Description of the different files in the CONLL’03
dataset (english).

Files Nb of news articles Nb of sentences Nb of tokens
Learning 946 14 987 203 621
Test 231 3 684 46 435
Validation 216 3466 51 362

TABLE II: Number of named entities per file.

Files / NEs LOC MISC ORG PER
Leaning 7140 3438 6321 6600
Test 1668 702 1661 1617
Validation 1837 922 1341 1842

B. Requests from the automotive industry field

The automotive industry is a particular field, with specific
named entities. These are classified by domain; the Table III
illustrates these different domains as well as their associated
NEs classes.

TABLE III: The set of domains and named entities classes in
the automotive industry domain.

Domain Named Entity Class Example
Vehicle-Maker Volkswagen

Vehicle-Segment Golf
Vehicle-Cartype Golf 4Vehicle

Vehicle-Motor Hdi 1.6
Pattern-Brand Pirelli

Pattern-Product Sp 22
Pattern-Name AMH2Pattern

Pattern-Season Winter
Dimension-Complete 255/62 R15 96h
Dimension-GeoBox 255/62 R15Dimension
Dimension-Diameter R15

Dealer Dealer-Name Norauto
Localization Localisation-City Lyon

One of the major problems we encountered when carry-
ing out our comparative study was the insufficient quantity
of labeled data available from the automotive industry. We

8https: //www.clips.uantwerpen.be/conll2003/ner.tgz.

internally had a restricted dataset containing a few hundred
queries (491) in French, issued by users of an online tyre price
comparator, annotated by experts in the field. This volume of
data remains insufficient for a task of learning and validating
state-of-the-art models. As a palliative, we decided to set up a
data generation process based on machine learning on existing
data. To do this, several approaches have been considered such
as:

• The joint low: it is a probability law with several
variables. The goal is to estimate the parameters of
the transitions between each EN and the others. For
example, the probability of having a Vehicle-Maker after
a Location-City is 0.02. This approach is suitable, but
seems very sensitive to the insufficiency of the learning
dataset, which is our case;

• Recurrent neural networks [17]: these are character-
based models, used to predict the next character in
a sequence. These models are not fitting to our case,
because we are going to have too much noise at the level
of the generated sequences (incorrect sequences) which
implies a corrupt annotation;

• Bayesian networks [19]: these are probabilistic graph-
ical models, based on a set of conditional probabilities
(parameters) estimated from a learning step on a dataset.
They are very similar to the attached law, except that
the latter can inject expert knowledge during the learning
stage. These models are very appropriate to our case, in
particular due to the fact that we have some business
knowledge as well as relations between the different
classes of named entities via a dictionary containing the
sphere of the automotive industry available internally. For
this we will study these in detail.

1) Description of a Bayesian network: A Bayesian network
is an acyclic graphical model (of the generative type) of a
distribution of probabilities common to a set of variables. The
Bayesian network is composed of two components: a graphical
structure and a set of conditional probabilities which represent
the parameters of the model. The graph structure is a set
of nodes, each of which represents a discrete or continuous
variable in the training dataset. These are linked together via
oriented arches which represent the outbuildings. If an arc
between two nodes is present, a link of type father node
and node child is established as well as an association of a
distribution of conditional probabilities for each node.

The blue rectangles in Fig. 2, represent the nodes of
the graph (variables), each node has its own table of pa-
rameters (distribution of conditional probabilities) calculated
from knowing its parents probabilities. Ex: the parameters
of the Breakdown node are calculated from its probability
distribution knowing the Fuel, Battery nodes, which gives
the following formula: P (Br = 1|Ba = 1, Fu = 1) = 0.8,
etc. Using this formula, we can regenerate the parameter table
of the Breakdown node by replacing the torque (Fuel, Battery)
with the associated values.

In our case, the variables are the named entity classes such



as Vehicle-Maker, Pattern-Brand, etc. Parameter tables are the
probabilities of existence or not (1 = exists, 0 = does not exist)
of a named entity knowing the others (those in direct relation
with it) in a text sequence (request or post).

