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Abstract—This paper proposes a Distributed Coding Spiking
Neural Network (DC-SNN) with a self-regulated learning al-
gorithm to deal with pattern classification problems. DC-SNN
employs two hidden layers. First hidden layer has receptive
field neurons that convert the real-valued input features to spike
patterns and the second hidden layer employs LIF neurons with
inhibitory interconnections. The second hidden layer has been
termed as the distributed coding layer in the rest of the paper.
The inhibitory interconnections in distributed coding layer will
ensure that each neuron in this layer learns a distinct spike
pattern from input feature space. The synaptic weights between
layers and the weights of lateral inhibitory connections are
learned using a self-regulated learning algorithm. Self-regulation
identifies neurons for updating in the output layer and distributed
coding layer and also adapts the learning rate based on the
temporal separation between spikes in the output layer. It also
skips learning from samples which are correctly classified with
higher temporal separation and hence prevents over-training.
The detailed performance comparisons of DC-SNN with other
algorithms for SNNs in the literature using six benchmark
data set from the UCI machine learning repository has been
presented. Further, the performance of DC-SNN is evaluated on
a real-world brain computer interface problem for classification
of electroencephalogram (EEG) signals recorded during motor-
imagery tasks. The results clearly indicate that the proposed DC-
SNN architecture provides slightly better generalization ability
and is suitable for deep spiking networks.

Index Terms—spiking neural networks, pattern classification,
lateral inhibition, self-regulation

I. INTRODUCTION

Spiking Neural Networks (SNN) have attracted a lot of
researcher interest in recent times due to their proximity to
biological neurons and lower energy footprint. Further, to
approximate a given function, SNNs require fewer units than
a network with Sigmoidal neurons [1] which highlights their
superior computational capacities.

A SNN consists of spiking neurons which process and trans-
mit information using discrete events in time which are termed
as spikes. As a result, SNNs naturally require lesser power
for realization in comparison to artificial neural networks
which use continuous real values to represent information.
This makes SNNs an effective alternative to artificial neural
networks for applications where minimizing power usage is an
important requirement. However, developing effective learning
algorithms for SNNs is difficult due to the discontinuous

nature of spikes and the ‘silent neuron’ problem which may
arise when neurons stop generating spikes after updating
weights.

Due to the closeness between spiking neurons and biological
neurons, researchers have often used phenomena observed in
the brain as an inspiration for the development of learning
algorithms for SNNs. Spike Timing Dependent Plasticity
(STDP) is a well established plasticity mechanism in the brain
[2], [3] that is the foundation of learning algorithms like
Synaptic Weight Association Training (SWAT) [4], ReSuMe
[5], Synaptic Efficacy Function-based leaky integrate-and-
fire neuRON (SEFRON) [6]. All of these algorithms employ
network architectures with a single layer of spiking neurons
because of the lack of an effective mechanism to propagate
error in network response across multiple layers. This makes
these approaches unsuitable for training SNNs with several
layers.

To overcome this issue, many researchers employ layer-wise
training in a multilayer SNN like [7], [8]. In these approaches
each layer in a network is trained independently and the output
of neurons in a given well-trained layer serve as the input
for the successive layer. These approaches hinge on the idea
that by processing the input through multiple such layers, the
output of the final layer may be suitable for performing a
particular task. The approaches based on this idea can be
further divided into algorithms that use class information for
training each layer in the network and algorithms that use class
information only for training the last layer in the network. In
[7], a two stage learning algorithm is developed which uses
class information to train each layer in a SNN. However, this
method is specifically developed for training a SNN classifier
with three layers only.

In [8], a deep convolutional SNN consisting of non-leaky
integrate-and-fire spiking neurons is trained in a layer-wise
manner using STDP and the output of the final layer in the
network is used to train a support vector machine classifier.
All neurons in the network, including the input neurons, are
allowed to generate a single spike only implying that the
information is encoded by the precise time of generated spikes.
To improve upon the biological plausibility of this approach,
a STDP-based learning approach is proposed for training deep
convolutional networks with leaky integrate-and-fire neurons
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in [9]. The input to the network was presented using Poisson-
distributed spike encoding and information is embedded in the
average firing rate of spiking neurons.

