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Abstract—Have you ever wondered how a song might sound
if performed by a different artist? In this work, we propose
SCM-GAN, an end-to-end non-parallel song conversion system
powered by generative adversarial and transfer learning, which
allows users to listen to a selected target singer singing any song.
SCM-GAN first separates songs into vocals and instrumental
music using a U-Net network, then converts the vocal segments to
the target singer using advanced CycleGAN-VC, before merging
the converted vocals with their corresponding background music.
SCM-GAN is first initialized with feature representations learned
from a state-of-the-art voice-to-voice conversion and then trained
on a dataset of non-parallel songs. After that, SCM-GAN is
evaluated against a set of metrics including global variance GV
and modulation spectra MS on the 24 Mel-cepstral coefficients
(MCEPs). Transfer learning improves the GV by 35% and the
MS by 13% on average. A subjective comparison is conducted to
test the output’s similarity to the target singer and its naturalness.
Results show that the SCM-GAN’s similarity between its output
and the target reaches 69%, and its naturalness reaches 54%.

Index Terms—Generative Adversarial Networks, Song to Song
Conversion, Voice to Voice, Transfer Learning

I. INTRODUCTION

Voice-to-voice conversion is the process of converting a
speech spoken by a particular speaker to another selected
target speaker. Prior work on voice-to-voice using deep learn-
ing utilized sequence-to-sequence voice conversion [1], and
phoneme-based linear mapping functions [2] to provide an
end-to-end voice-to-voice solution. Recently, generative adver-
sarial networks (GANs) have shown their success in natural
language processing [3], and image and video synthesis [4].
Given the requirement of generating a voice that mimics
a particular data distribution, systems based on GANs [5]
showed promising results in voice-to-voice conversions.

*Authors with equal contribution

Song-to-song systems are a particular case of the voice-
to-voice problem, and attempt to change existing songs by
incorporating the voice of a user-selected artist. Such systems
have many practical applications. For instance, music appli-
cations can integrate novel features that allow users to listen
to any song by the voice of their favorite singer. Additionally,
users can pretend on social media platforms to sing a song by
replacing the voice of the original singer by their own voice.

Given that speech and music encode distinct sorts of infor-
mation differently, their acoustical features are fundamentally
dissimilar [6]. For instance, fundamental frequencies, temporal
regularities and quantization, short silences, steady and varying
formants, and transient spectral details significantly vary be-
tween speech and music. This makes speech recognition chal-
lenging when there is even a modest level of background music
[6]. Existing song-to-song systems only focus on achieving the
singing voice conversion without developing stand-alone end-
to-end systems that perform well when background music is
inputted along the vocals [7].

In this work, we propose a novel end-to-end system powered
by generative adversarial networks and transfer learning, and
which replaces the original singer of a song by any desired
performer. The long term objective of the proposed system
aims at enabling developers to build a commercial application
for the aforementioned purpose. Our model, Split-Convert-
Merge using CycleGAN, SCM-GAN, first takes advantage
of the U-Net [8] to split vocals from the background music,
then trains an instance of Voice Converter CycleGANs [9]
on a set of in-house collected songs, not necessarily parallel.
Finally, SCM-GAN merges the converted singing voice with
the background music to achieve the song-to-song conversion.
Moreover, we utilize acoustic features learnt in the voice con-
verter CycleGAN of [9] to efficiently train SCM-GAN using
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transfer learning. We show the importance of the suggested
system through objective and subjective evaluation. The results
show that SCM-GAN successfully converts a song to a target
singer song with high resemblance to ground truth. Transfer
learning improves the average GV and MS by 35% and 13%
respectively and the splitting scheme increases the subjective
evaluation scores by 73% and 26% on the naturalness and
similarity of the converted song. The contributions of this
work include: (1) an end to end song-to-song conversion
approach which (2) combines two mostly-unrelated machine
learning tasks with co-dependent results. The purpose of this
combination is to (3) split and reconstruct songs as well as (4)
transfer knowledge from voice-to-voice models.