2) Data generation with a Bayesian network: As a re-
minder, Bayesian networks consist of a set of random vari-
ables V = {V1, V2, ..., Vn}, and a set of parameters Θ =
{θ1, θ2, ..., θm} calculated in the learning stage. The number of
parameters m =

∑|V |
i=1 2nbi , where nbi is the number of parents

of nodes vi. These two sets define a probability distribution
[4] P on V which factorizes as follows:

P (V ) =
∏
vi∈V

P (vi|parents(vi)). (1)

The generation of data by a Bayesian network is therefore
done by multiple imputation [19], i.e. for each observation
(sample), we impute each variable using the others (inference
process), starting with the one with the fewest parents. Ex:
for the example illustrated in Fig. 2, we have 3 variables
(Breakdown, Fuel, Battery). To generate an observation (line
in a dataset), we start by imputing the Fuel and Battery
variables (fewer parents in the graph). By taking for example
the variable Fuel, we have 90% for 0 and 10% for 1, any
process of simulation of random variables according to a
probability distribution can do it. Assuming we want to get
1, to calculate the value of Battery, we need to infer the
probability P (Ba|Fu = 1) using the joint law given by
Eq. (1), and so on for Breakdown.

By repeating this process several times, each time with
different values from a simulation process, we fill a dataset
whose rows contain 0 and 1. At the end of this process,
we process each row of this dataset, replacing each variable
containing 1 (exists) with a real value drawn randomly from
a dictionary containing the automotive industry universe (all
makes of cars, tyre sizes, etc.). Finally, an addition of noise
and a well-studied permutation as well as a concatenation of
the columns is applied on each line. The Figure 3 illustrates
the process of associating the true values on a given example.
One of the possible sequences after concatenating the columns
and adding noise is as follows: “I’m looking for a Michelin
tyre for my Renault clio”.

This generation process requires a pre-trained model (struc-
ture + parameters) on a dataset. To do this we used the
PyAGrum9 framework that contains a module called Bayesian
Network (BN). This module provides a flexible and efficient
implementation of Bayesian Networks. Those can be learnt
from data using the Learning module or generated randomly
from several generators. The Leaning module can be used
for structure and parameters BNs learning, where structure
learning algorithms are a combination of handler for reading
database, a score among (BD, BDeu, AIC, BIC/MDL), with
possibly, some additional a priori (smoothing or Drichlet),
component for scheduling local structure changes and a set

9A Python wrapper, which provides a high-level interface to the part of
aGrUM, allowing to create, model, learn, use, calculate with and integrate
Bayesian networks and other graphical models.

of constraints that the user wishes to be satisfied. The latter
icnludes also a structural constraints like requiring/forbidding
arcs, limiting the indegrees and imposing a partial ordering on
the BN nodes. And as far as learning parameters is concerned,
the framework allows users to define BNs using traditional
Conditional Probability Tables (CPT), but also using Logit
models, aggregators (and, or, max, etc). CPTs are exploited in
various inference algorithms as Lazy Propagation and Gibbs
sampling for data generation. The BN parameters can also be
learnt either by maximum likelihood or maximum aposteriori
[6]. PyAgrum can be used with jupyter notebooks, in docker
container or directly on web, it requires a Python version
higher than 3.4, it can be installed like any other package
using “pip” packages installer.

In our case, we’ve trained several models (on the 491
requests), using algorithms (K2, GHC, 3off2) in order to select
the best based on evaluation metrics like: precision, recall and
F-score.

There are no exploitable methods to evaluate a dataset
generated by a Bayesian network, so we calculated for each
algorithm, distances (Hellinger, etc) and divergences (KL
divergence) between the structure and the probability distri-
bution (BN parameters) of the model trained on the real data
and that of the model trained on the generated data. Finally,
we took the model for which the structure remains unchanged.
The Table IV shows the algorithms used in the comparison as
well as the scores obtained, with the best in bold.

