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Abstract—Increasing number of sectors which affect human
lives, are using Machine Learning (ML) tools. Hence the need
for understanding their working mechanism and evaluating their
fairness in decision-making, are becoming paramount, ushering
in the era of Explainable AI (XAI). In this contribution we
introduced a few intrinsically interpretable models which are also
capable of dealing with missing values, in addition to extracting
knowledge from the dataset and about the problem. These models
are also capable of visualisation of the classifier and decision
boundaries: they are the angle based variants of Learning
Vector Quantization. We have demonstrated the algorithms on a
synthetic dataset and a real-world one (heart disease dataset from
the UCI repository). The newly developed classifiers helped in
investigating the complexities of the UCI dataset as a multiclass
problem. The performance of the developed classifiers were
comparable to those reported in literature for this dataset, with
additional value of interpretability, when the dataset was treated
as a binary class problem.

Index Terms—adaptive distances, learning vector quantization,
non-linear visualization, explainable AI

I. INTRODUCTION

In this era of increasing number of machine learning (ML)
algorithms being deployed in various sectors, including fi-
nance, healthcare, criminology, justice, politics, manufactur-
ing, and logistics, more and more human lives are impacted by
them. Consequently there is a rising need of transparency and
interpretability of the models [1]–[3] to achieve comprehensi-
ble decisions. ML algorithms with greater predictive powers
are often more complex and behave like a black box, i.e. the
working logic of these models is concealed from the human
experts, thus obviating any way of verifying the reasoning and
thus, the fairness of system [3]. However role of ML in high-
stake prediction applications concerning human lives demand
that its decisions be explainable by humans [3].

However, there have been debates about the meaning of
the term interpretability, and how to compare interpretability
of different classifiers, especially when comparing models of
distinct types. To tackle this problem Backhaus and Seiffert
proposed 3 criteria [2], [4]: (1) the model’s ability to perform
feature selection from the input pattern, (2) the model’s
ability to provide typical data points representing a class, and
(3) model parameters having information about the decision
boundary directly encoded. Different strategies have been
proposed: including model-agnostic pre- or post-processing

methods such as univariate feature selection [3] and post hoc
visualisation of decision boundaries [5], [6]. This contribution
focuses on intrinsically interpretable techniques and hence
model-specific examples. Using these criteria Support Vector
Machines (SVM) models [2] are graded 1 out of 3 because
they satisfy only criteria (3), to contain information about
the decision boundary. In Decision trees (DTs) [7] rules
are interpretable. A typically higher performance classifier,
Random Forest (RF), is built by bagging several DTs on
random subsets of the data. However ensembling compromises
on interpretability. Naive Bayes (NB) assumes independence
of features which leads to interpretability of individual features
and their contribution for decision making. However it lacks
the ability to account for feature interactions for the target
outcome [3]. In this paper we aim to develop a competitive
classifier in terms of performance, which is also easily inter-
pretable, and can be visualised, satisfying criteria 1-3 [4].

Nearest Prototype Classification (NPC) is an intuitive learn-
ing scheme where a novel sample gets assigned the class
label of its closest prototype. Thus techniques implementing
it, such as Generalized LVQ (GLVQ) [8] for example. often
allow interpretation of the prototypes as representative of class
information allowing transparency with respect to (2). The
Generalized Relevance LVQ (GRLVQ) [9] extension to it
additionally provide feature relevance determination by intro-
duction of an adaptive parameterized dissimilarity. This weighs
the importance of features for the classification and makes
this extension fulfill criteria (1) as well. Further adaptations
allow for multi-variate and class-wise feature analysis [10],
[11] and visualisation of decision boundaries [5]. However
certain datasets, such as medical data, often contain missing
values, heterogeneous measurements, and frequently exhibit
imbalanced classes which often hinder the straightforward
application of ML algorithms.

We addressed the aforementioned challenges by introducing
an angular adaptive dissimilarity measure and an oversampling
strategy in [12]. In this contribution we present and demon-
strate extensions to [12] which allow for knowledge discovery
from non-linearly separable datasets exhibiting the mentioned
hindrances. The proposed interpretable classifiers are demon-
strated on a synthetic and a publicly available dataset. These
classifiers are capable of class-wise and multi-variate feature
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analysis and visualisation of non-linear decision boundaries
(see section II), thus satisfying at least 2 of the 3 criteria of
[4]. Detailed explanation of GLVQ and its extensions relevant
to this paper can be found in section II.