Significant performance improvements have been achieved
by layer-wise training approaches for SNNs but their biologi-
cal realization relies on a complex neural circuitry. Further, in
layer-wise training approaches only last layer utilizes the class
information for learning as there is no mechanism for using
feedback from the last layer to drive learning in other layers.
Other layers in the network learn feature representations in
an unsupervised manner. As a result, the activity of neurons
in the intermediate layers may lead to lower classification
performance. Recently, a STDP-based learning scheme for
a deep SNN has been proposed for simultaneously learning
weights in all layers of the network [10]. However, the
approach employs a biologically implausible neuron model
with separate integration processes for training and testing.

While STDP has been employed in the development of
several learning algorithms for SNNs, the canonical form of
STDP may results in a network consisting of neurons that have
learned to encode overlapping representations of inputs from
different classes [11]. To overcome these issues, we propose a
SNN architecture which consists of a distributed coding layer
that helps the network to learn non-overlapping representations
for input spike patterns. The architecture has been named
Distributed Coding SNN (DC-SNN). The distributed coding
layer in SR-STDP consists of neurons that are connected to
other neurons in the layer via inhibitory connections. As a
result, the first neuron that fires in this layer suppresses the
other neurons from firing.

To train DCSNN using biologically plausible mechanisms,
we propose a Self-regulated Competitive STDP (SR-STDP)
based learning algorithm. SR-STDP utilizes only the locally
accessible information on a synapse to update its weight.
Depending on the spike patterns that are generated by the
output neurons, SR-STDP self-regulates its learning strategy
for each neuron in the network. For output neurons, the
weights of the output neuron associated with the same class
as the class label of the current sample is updated using
STDP whereas weights for the output neurons associated with
other classes are updated using anti-STDP. Furthermore, SR-
STDP also takes into account the temporal separation be-
tween the spike times of these output neurons while updating
their weights. A smaller temporal separation leads to bigger
weight updates and vice-versa. This helps SR-STDP achieve
better generalization performance. Similarly, while updating
the weights of distributed coding neurons, SR-STDP identifies
a winner neuron based on their contribution to the membrane
potential of output neurons. A single winner neuron from the
distributed coding layer is identified for each output neuron.
The weights of the winner neuron corresponding to the correct
class output neuron are updated using STDP and weights of
the winner neuron corresponding to other class are updated
using anti-STDP.

The performance of SR-STDP is evaluated using multiple
binary and multiclass benchmark problems from the UCI

machine learning repository. Furthermore, the results of per-
formance evaluation have been compared with other well-
known learning approaches for SNNs, namely SpikeProp [12],
SWAT [4], Self-Regulating Evolving Spiking Neural (SRESN)
classifier [13], Two stage Margin Maximization SNN (TMM-
SNN) [7] and SEFRON. The comparison clearly indicates that
the performance of SR-STDP is similar to that of TMM-SNN
and is better than other algorithms used for comparison. Fur-
thermore, SR-STDP and TMM-SNN employ compact network
architectures in comparison to other algorithms. Additionally,
to study the effectiveness of SR-STDP , we also evaluated
its performance on the real-world problem of motor-imagery
classification using electroencephalogram (EEG) signal. It can
be clearly observed from the results of performance evaluation
that SR-STDP performs better than or similar to the other well-
known learning algorithms for this problem.

The remaining sections in this paper are organized as
follows: Section II describes the architecture of DCSNN and
its SR-STDP based learning algorithm. Section III presents the
results of performance evaluation of SR-STDP on benchmark
problems and a real-world problem. Section IV summarizes
the conclusions from this study.

II. SELF-REGULATED LEARNING ALGORITHM FOR
DISTRIBUTED CODING BASED SNN

This sections presents the architecture of proposed dis-
tributed coding based SNN and its self-regulated learning
algorithm. First, we present the proposed SNN architecture.