Based on comparison results such as; Hellinger, recall,
precision, F-score, between the models trained on real data
and data generated by each algorithm illustrated by Tab. IV,
the best algorithm is K2 (based on the maximization of score).
The latter is very robust and efficient for the task of data
generation. We will therefore use it in the rest of our study to
generate query-type sequences.

3) Analysis of data generated by K2: In this part we present
a comparison of the frequency of appearance (illustrated by
the bar diagrams on the right of Fig. 4) of each named entity
class, as well as the size of the sequences (illustrated by the 2
curves to the left of Fig. 4) between the actual data and that
generated by K2.

We note that the frequency of appearance of the NE
Vehicle-Segment is different in the generated dataset
compared to the real one, which is due to the injection of
expert knowledge (the NE Vehicle-Cartype and Vehicle-
Segment must not appear together in a query) before the
learning step of the parameters of the Bayesian network. This
injection is achieved by prohibiting the dependencies (arcs)
between the nodes which represent these 2 NEs . On the
other hand, the frequency of appearance of the other NEs
and the distribution of the size of the sequences are perfectly
preserved, which motivates the choice of the K2 algorithm
for the task of data generation.

10Three algorithms for learning the structure of a Bayesian network
available in PyAgrum.



Fig. 2: Example of a Bayesian network with parameter tables.

Fig. 3: Process of associating real values using a dictionary containing the automotive industry universe.

TABLE IV: Comparaison scores of the 3 algorithms “K2, GHC, 3off2”10.

klPQ errorPQ klQP errorQP hellinger bhattacharya jensen-shannon recall precision f-score dist2opt
K2 0.001486 0.000000 0.001263 0.000000 0.021086 0.000222 0.000309 0.986301 1.000000 0.993103 0.013699
GHC 0.004978 0.000000 0.005196 0.000000 0.040392 0.000816 0.001123 0.853333 0.984615 0.914286 0.147471
3off2 0.036641 0.000000 0.042804 0.000000 0.103878 0.005410 0.007088 0.870130 0.943662 0.905405 0.141563

kl(PQ and QP): called Kullback-Leibler divergence. It is
used to measure the difference between two probability distri-
butions (P, Q) over the same variable x. The KL divergence of
P(x) from Q(x), is the information lost when the probability
distribution P is used to estimate Q.

hellinger and bhattacharya: measures whiches used to
quantify the similarity between two probability distributions
[3], [18].

jensen-shannon: a symmetrized and smoothed version of
divergence measure between two probability distributions (P,

Q). It is defined by:

JSD(P ||Q) =
1

2
(D(P ||M) +D(Q||M)) (2)

with M = 1
2 (P + Q) and D(P ||M) is the Kl divergence [5],

[11].
dist2opt: represents the euclidian distance to the ideal point

(precision=1, recall=1). It is defined by:

dist2opt =
√

(1− precision)2 + (1− recall)2 (3)



Fig. 4: Comparison of occurrence frequency of NEs and sequences length distribution, between generated (1 000 000 requests)
and real (491 requests) data.

IV. COMPARATIVE STUDY

A. Data used in the evaluation of the models

In this part, we present the volume as well as the description
of the datasets, used in the evaluation of the models (see Tab.
V).

Finally, to carry out statistical tests, we created eight other
datasets by cutting the CONLL’03 in half and the queries in
six. We will thus obtain the datasets: requests A, requests B,
requests C, requests D, requests E, requests F, CONLL’03 A
and CONLL’03 B.

B. Methodology

The five models collected from the state-of-the-art have
first performed their task of recognizing and disambiguating a
named entity on the various datasets. They were then assessed
by evaluation metrics such as precision, recall and F-score.
Precision measures the number of well-ranked NEs compared
to the total number of NEs . The recall will measure the
number of relevant NEs found compared to the total number
of relevant NEs . The F-score is the harmonic mean of these
two metrics. The confidence interval is given by the Wilson
score interval, with 95% of confidence.