The remainder of the paper is organized as follows: first, re-
lated work is reported in Section II, then Section III describes
the system Methodology before Section IV reports the results
of the conducted experiments. Section V concludes with final
remarks.

II. RELATED WORK

Converting a specific speaker’s voice to a target voice
is a topic of interest for many researchers. For instance,
[10] presented a voice conversion technique by introducing
a STRAIGHT mixed excitation [11] to Maximum Likelihood
Estimation (MLE) with a Gaussian Mixture model (GMM).
However, in their work they focused on the quality of the
converted voice rather than the conversion accuracy. Another
approach of voice conversion was introduced by [12]. Their
system involved mapping the spectral features of a source
speaker to that of a target speaker using Artificial Neural
Network (ANN); they proved that the mapping capabilities
of (ANN) perform better transformation and produce better
quality voices than GMMs.

Deep Neural Networks (DNNs) were also used in voice
conversion systems [13]. However, the problem with conven-
tional DNN frame-based methods is that they do not capture
the temporal dependencies of a speech sequence. To tackle this
problem, [14] proposed a Deep Bidirectional Long Short-Term
Memory based Recurrent Neural Network (DBLSTM-RNN)
architecture to model the long-range context-dependencies in
the acoustic trajectory between the source and the target
voice. Recently, Kaneko and Kameoka in [9] proposed a
novel voice converter (CycleGAN-VC) that relies on cycle-
consistent adversarial networks (CycleGAN).

For the conversion of voices that are sung, [15] relied on
statistical modeling of the speakers’ timbre space using a
GMM in order to define a time-continuous mapping from
the feaures of the the source speaker to the target. More-
over, [16] used direct waveform modification based on the
spectrum differential to achieve the conversion of the singing
voice. Then, they extended it to restore the global variance
of the converted spectral parameter trajectory to avoid over-
smoothing at unvoiced frames in [7].

So far, the attempts of conversion of singing voice have
relied on methods used for voice-to-voice conversion. How-
ever, to the best of our knowledge, the state of the art method

in voice conversion, CycleGAN-VC [9], has not yet been
implemented for the conversion of singing voice. In this paper,
we propose an end-to-end system SCM-GAN that employs
CycleGAN-VC [9] along with a deep U-Net [8] to achieve
song-to-song conversion.

III. METHODOLOGY

In this work, we propose SCM-GAN, an end-to-end system
that converts songs from the voice of any singer to that of
a specific fixed target singer S without altering the back-
ground music. For this purpose, CycleGAN-VCvoc, a deep
CycleGAN converter that is trained on instances of the form
(voci,A, voci,S ) where voci,S is the ith vocals segment sung
by the singer S. To be able to maintain the background
music, only vocals are fed into CycleGAN-VCvoc after being
separated from the background music by a deep U-Net [8].

The overall workflow of SCM-GAN is shown in Fig. 1.
First, the song is fed into a pre-trained U-Net model [8],
which separates songs into vocals and background music.
Then, the vocals are inputted into the CycleGAN-VCvoc,
which converts them into the voice of S using transfer
learning. Finally, a merging scheme is used to overlay the
converted output with the saved background music from
the separation phase. The system is composed of four
main components including: (1) the vocals-music separation
with a pre-trained U-Net [8] (2) the vocals conversion
provided by CycleGAN-VC, (3) the knowledge transferred
from a CycleGAN-VC network trained on speech and (4)
the merging scheme. Four different notations will be used
throughout the paper to distinguish between CycleGAN-VC
implementations: (1) CycleGAN-VCsp trained on speech, 2)
CycleGAN-VCvoc trained on vocals using transfer learning,
3) CycleGAN-VCvoc

scratch trained on vocals from scratch
and 4) CycleGAN-VCvoc+music trained on song (vocals and
background music) using transfer learning.