II. METHODS

In this section we present the interpretable LVQ algorithm
capable of dealing with missingness and proposed extensions
for non-linear decision boundaries and visualisation. We as-
sume training is based on S data samples {xi ∈ RD}Si=1

accompanied by a label c(xi) belonging to one of C classes
and a set of adaptive prototypes w ∈ RD with labels c(w).
A new data sample receives a label following a prototype-
based nearest neighbor classification scheme: by assigning the
label of the closest prototype with c(wJ) = arg minJ d

J
i using

a dissimilarity measure dJi = d(xi,wJ). The paper by [8]
introduced Generalized LVQ (GLVQ), in which the prototype
positions were optimsed using the following cost function:

E =
S∑
i=1

Φ

(
dJi − dKi
dJi + dKi

)
, (1)

with dJi being the Euclidean distance of each training sample
to the closest prototype of the same class c(xi) = c(wJ)
and dKi the closest prototype with another class label. Φ is
a monotonic function and we set it to the identity Φ(a) = a
throughout this contribution. Learning takes place by adapting
the prototypes w, e.g. by stochastic gradient descent updating
the closest correct and wrong prototypes wL, L ∈ {J,K}
using the derivatives ∇wL = ∂E

∂wL :

∂E

∂wJ
=

S∑
i=1

γJi
∂dJi
∂wJ

and
∂E

∂wK
=

S∑
i=1

γKi
∂dKi
∂wK

with

γJi =
2dKi

(dJi + dKi )2
and γKi =

−2dJi
(dJi + dKi )2

(2)

After training the prototypes can often be considered typical
representatives of their class and their characteristics can be
investigated for interpretation.

Since the Euclidean distance is sensitive to missing values
the authors introduced an angle-based variant ALVQ allowing
learning in variable dimensional spaces [12], [13]:

dLi = gβ(b) =
e(−β(b−1)) − 1

e(2β) − 1
with b =

xi ·wL

‖xi‖‖wL‖
. (3)

The exponential function gβ(b) transforms the angle b =
cos θ ∈ [−1, 1] into dissimilarities in [0,1] with the hyper-
parameter β influencing the slope, e.g. β → 0 leading to a
near linear relationship. In presence of missing data the angle
b and derivatives are computed with the available dimensions
only. Optimization takes place deriving the cost function E
Eq. (1-2) with changed dissimilarity dLi adding:

∂dLi
∂wL

=
∂gβ(b)

∂b
· ∂b

∂wL
and (4)

∂gβ(b)

∂b
=
−β exp(−βb+ β)

exp(2β)− 1
. (5)

The update rules of GLVQ contains forces attracting the
closest correct prototype for each data sample and repulsion
of the closest one with a different class label. For example in
an imbalanced 2 class problem the Euclidean variant might
push the minority class prototype far away from the data all
together, since it is being repelled more often by the majority
class than attracted by the minority class. ALVQ classifies on
the hypersphere, so a prototype cannot be infinitely repelled
without returning on the other side, leading to more stable be-
haviour facing imbalance. Finally, the dissimilarity measure dLi
can be parameterized leading to several powerful extensions
with varying potential for further interpretation. We group the
novel angle extensions into three categories, namely global,
local and 2 matrix, as explained in the following subsections.

A. Global relevance matrix

First extensions to GLVQ introduced parameterized dissim-
ilarity measures based on the quadratic form:

dLi = (xi −wL)>Λ(xi −wL) , (6)

with the semi-definite matrix Λ ∈ RD×D containing addi-
tional parameters for optimization. A variant called Relevance
GLVQ (GRLVQ) [9] assumes Λ to be a diagonal matrix
with

∑D
i=1 Λ2

ii = 1. The diagonal elements ri = Λ2
ii allow

learning of discriminant feature directions, which automat-
ically reduces the influence of less relevant measurement
dimensions. However GRLVQ is univariate and does not take
into account features which are relevant only in combination
with another. Generalized Matrix LVQ (GMLVQ) [10], [11],
[14] tackles this issue by allowing a full matrix Λ, ensur-
ing semi-definiteness by the decomposition Λ = Ω>Ω and
optimizing E with respect to Ω ∈ RD×D. Since dLi can be
rewritten as squared Euclidean distance in the space linearly
transformed by Ω: dLi =

(
Ωxi − ΩwL

)2
, [5] used the concept

for discriminant visualisation. This is achieved by limiting
the rank of Λ using a rectangular matrix Ω ∈ RM×D with
M ≤ D, which in turn can be used to visualise the piecewise
linear decision boundaries if M ∈ {2, 3}.