C. Statistical tests

For the statistical study we used the following tests [2]:

• Friedman test: the aim is to contest the following hy-
pothesis: “All algorithms have equivalent performance”.
A confidence level of 0.95 will be used;

• Nemenyi test: once the Friedman test is validated, we can
use it to show that one algorithm or a group of algorithms
is significantly more efficient than another algorithm. The
confidence level used will be 0.1 because of the small
number of datasets to conduct this study.

D. Results

In this part, we present the results of our comparative and
statistical study. To be able to compare machine learning and
deep learning approaches, the variety of assessment datasets
is very important. For this, we used the 10 aforementioned
datasets (see Sec. IV-A for more details) to carry out our
experiment.

The Table VI illustrates the results achieved by the five
models, with the best in bold. We see from these results, that
the performance in terms of named entity recognition of the
Deep Learning family is better than that of the probabilistic
family. Thus, we note that the bidirectional functionality of
the LSTM model has a noteworthy impact on all types of
data (requests or posts CONLL’03).

Once the Friedman test is validated for the different models,
we proceeded to the Nemenyi test ensuing in the Fig. 5.
The results of the Nemenyi tests show that the CNN-BLSTM
model is significantly more efficient than all the others models,
which confirms the results of Tab. VI.

V. CONCLUSION & PERSPECTIVES

In this article, we have established a state of the art on
named entity recognition (NER), after examining the automo-
tive industry data available internally. We then presented five
models belonging to two families of Probabilistic and Deep
Learning approaches. This research allowed us to recover and
even implement the architectures of selected models and to
adapt them to our case study. Fronting an insufficient volume
of data, we set up a data generation process in order to
carry out a comparative study between these models. All of
the developments carried out were tested at each stage to
ensure that the quality of the results obtained was sufficient
to proceed. Our comparative study (cf. Tab. VI and Fig. 5) on
real data (CONLL’03) and generated data (queries generated
by a Bayesian network), showed that the Deep Learning vision
is significantly better than the probabilistic. In perspective, we



TABLE V: Description and volumetry of the two main datasets used in models evaluation.

Source Data from the automotive industry domain CoNLL03
Type / Sequences size Generated requests / [1 to 23] tokens Posts/ [1 to 124] tokens

Nb of sequences / Language 24 000 / french 6703 / english

NEs and occurrence frequency

Dealer-Name 1.9%
LOC 16.89%Dimension-Complete 13%

Dimension-GeoBox 2.4%
Dimension-Diameter 0.3%

MISC 7.51%Localisation-City 1.7%
Pattern-Brand 6.1%

Pattern-Product 1%
ORG 16.4%Pattern-Name 1.9%

Pattern-Season 16.4%
Vehicle-Maker 18.3%

PER 13.68Vehicle-Segment 4.6%
Vehicle-Cartype 15%
Vehicle-Motor 8.7% O 45.52%O 9.7%

TABLE VI: Results of different approaches studied across the ten datasets.

Datasets Metrics CRF LSTM CNN-GRU CNN-LSTM CNN-BLSTM

Requests
Precision 0.8072 +/- 0.005 0.7200 +/- 0.005 0.8193 +/- 0.005 0.8371 +/- 0.004 0.9651 +/- 0.002

Recall 0.8059 +/- 0.005 0.6421 +/- 0.006 0.7716 +/- 0.005 0.7903 +/- 0.005 0.9622 +/- 0.002
F-score 0.8065 +/- 0.005 0.6788 +/- 0.006 0.7947 +/- 0.005 0.8132 +/- 0.005 0.9636 +/- 0.002

Requests A
Precision 0.8310 +/- 0.012 0.7183 +/- 0.014 0.8202 +/- 0.012 0.8378 +/- 0.011 0.9649 +/- 0.006