A. Distributed coding based SNN

The architecture of the proposed distributed coding based
multi-layer spiking neural network which is succinctly termed
as DC-SNN is shown in the Figure 1. DC-SNN em-
ploys a four layers architecture to approximate the func-
tional relationship between m-dimensional feature space
(x = [x1, · · · , xi, · · · , xm]) and coded class label (y =
[y1, y2, · · · , yn]). The first layer consist of receptive field
neurons which transform the real-valued features into a spike
pattern using a population encoding mechanism [13]. Each
feature xi is coded into spikes using 6 receptive field neuron.
Note that the receptive field layer does not have any param-
eters for learning. The response of jth receptive field neuron
connected to the ith feature denotes the spike time for a given
input features and is given as

φij =

(
1− exp

(
− (xi − µij)

2

2σ2

))
× T, (1)

where µij = xmin
i + (2h−3)

2 × xmax
i −xmin

i

4 is the center of
jth receptive field neuron and σ = α

xmax
i −xmin

i

4 is the width
of the receptive field neuron. α is termed as the overlapping
factor. The encoding interval T is set to 300ms in population
encoding.

The second layer employs HK Leaky-Integrate-Fire (LIF)
neuron with lateral inhibition in the structure. The lateral
inhibitory connections are set between the neurons such that
they sent a strong inhibitory post-synaptic potential to its



Fig. 1. A Distributed Coding based Multi-layer Spiking Neural Network
Architecture.

neighbour. This forces these neurons to learn different spike
patterns present in the data. Thereby, this layer achieves a
distributed coding of the input spike pattern received from the
receptive field neurons. The response of jth LIF neuron in the
distributed coding layer is determined based on the membrane
potential contributed by the pre-synaptic spike patterns (φ̄) and
inhibitory membrane potential resulting from the inhibitory
connections between LIF neurons in the same layer. The post-
synaptic potential in kth neuron in the distributed coding layer
is

vdk(t) =
∑
i,j

w1
ijkε (t− φij)−

∑
l,l 6=k

flkε (t− tl) (2)

where tl denotes the spike time of neurons in the distributed
coding layer for l ∈ {1, · · · , HK ; l 6= k}. w1

ijk is the synaptic
weight between the jth receptive fields neurons encoding xi
and kth neuron in the distributed coding layer. flk is the
synaptic weight of the inhibitory connection between lth and
kth neuron in the distributed coding layer. ε(·) is the spike
response function [14]. The kth LIF neuron fires if the vd(t)
crosses the threshold θ. The response of the kth neuron in
distributed coding layer is

[
t1k, t

2
k, · · · t

gk
k

]
where gk is the

number of spikes generated by a neuron in the distributed
computing layer.

The output layer consist of n LIF neurons without any
inhibitory connections. The post-synaptic potential of the hth

neuron in the output layer at time t is

voh(t) =
∑
k

w2
kh

∑
j

ε
(
t− tjk

)
(3)

where w2
kh is the synaptic weight connecting kth neuron in

the distributed coding layer to the hth output neuron. The
response of the hth output neuron with rh spikes is yh =[
t1h, t

2
h, · · · , t

rh
h

]
where rh is the number of spikes generated

by a neuron in the output layer.

The first spike of the output neuron is used to determine
the predicted class label. The predicted class label (ĉ) is

ĉ = arg min
h
t1h, h = 1, 2, · · · , n (4)

The aim of the learning algorithm for DC-SNN is to
determine the synaptic weights (W1 and W2) such that the
predicted class-label is same as the actual class-label. In the
next section, we will describe the learning algorithm for DC-
SNN.

B. Self-regulated Learning Algorithm

In this section, we describe the new self-regulated learning
algorithm which employs locally accessible information on
a synapse along with the membrane potential of a post-
synaptic neuron for learning. The self-regulated algorithm uses
competitive learning approach to select the neurons for update.
In the output layer, learning selects a ’correct class neuron’
(CCN) neuron based on the target class and the next winner
from the other classes based on minimum spike time (OCN).