A. Music-Vocals Separation

A U-Net [8] is implemented as an encoder-decoder fully
connected convolutional neural network to separate the back-
ground music from the vocals by operating exclusively on
the magnitude of audio spectrograms. Specifically, the U-
Net implements two decoders: one for the instrumental music
and another one for the vocals. The audio signal for both
components (instrumental/vocal) is recompiled as follows:
the magnitude component of the signal is reconstructed by
applying the output mask of each decoder to the magnitude
of the original spectrum; and its phase component is that of
the original spectrum without any modifications.

B. Vocals Conversion With CycleGAN-VCvoc

In this work, vocals are converted by CycleGAN-
VCvoc (trained on vocals) that has the same underlying ar-
chitecture as in [9]. The CycleGAN-VC architecture modifies
that of cycleGAN [17], adding to it identity mapping loss
[18] and a gated CNN [19] that can represent sequential and



Fig. 1. SCM-GAN system overview. [9] provides details of the adopted cycle-GAN architecture

hierarchical features of speech, and generate state-of-the-art
speech output [1]. The superior results are achieved because
of the networks’ structure, which include gated linear units
(GLUs) that act as data driven activation functions:

Hl+1 = (Hl ∗Wl + bl)⊗ σ(Hl ∗ Vl + cl),

where Hl+1 and Hl are the l + 1 and l layer outputs respec-
tively. In addition, Wl, bl, Vl, and cl represent the parameters
of the model and σ represents the sigmoid function. Here, ⊗
is the element-wise product.

In the CycleGAN-VC architecture, three losses are utilized,
including an adversarial loss, a cycle-consistency loss, and an
identity-mapping loss [18]. First, we denote the mapping from
the source x ∈ X to the target y ∈ Y as GX→Y and the
reciprocal as GY→X . Then, the adversarial loss can be de-
scribed as the difference between the distribution of converted
data PGX→Y

(x) and their corresponding actual training output
distribution PData(y). In order to reduce this difference and
deceive the discriminator DY by getting an output close to the
target output, the following objective function is minimized:

Ladv(GX→Y , DY ) = Ey∼PData(y)[logDY (y)]+

Ex∼PData(x)[log(1−DY (GX→Y (x)))]

Conversely, DY maximizes this loss to avoid being de-
ceived. Cycle-consistency loss attempts to keep the contex-

tual information between the input and the converted output
consistent using the following objective function:

Lcyc(GX→Y , GY→X) =

Ex∼PData(x)[‖ GY→X(GX→Y (x))− x ‖1]+
Ey∼PData(y)[‖ GX→Y (GY→X(y))− y ‖1]

Identity-mapping loss is used to preserve composition and
linguistic information between input and output. This loss is
defined as follows:
Lid(GX→Y , GY→X) = Ey∼PData(y)[‖ GX→Y (y)− y ‖1]+

Ex∼PData(x)[‖ GY→X(x)− x ‖1]
Using an inverse adversarial loss Ladv(GY→X , DX), the full
objective function can be expressed as:

Lfull = Ladv(GX→Y , DY ) + Ladv(GY→X , DX)+

λcycLcyc(GX→Y , GY→X) + λidLid(GX→Y , GY→X)

where λcyc and λid are trade-off parameters for their corre-
sponding losses. This objective function allows the model to
learn the mapping from a source singer to a target one chosen
by the user.

C. Knowledge Transfer from CycleGAN-VCsp

CycleGAN-VCsp [9] is trained on instances of the form
(spi,A, spi,B) where spi,S is the ith speech training instance
spoken by S. In order to speed up the training of CycleGAN-
VCvoc, voice feature representation learnt in CycleGAN-
VCsp is used to initialize the training. It is worth mentioning



that the target speaker in CycleGAN-VCsp is different than S,
the target speaker of our CycleGAN-VCvoc.