Recall 0.8307 +/- 0.012 0.6412 +/- 0.015 0.7726 +/- 0.013 0.7912 +/- 0.012 0.9620 +/- 0.006
F-score 0.8309 +/- 0.012 0.6776 +/- 0.014 0.7957 +/- 0.012 0.8138 +/- 0.012 0.9634 +/- 0.006

Requests B
Precision 0.8033 +/- 0.012 0.7189 +/- 0.014 0.8186 +/- 0.012 0.8359 +/- 0.011 0.9647 +/- 0.006

Recall 0.8017 +/- 0.012 0.6407 +/- 0.015 0.7702 +/- 0.013 0.7888 +/- 0.013 0.9622 +/- 0.006
F-score 0.8025 +/- 0.012 0.6776 +/- 0.014 0.7937 +/- 0.013 0.8117 +/- 0.012 0.9634 +/- 0.006

Requests C
Precision 0.8027 +/- 0.012 0.7210 +/- 0.014 0.8208 +/- 0.012 0.8384 +/- 0.011 0.9658 +/- 0.006

Recall 0.8010 +/- 0.012 0.6427 +/- 0.015 0.7732 +/- 0.013 0.7915 +/- 0.013 0.9627 +/- 0.006
F-score 0.8018 +/- 0.012 0.6796 +/- 0.014 0.7963 +/- 0.012 0.8143 +/- 0.012 0.9643 +/- 0.006

Requests D
Precision 0.8010 +/- 0.012 0.7209 +/- 0.014 0.8191 +/- 0.012 0.8379 +/- 0.011 0.9652 +/- 0.006

Recall 0.7995 +/- 0.012 0.6424 +/- 0.015 0.7705 +/- 0.013 0.7901 +/- 0.013 0.9622 +/- 0.006
F-score 0.8003 +/- 0.012 0.6794 +/- 0.014 0.7941 +/- 0.013 0.8133 +/- 0.012 0.9637 +/- 0.006

Requests E
Precision 0.8030 +/- 0.012 0.7207 +/- 0.014 0.8183 +/- 0.012 0.8375 +/- 0.011 0.9658 +/- 0.006

Recall 0.8011 +/- 0.012 0.6425 +/- 0.015 0.7704 +/- 0.013 0.7894 +/- 0.013 0.9627 +/- 0.006
F-score 0.8021 +/- 0.012 0.6794 +/- 0.014 0.7937 +/- 0.013 0.8128 +/- 0.012 0.9643 +/- 0.006

Requests F
Precision 0.8034 +/- 0.012 0.7204 +/- 0.014 0.8187 +/- 0.012 0.8370 +/- 0.011 0.9651 +/- 0.006

Recall 0.8016 +/- 0.012 0.6430 +/- 0.015 0.7727 +/- 0.013 0.7908 +/- 0.013 0.9622 +/- 0.006
F-score 0.8025 +/- 0.012 0.6795 +/- 0.014 0.7950 +/- 0.013 0.8133 +/- 0.012 0.9637 +/- 0.006

CONLL’03
Precision 0.8465 +/- 0.009 0.7929 +/- 0.010 0.7528 +/- 0.010 0.7759 +/- 0.010 0.8626 +/- 0.008

Recall 0.8065 +/- 0.009 0.7517 +/- 0.010 0.7351 +/- 0.011 0.7666 +/- 0.010 0.8627 +/- 0.008
F-score 0.8261 +/- 0.009 0.7718 +/- 0.010 0.7438 +/- 0.010 0.7712 +/- 0.010 0.8627 +/- 0.008

CONLL’03 A
Precision 0.8457 +/- 0.012 0.7932 +/- 0.014 0.7521 +/- 0.015 0.7806 +/- 0.014 0.8648 +/- 0.012