OCN = arg min
h,h6=c

t1h (5)

where c is the actual class label.
The CCN and OCN neuron uses STDP and anti-STDP for

updating the synaptic weights, respectively.

w2
k,CCN = w2

k,ccn + η∆w2
k,CCN

(
t1CCN

)
(6)

w2
k,OCN = w2

k,OCN − η∆w2
k,OCN

(
t1OCN

)
(7)

where η is the adaptive learning rate. The change in weight
∆w(.) is computed using the spike-time dependent plasticity
[2], [3].

Similarly, a pre-synaptic spike (tg
∗

k∗ ) generated by a neuron
from distributed coding layer is identified which contributed
maximum postsynaptic potential of CCN.

g∗, k∗ = arg max
g,k

wk,CCN ε
(
t1CCN − t

g
k

)
(8)

For this selected spike (tg
∗

k∗ ), STDP has been applied to update
the synaptic weights between the receptive field neurons and
neuron k∗ in the distributed coding layer.

w1
i,j,k∗ = w1

i,j,k∗ + η∆w1
i,j,k∗

(
tg

∗

k∗

)
(9)

Also, the inhibitory connections are updated using STDP.

fl,k∗ = fl,k∗ − η∆fl,k∗

(
tg

∗

k∗

)
(10)

In order to maximize the temporal separation between first
spikes generated by CCN and OCN, a similar procedure as
described above is also followed for OCN. In this case, a pre-
synaptic spike (to

∗

s∗ ) generated by a neuron in the distributed
coding layer is identified which contributed maximum post-
synaptic potential of OCN. This is be mathematically repre-
sented as

s∗, o∗ = arg max
s,o

wo,OCN ε
(
t1OCN − tso

)
(11)



TABLE I
DESCRIPTION OF BINARY AND MULTI-CLASS DATA SETS USED FOR

EVALUATION

Data set # Features # Classes # Samples
Training Testing

Breast Cancer 9 2 350 333
Liver 6 2 170 175
PIMA 8 2 384 384

Ionosphere 33 2 175 176
Iris 4 3 75 75

Wine 13 3 60 118

For this selected spike (to
∗

s∗ ), anti-STDP has been applied
to update the synaptic weights between the receptive field
neurons and o∗th distributed coding layer neuron. The weight
update due to anti-STDP is given by

w1
i,j,s∗ = w1

i,j,s∗ − η∆w1
i,j,s∗

(
to

∗

s∗

)
(12)

Also, the inhibitory connections are updated using anti-STDP.

fl,s∗ = fl,s∗ − η∆fl,s∗
(
to

∗

s∗

)
(13)

It has been shown in the literature [15]–[18] that self-
regulation in learning helps in better convergence and im-
proves the generalization ability. It is also shown in [13]
that self-regulation helps in online evolving SNN architecture.
Since the proposed learning algorithm is based on batch
learning, the participation of sample in particular epoch is
decided based on the following criterion:

t1OCN − t1CCN < Td

where Td is the expected time difference between the first
spikes of CCN and OCN. If a a given spike pattern satisfy
the above criterion then it will be participating in the learning
process. Thereby, the selective learning process helps in pre-
venting over-training and improves the generalization process.

Further, the selection of learning rate influence the conver-
gence characteristics of batch learning algorithm significantly.
Hence, in this paper, we employ a novel adaptive learning rate
mechanism which is given by

η = 0.001×max

(
min

(
1− t1OCN − t1CCN

Td
, 2

)
, 0.5

)
(14)

The learning rate increases or decreases based on the correct
classification and the margin of separation between the first
spikes of CCN and OCN. The learning decreases by half
when the margin of separation is equal to Td and the sample
is correctly classified. Similarly, the learning will be doubled
when the sample is mis-classified and the margin of separation
is greater than −Td.

To summarise, the self-regulation learning algorithm maxi-
mize the margin of separation and novel adaptive learning rate
helps in faster convergence. Further, the lateral inhibitory con-
nection in the distributed coding layer projects the receptive
field neuron into discriminating features. The pseudo-code for
the learning algorithm is given in 1.