D. Song Reconstruction

Since the proposed pipeline maintains the temporal char-
acteristic of the input audio after the splitting and converting
step, it is enough to just overlay the background music with
the output from the model. In order to overlay the converted
vocals with their corresponding instrumental music, they are
both segmented via an analysis of signal onsets and offsets as
in [20]. Segments are then integrated at a coarse scale and at a
finer scale by locating accurate onset and offset positions for
segments as in [21].

IV. EXPERIMENTS

To assess the efficiency of SCM-GAN, we performed sev-
eral experiments in which a performer is replaced by another
singing the identical song. Since singing voice conversion
methods have relied on voice-to-voice conversion, we will be
comparing SCM-GAN to the state of the art method in voice-
to-voice conversion (CycleGAN-VC). Given that no public
dataset exists that includes two voices singing the same part
with background music, we developed our own.

A. Dataset

We collected a dataset of non-parallel aligned song segments
of 3sec each on average to be consistent with the Voice
Conversion Challenge 2016 (VCC 2016) dataset [22] used by
[9]. For every instance of a singer A, a corresponding instance
is created with the target singer S singing the same lyrics at a
different time frame. Particularly, 228 training instances were
created with Samantha Harvey as singer A and Ed Sheeran
as target singer S. As for the testing data, 15 instances of
10secs each (for better subjective and objective evaluation)
were collected. These instances include songs by singer A
singing her own songs as opposed to singing singer B’s songs.
In addition, songs from 5 singers different from A were also
included in the testing data including: Beyonce, Bea Miller,
Diamond White, Nicole Cross, and Chelsea FreeCoustic. This
dataset will be made publicly available for further research
and improvements in the field.

After splitting the data into vocals and background music,
the vocals were then pre-processed by downsampling the
data to 16 kHz. Afterwards, at every 5 ms the data is
transformed into MCEPs, aperiodicities (APs), and logarithmic
fundamental frequency log(F0), using a speech synthesis
system WORLD [23]. Then, a normalized logarithm Gaussian
transformation, [2], is applied on F0 as in [9].

B. Training

After the separated vocals are preprocessed, voice-to-voice
inter-gender weights (SF1 − TF2) from [9] are loaded into
CycleGAN-VC, which is then fine-tuned on 1000 epochs using
our data. The choice of the number of epochs was chosen to
be 1 since the losses converged after that. Fine-tuning can be
used in this case since the task the model has already learnt

(voice-to-voice) is similar to the new task it is about to learn
(song-to-song). The reason behind fine-tuning is that much
less epochs and processing time are needed than that needed
to train a model from scratch.

C. Objective Evaluation

To properly assess our proposed system, we evaluated the
quality of the converted feature vector (MCEPs). Specifically,
we focused in our experiments on analyzing two associated
metrics: Modulation Spectrum (MS) [24] and Global Vari-
ance (GV) [25]. To test the importance of transfer learning,
we compared our system CycleGAN-VCvoc to CycleGAN-
VCvoc

scratch (trained on vocals from scratch), a model with same
architecture but has not been pretrained with the knowledge
from CycleGAN-VCsp. Figs. 2 and 3 present the comparison
of GV and MS respectively between the two models compared
to the ground truth. The root mean squared errors (RMSEs) be-
tween the models and the target are calculated and summarized
in Table I showing that the RMSEs of CycleGAN-VCvoc with
the target on the basis of GV and MS are smaller than those of
CycleGAN-VCvoc

scratch. Consequently, transfer learning improves
the average GV and MS by 35% and 13% respectively.

To further validate the previous results, the change in
CycleGAN-VCvoc’s losses throughout the training is compared
to that of CycleGAN-VCvoc

scratch. It is worth mentioning that
losses don’t converge to zero, since GANs are used, which
are nothing but a play on losses between the generator and
the discriminator. Fig. 4 shows that the former outperformed
the latter in terms of jump start performance and the final loss.