Recall 0.8067 +/- 0.013 0.7548 +/- 0.015 0.7367 +/- 0.015 0.7762 +/- 0.014 0.8704 +/- 0.011
F-score 0.8258 +/- 0.013 0.7735 +/- 0.014 0.7443 +/- 0.015 0.7784 +/- 0.014 0.8676 +/- 0.011

CONLL’03 B
Precision 0.8473 +/- 0.012 0.7926 +/- 0.014 0.7534 +/- 0.015 0.7712 +/- 0.014 0.8604 +/- 0.012

Recall 0.8064 +/- 0.013 0.7486 +/- 0.015 0.7336 +/- 0.015 0.7572 +/- 0.015 0.8552 +/- 0.012
F-score 0.8263 +/- 0.013 0.7700 +/- 0.014 0.7434 +/- 0.015 0.7641 +/- 0.014 0.8578 +/- 0.012

assume that the good performance of our reimplementation of
CNN-BLSTM could be even better by adding a mechanism
of evolution over time such as self-learning.

REFERENCES

[1] Jason P. C. Chiu and Eric Nichols. Named Entity Recognition with
Bidirectional LSTM-CNNs. arXiv:1511.08308 [cs], November 2015.

[2] Janez Demšar. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine learning research, 7(Jan):1–30, 2006.

[3] Konstantinos G Derpanis. The bhattacharyya measure. Mendeley
Computer, 1(4):1990–1992, 2008.

[4] F. Forbes. Modelling structured data with Probabilistic Graphical
Models. EAS Publications Series, 77:195–219, 2016.

[5] Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and
hilbert space embedding. In International Symposium onInformation
Theory, 2004. ISIT 2004. Proceedings., page 31. IEEE, 2004.

[6] Christophe Gonzales, Lionel Torti, and Pierre-Henri Wuillemin. agrum:
a graphical universal model framework. In International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pages 171–177. Springer, 2017.

[7] Ralph Grishman and Beth M Sundheim. Message understanding
conference-6: A brief history. In COLING 1996 Volume 1: The 16th
International Conference on Computational Linguistics, 1996.

[8] James Hammerton. Named entity recognition with long short-term
memory. In Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 172–175,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Comput., 9(8):1735–1780, November 1997.



(a) Nemenyi critical distance - Precision (b) Nemenyi critical distance - Recall

(c) Nemenyi critical distance - F-score

Fig. 5: Nemenyi test results.

[10] Zhenyu Jiao, Shuqi Sun, and Ke Sun. Chinese lexical analysis with deep
bi-gru-crf network, 2018.

[11] Shivakumar Jolad, Ahmed Roman, Mahesh C Shastry, Mihir Gadgil, and
Ayanendranath Basu. A new family of bounded divergence measures
and application to signal detection. arXiv preprint arXiv:1201.0418,
2012.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Pro-
ceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, pages 1097–1105. Curran
Associates Inc., 2012.

[13] Andrew McCallum and Wei Li. Early Results for Named Entity
Recognition with Conditional Random Fields, Feature Induction and
Web-enhanced Lexicons. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL
’03, pages 188–191, 2003.

[14] Ryan McDonald and Fernando Pereira. Identifying gene and protein
mentions in text using conditional random fields. BMC bioinformatics,
6(S1):S6, 2005.

[15] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[16] Erik F Sang and Fien De Meulder. Introduction to the conll-2003 shared
task: Language-independent named entity recognition. arXiv preprint
cs/0306050, 2003.

[17] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

[18] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge
university press, 2000.

[19] Jim Young, Patrick Graham, and Richard Penny. Using bayesian net-
works to create synthetic data. Journal of Official Statistics, 25(4):549,
2009.

[20] Shaojun Zhao. Named Entity Recognition in Biomedical Texts Using
an HMM Model. In Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine and Its Applications,
JNLPBA ’04, pages 84–87. Association for Computational Linguistics,
2004.

[21] GuoDong Zhou and Jian Su. Named Entity Recognition Using an HMM-
based Chunk Tagger. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 473–480.
Association for Computational Linguistics, 2002.