Algorithm 1 Pseudocode for Self-regulated Learning Algo-
rithm

1: for each spike pattern in training do
2: Simulate spike pattern on DC-SNN for simulation

interval(T̄ ) to generate output spike pattern.
3: CCN ← Target class neuron.
4: Compute OCN , j∗, k∗, s∗ and o∗ using (5), (8) and

(11).
5: if t1CCN =∞ (CCN does not fire) then
6: t1CCN ← T̄
7: η ← η0
8: Perform distributed coding layer to output layer

weight update using (6).
9: else if t1OCN − t1CCN < Td then

10: Compute adaptive learning rate using equation (14).
11: Perform distributed coding layer to output layer

weight update using (6) and (7).
12: Perform receptive field neuron layer to distributed

coding layer weight update using (9) and (12).
13: Perform distributed coding layer inhibitory connec-

tion weight update using (10) and (13).
14: end if
15: end for

III. PERFORMANCE EVALUATION

In this section, the classification performance of DC-SNN
is evaluated on multiple binary and multiclass benchmark
problems from the UCI machine learning repository [19].
In addition, a comparison between the performance of DC-
SNN and SpikeProp [12], SWAT [4], Self-Regulating Evolving
Spiking Neural (SRESN) classifier [13], Two stage Margin
Maximization SNN (TMM-SNN) and SEFRON is presented.
Further, to study the suitability of DC-SNN for real world
problems, its performance is also evaluated on the data set
available from the BCI competition IV.

The metrics used in performance comparison include train-
ing/testing accuracy, number of iterations required for con-
vergence and number of network parameters estimated during
training. Classification accuracies (η) during training and test-
ing are equal to the percentage of samples correctly classified
during the respective phases, given by

η =
Number of samples correctly classified

Total number of samples
∗ 100 (15)

The number of network parameters for SWAT, SRESN, TMM-
SNN and DC-SNN is equal to (Ni ·Nh +Nh ·No) where Ni,
Nh and No represent the number of neurons in the input,
hidden and output layer of the network, respectively. In case
of SpikeProp, every pair of neurons is connected by sixteen
synapses with different delays. Therefore, the total number of
parameters in SpikeProp is equal to 16 · (Ni ·Nh +Nh ·No).
SEFRON employs time-varying weights which are represented
as a sum of multiple Gaussian functions. The center of each
Gaussian function is adapted by the learning algorithm during



TABLE II
COMPARISON BETWEEN CLASSIFICATION ACCURACIES OF DC-SNN , SPIKEPROP, SWAT, SRESN, TMM-SNN AND SEFRON

Data set Learning Architecture Training Testing # Epochs # Network
Algorithm Accuracy (%) Accuracy (%) Parameters

Breast Cancer

SpikeProp 55-15-2 97.3 (0.6) 97.2 (0.6) 1000 13680
SWAT 54-702-2 96.5 (0.5) 95.8 (1.0) 500 1404

SRESN 54-(8-12) 97.7 (0.6) 97.2 (0.7) 306 (432-648)
TMM-SNN 54-(2-8)-2 97.4 (0.3) 97.2 (0.5) 70 (112-448)
SEFRON 55-1 98.3 (0.8) 96.4 (0.7) 100 19250
DC-SNN 54-8-2 97.4 (0.7) 97.8 (0.5) 1000 448

Liver

SpikeProp 37-15-2 71.5 (5.2) 65.1 (4.7) 3000 9360
SWAT 36-468-2 74.8 (2.1) 60.9 (3.2) 500 936

SRESN 36-(6-9) 60.4 (1.7) 59.7 (1.7) 715 (216-324)
TMM-SNN 36-(5-8)-2 74.2 (3.5) 70.4 (2.0) 442 (190-304)

SEFRON 37-1 91.5 (5.4) 67.7 (1.3) 100 6290
DC-SNN 36-8-2 68.8 (4.4) 70.0 (2.0) 1000 304

PIMA

SpikeProp 55-20-2 78.6 (2.5) 76.2 (1.8) 3000 16640
SWAT 54-702-2 77.0 (2.1) 72.1 (1.8) 500 1404