Fig. 2. GV of CycleGAN-VCvoc and CycleGAN-VCvoc
scratch on two song

segments (best seen in color)



Fig. 3. MS of CycleGAN-VCvoc and CycleGAN-VCvoc
scratch on two song

segments (best seen in color)

TABLE I
COMPARISON OF AVERAGE RMSE BETWEEN TARGET AND CONVERTED

INSTANCES IN TERMS OF GV AND MS. SMALLER VALUES INDICATE
RESEMBLANCE TO TARGET.

Method GV MS
CycleGAN-VCvoc 1.735 ± 1.076 6.833 ± 0.373
CycleGAN-VCvoc

scratch 2.696 ± 2.386 7.922 ± 0.27

D. Subjective Evaluation

We found it difficult to objectively test the effect of split-
ting the background music from vocals because the target
ground truth song does not have the same background mu-
sic nor the same pace. Hence, we subjectively evaluated
the importance of splitting background music before being
inputted to CycleGAN-VCvoc, and we trained CycleGAN-
VCvoc+music (trained on song, vocals and background music,
using transfer learning), on full song segments without split-
ting, then compared it to CycleGAN-VCvoc.

To perform the subjective tests, we prepared a survey for
song evaluation using five 10sec song segments that were con-
verted using two models: CycleGAN-VCvoc and CycleGAN-
VCvoc+music. The survey was filled by twenty test subjects of
random gender, age, and musical background. The survey was
conducted according to a ranking system on similarity basis
ranging from 1 (similar to original singer) to 5 (similar to
target speaker). Furthermore, naturalness was also included
in the survey with a 1 − 5 score ranging from not natural
to very natural. The data from the survey was then analyzed
using mean opinion score (MOS) test. The results in Table
II show that the output of our system CycleGAN-VCvoc is

TABLE II
COMPARISON OF MOS OF NATURALNESS AND SIMILARITY BETWEEN

TARGET AND CONVERTED. LARGER VALUES INDICATE RESEMBLANCE TO
TARGET AND HIGHER NATURALNESS.

Method Naturalness Similarity
CycleGAN-VCvoc 2.68 3.46
CycleGAN-VCvoc+music 1.55 2.75

closer to the target (reaching a 69% similarity to the target)
than CycleGAN-VCvoc+music (reaching only a 55% similarity to
the target) by 26%. This was accompanied with an increase of
73% in the degree of naturalness on average with our system
CycleGAN-VCvoc, and CycleGAN-VCvoc+music having 54%
and 31% naturalness respectively. We demonstrated that our
system CycleGAN-VCvoc has higher MOS than CycleGAN-
VCvoc+music. Particularly, we confirmed that data with back-
ground music has an adverse effect on the performance of the
conversion model as expected, and adding a separation model
to the pipeline had valuable implications on the output.

E. Limitations

The analyzed results are also coupled with limitations that
we will address in future work. The encountered limitations
include the modest size of the dataset that had to be developed
manually. That is, there is no ready dataset that includes two
voices singing the same part with background music. Other
limitations come from the drawbacks of using a subjective
survey-based evaluation method, which may include dishonest
answers, missing data, social desirability bias, unconscientious
responses, and others.

V. CONCLUSION

In this paper, we presented our novel end to end framework,
SCM-GAN that successfully transformed songs to be per-
formed by a target singer using an in-house collected dataset
of non parallel songs. This was achieved by utilizing U-
Net, Generative Adversarial Networks, and encoder-decoder
architectures to first separate the songs from their background
music, convert them, and then reconstruct the target song.
The results were evaluated on the basis of the global variance
and modulation spectrum of their corresponding Mel-spectrum
coefficients which showed that transfer learning improves the
performance of SCM-GAN by 35% in the global variance. The
naturalness and similarity to the ground truth of the system
output was evaluated with a subjective survey that shows the
SCM-GAN’s output having 69% similarity to the ground truth
and 54% naturalness. The encouraging results of our model
SCM-GAN pave the way for an expansion into models that
easily adapt to different target singers and languages through
advanced forms of transfer learning.
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