SRESN 54-(9-14) 70.5 (2.4) 69.9 (2.1) 254 (486-756)
TMM-SNN 54-(5-14)-2 79.7 (2.3) 78.1 (1.7) 160 (280-784)

SEFRON 49-1 84.1 (1.5) 74.0 (1.2) 100 18816
DC-SNN 49-12-2 78.6 (1.9) 77.8 (1.2) 1000 612

Ionosphere

SpikeProp 205-25-2 89.0 (7.9) 86.5 (7.2) 3000 82800
SWAT 204-2652-2 86.5 (6.7) 90.0 (2.3) 500 5304

SRESN 204-(16-23) 91.9 (1.8) 88.6 (1.6) 1018 (3264-4692)
TMM-SNN 204-(23-34)-2 98.7 (0.4) 92.4 (1.8) 246 (4738-7004)
SEFRON 199-1 97.0 (2.5) 88.9 (1.7) 100 34825
DC-SNN 199-20-2 97.1 (1.2) 92.7 (1.5) 1000 4020

Iris

SpikeProp 25-10-3 97.2 (1.9) 96.7 (1.6) 1000 4480
SWAT 24-312-3 96.7 (1.4) 92.4 (1.7) 500 936

SRESN 24-(6-10) 96.9 (1.0) 97.3 (1.3) 102 (144-240)
TMM-SNN 24-(4-7)-3 97.5 (0.8) 97.2 (1.0) 246 (108-189)
SEFRON - - - - -
DC-SNN 24-11-3 96.1 (2.9) 97.7 (1.4) 1000 297

Wine

SpikeProp 79-10-2 99.2 (1.2) 96.8 (1.6) 1000 12960
SWAT 78-1014-3 98.6 (1.1) 92.3 (2.4) 500 2028

SRESN 78-(5-10) 96.9 (1.6) 91.0 (1.2) 128 (390-780)
TMM-SNN 78-3-3 100 (0) 97.5 (0.8) 80 243

SEFRON - - - - -
DC-SNN 78-10-3 98.2 (2.0) 96.3 (1.0) 1000 810

training. The total number of Gaussian functions is equal to
(Ni ·N) where N is the number of samples used for training.

The experiments pertaining to evaluation of DC-SNN have
been conducted in Python 3.7 on a machine running Windows
operating system with 16 GB memory. The machine had a
CPU with 6 cores and a speed of 3.2 GHz. The real valued
features in the data sets are converted to spike patterns using
the well-known population coding scheme [13]. As in [7], each
feature is encoded using six receptive field neurons which
generate a spike in the interval [0, 300] milliseconds. The
overlap constant for population coding is set to 0.7. The net-
work is simulated for a duration of 900 milliseconds for each
sample. Time constant for the LIF neuron is chosen as 300
milliseconds. For all simulations Td is set to 50 milliseconds.
A time constant of 50 millisecond and a magnitude of 1 is
used for STDP in all simulations presented in this section.

A. Performance Evaluation

In this section, the classification accuracy of DC-SNN is
evaluated and compared with the performance of SpikeProp,
SWAT, SRESN, TMM-SNN and SEFRON on four binary
and two multiclass problems from the UCI machine learning

repository [19]. Table I provides details pertaining to different
attributes of the datasets used for comparison.

The results of performance evaluation for SpikeProp, SWAT,
SRESN and TMM-SNN have been reproduced from [7] and
for SEFRON, results have been reproduced from [6]. The
training/testing accuracy of all the algorithms have been
estimated over ten random trials. The average and standard
deviation of accuracy across these ten trials is reported. It
may be noted that SEFRON has been specifically developed
for binary classification problems, therefore, it has not been
evaluated on the multi-class classification problems.

Table II provides details about the architecture, train-
ing/testing accuracy, number of epochs needed for convergence
and the number of network parameters for each learning
algorithm. The architecture has been shown using the format
Ni −Nh −No. Note that SRESN and TMM-SNN evolve the
number of hidden neurons during training which can results in
varying number of neurons in models obtained in the ten trials.
Therefore, for SRESN and TMM-SNN, number of hidden
neurons (Nh) have been shown as a range across all trials.

Results presented in Table II show that, for simple problems
like breast cancer, the testing accuracy of DC-SNN is 0.6-



2% better than other algorithms. In terms of convergence,
DC-SNN converged after 1000 epochs of training whereas
TMM-SNN is the fastest to convergence which required 70
epochs for training. Among different learning algorithms used
for comparison, DC-SNN and TMM-SNN employed networks
with smallest number of network parameters.

For difficult problems like Liver and PIMA, TMM-SNN has
the highest testing accuracy. The testing accuracy of DC-SNN
is 0.4% and 0.3% lower than that of TMM-SNN for Liver
and PIMA problems, respectively. SEFRON needed smallest
number of epochs for convergence but its testing accuracy
is lower than both TMM-SNN and DC-SNN . Both TMM-
SNN and DC-SNN employed compact network architectures
in comparison to the other learning algorithms.

For a problem with large number of features like Iono-
sphere, DC-SNN has the highest testing accuracy which is
0.3-6.2% than other learning algorithms. SEFRON converged
fastest among all learning algorithms used for comparison but
its testing accuracy is 3.8% lower than DC-SNN . Further, DC-
SNN employed a network architecture with smallest number
of network parameters.

For multi-class problems like Iris and Wine, DC-SNN and
TMM-SNN have similar testing accuracy which are better than
other learning approaches used in the comparison. TMM-SNN
converged faster than DC-SNN . Additionally, TMM-SNN
employed a compact network architecture in comparison to
other learning algorithms. These results show that DC-SNN
and TMM-SNN perform better than other learning approaches
while using smaller network architecture.

B. Performance of DC-SNN on the BCI Competition IV Data
Set

In this section, the classification accuracy of DC-SNN is
evaluated on a real-world data set obtained from the BCI
competition IV [20]. BCI technologies enable communications
between brains and computers. This communication is usually
achieved by recording and interpreting the electroencephalo-
gram (EEG) signals recorded from the brain. Such technolo-
gies can be very effective in improving the lifestyle of persons
with disabilities. However, interpreting EEG signals recorded
from the brain is a difficult problem because of their inherently
noise nature. The aim of BCI competition IV is to advance
research directed at decoding signals recorded from motor
areas in the brain.

BCI competition IV consists of multiple data set. In this
study, we used the data set for motor-imagery task which is
commonly referred as 2a in the competition. The data set used
in this study consisted of EEG recordings obtained from 9
subjects performing a motor-imagery task. The recordings are
conducted using 22 electrodes with a sampling frequency of
250 Hz. The subjects are asked to imagine moving of one of
the four body parts, namely left hand, right hand, both feet
and tongue which correspond to four different classes. For
each subject, recordings are conducted in two sessions each of
which consisted of 288 trials. Each session consisted of equal
number of trials from the four classes resulting in 144 trials

TABLE III
PERFORMANCE COMPARISON OF DC-SNN WITH CSP-LDA AND

SRIT2NFIS ON BCI COMPETITION IV DATASET 2A

Subjects CSP-LDA SRIT2NFIS DC-SNN
A1 88.89 93.06 92.36
A2 51.39 68.75 66.67
A3 96.53 97.22 96.53
A4 70.14 75.00 77.78
A5 54.86 65.97 63.89
A6 71.53 72.22 73.61
A7 81.25 86.11 82.64
A8 93.75 97.22 97.92
A9 93.75 93.75 93.75
SM 78.01 83.26 82.79
SD 17.01 12.76 12.27

for each class. For the purpose of this study, we considered
the left hand vs right hand classification problem.

To evaluate the classification performance of DC-SNN , a
separate classifier was built for each subject. Out of 144 trials
in each class, 72 trials are used for training and remaining
trials are used for testing. Each trial is processed using Robust
Common Spatial Pattern (RoCSP) for feature extraction result-
ing in a total of 6 features. Each feature is encoded using six
receptive fields and other parameters for population coding are
set as described previously. The classification performance of
DC-SNN is also compared with the classification performance
of Linear Discriminant Classifier (LDA) on features extracted
using Common Spatial Patterns (CSP) which is succinctly
referred as CSP-LDA.

Table III presents the results of performance comparison
between DC-SNN and CSP-LDA for each of the 9 subjects.
Additionally, performance evaluation results of Self-Regulated
Interval Type-2 Neuro-Fuzzy Inference System (SRIT2NFIS)
[21] have also been provided for comparison with an approach
that is specifically designed to handle the problem of covariate
drift that is prevalent in EEG signals. It may be noted that fea-
tures for both SRIT2NFIS and SR-STDP have been extracted
using RoCSP. The table also provides mean (SM) and standard
deviation (SD) in the performance of both learning algorithms
across all subjects. It can be clearly observed from the table
that DC-SNN performs better than CSP-LDA for all subjects.
Overall, the mean performance of DC-SNN across subjects
is 4.8% higher than CSP-LDA. With regards to SRIT2NFIS,
performance of SR-STDP is similar to the performance of
SRIT2NFIS. Furthermore, DC-SNN exhibits lower standard
deviation in comparison to both CSP-LDA and SRIT2NFIS in
classification performance across different subjects.

IV. CONCLUSIONS

In this paper, a new architecture for multi-layer spiking
neural networks referred to as Distributed coding SNN (DC-
SNN) in which hidden layer neurons have inhibitory inter-
connections, has been presented. The proposed self-regulated
learning algorithm selects the appropriate samples, neurons
in different layer and adapts the learning rate such that
the network converges faster. Also, self-regulation helps in
preventing over-training. The selected neurons from same class



uses STDP and other neuron uses anti-STDP for synaptic
weight update. The performance results indicate that DC-SNN
is one of the better multi-layer end-to-end training models
without error gradient based back propagation approach for
multi-class problems. The performance results also indicate
that, the approach followed in this paper is capable of handling
the real-world classification problems. The future direction
will be extending the proposed learning algorithm for deep
spiking neural networks.
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in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, Oct. 2002.

[13] S. Dora, K. Subramanian, S. Sundaram, and S. Narasimhan, “Develop-
ment of a Self-Regulating Evolving Spiking Neural Network for classi-
fication problem,” Neurocomputing, vol. 171, pp. 1216–1229, 2016.

[14] S. Dora, S. Sundaram, and N. Sundararajan, “A two stage learning
algorithm for a Growing-Pruning Spiking Neural Network for pattern
classification problems,” in 2015 International Joint Conference on
Neural Networks (IJCNN), 2015, p. 7.

[15] G. Babu, S. Suresh, and B. Mahanand, “A novel pbl-mcrbfn-rfe approach
for identification of critical brain regions responsible for parkinson’s
disease,” Expert Systems with Applications, vol. 41, no. 2, pp. 478–488,
2014.

[16] K. Subramanian, S. Ramasamy, and S. Suresh, “A metacognitive
complex-valued interval type-2 fuzzy inference system,” Neurocomput-
ing, vol. 25, no. 9, pp. 1659–1672, 2014.

[17] S. Suresh, K. Dong, and H. Kim, “A sequential learning algorithm for
self-adaptive resource allocation network classifier,” Neurocomputing,
vol. 73, no. 16-18, pp. 3012–3019, 2014.

[18] K. Subramanian and S. Suresh, “A meta-cognitive sequential learning
algorithm for neuro-fuzzy inference system,” Applied soft computing,
vol. 12, no. 11, pp. 3603–3614, 2012.

[19] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[20] M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller,
“Seperability of four-class motor imagery data using independent com-
ponents analysis,” Journal of Neural Engineering, vol. 3, no. 3, pp.
208–216, 2006.

[21] A. K. Das, S. Sundaram, and N. Sundararajan, “A Self-Regulated
Interval Type-2 Neuro-Fuzzy Inference System for Handling Nonstation-
arities in EEG Signals for BCI,” IEEE Transactions on Fuzzy Systems,
vol. 24, no. 6, pp. 1565–1577, Dec. 2016.