Similarly, to extend ALVQ to global relevances we proposed
a parameterized computation of the angle [12], [13]:

b = bΩ =
x>i Ω>ΩwL

‖xi‖Ω‖wL‖Ω

with ‖v‖Ω =
√
v>Ω>Ωv , (7)

with corresponding derivatives:

∂bΩ
∂wL

=
xiΩ

>Ω‖wL‖2Ω − xiΩ
>ΩwL ·wLΩ>Ω

‖xi‖Ω‖wL‖3Ω
(8)

∂bΩ
∂Ωmd

=
xi,m

∑
j Ωjdw

L
j + wLm

∑
j Ωjdxi,j

‖xi‖Ω‖wL‖Ω
− xiΩ

>ΩwL

·

[
xi,m

∑
j Ωjdxi,j

‖xi‖3Ω‖wL‖Ω
+
wLm

∑
j Ωjdw

L
j

‖xi‖Ω‖wL‖3Ω

]
, (9)

where xi,m denotes dimension m of vector xi. As before
the diagonal of Λ = ΩTΩ denotes the individual feature
relevances for the classification and Ω can be rectangular
Ω ∈ RM×D with M ≤ D to be used for visualisation.



Resulting visualisations are one M dimensional hyper-spheres
where the angle-based classification takes place. The global
Euclidean and angle implementation will be abbreviated by
LVQg and ALVQg respectively.

B. Local relevance matrix

The localized extension LGMLVQ [11] allows more com-
plex modeling and prototype or class-wise feature relevance
determination by attaching metric tensors Ψc to each prototype
or each class (based on the user’s choice):

dci = (xi −wc)>Ψc>Ψc(xi −wc) . (10)

This Euclidean variant is powerful for finding solutions to non-
linearly separable multi-class problems. The diagonal of the
local metric tensors Λc = Ψc>Ψc contain local or class-wise
feature relevances, which can be investigated by the user for
class-specific discriminative information. However, visualising
the decision boundaries is not trivial and non-linear mappings
based on charting can be found in [5], [15].

In this contribution we extend ALVQ learning with missing
data to local relevances following similar principles:

b = bΨL =
x>i ΨL>ΨLwL

‖xi‖ΨL‖wL‖ΨL

. (11)

The corresponding derivatives of bΨL are as follows:

∂bΨL

∂wL
=

xiΨ
L>ΨL‖wL‖2ΨL − xiΨ

L>ΨLwL ·wLΨL>ΨL

‖xi‖ΨL‖wL‖3
ΨL

(12)

∂bΨL

∂ΨL
md

=
xi,m

∑
j ΨL

jdw
L
j + wLm

∑
j ΨL

jdxi,j

‖xi‖ΨL‖wL‖ΨL

−

xiΨ
L>ΨLwL

[
xi,m

∑
j ΨL

jdxi,j

‖xi‖3ΨL‖wL‖ΨL

+
wLm

∑
j ΨL

jdw
L
j

‖xi‖ΨL‖wL‖3
ΨL

]
(13)

Similarly to the Euclidean version the local matrices can lead
to valuable insight about local or class-wise relevant features
and visualisation of the non-linear decision boundaries needs
additional effort. The local Euclidean and angle implementa-
tion will be abbreviated by LVQl and ALVQl respectively.

C. 2 matrix decomposition for visualisation

As a compromise between linear dimensionality reduction
and visualisation of non-linear decision boundaries [5] intro-
duced a composition of the matrix in the quadratic form Eq.
(6) with two matrices:

dci = (xi −wc)>Ω>Ψc>ΨcΩ(xi −wc) , (14)

with Ω ∈ RM×D and Ψc ∈ RM×M . The data and prototypes
are therefore transformed linearly to the M -dimensional space
and the local metric tensors define the non-linear decision
boundaries in that space. If the intrinsic dimensionality is more
than M ∈ {2, 3} a loss of information in classification and
visualisation is inevitable, however the cost function ensures
that this loss is minimized.

In this contribution we similarly extend ALVQ for visuali-
sation with non-linear decision boundaries:

b = b2M =
x>i Ω>ΨL>ΨLΩwL

‖xi‖2M‖wL‖2M
(15)

with ‖v‖2M =
√
v>Ω>ΨL>ΨLΩv and derivatives:

∂b2M
∂wL

=
xiΩ

>ΨL>ΨLΩ‖wL‖22M
‖xi‖2M‖wL‖32M

−

xiΩ
>ΨL>ΨLΩwL ·wLΩ>ΨL>ΨLΩ

‖xi‖2M‖wL‖32M
(16)

∂b2M
∂Ω

=
2x>i ΨL>ΨLΩwL

‖xi‖2M‖wL‖2M
− xiΩ

>ΨL>ΨLΩwL·[
xiΨ

L>ΨLΩxi
‖xi‖32M‖wL‖2M

+
wLΨL>ΨLΩwL‖
‖xi‖2M‖wL‖32M

]
(17)

∂b2M
∂ΨL

=
2x>i Ω>ΨLΩwL

‖xi‖2M‖wL‖2M
− xiΩ

>ΨL>ΨLΩwL·[
xiΩ

>ΨLΩxi
‖xi‖32M‖wL‖2M

+
wLΩ>ΨLΩwL

‖xi‖2M‖wL‖32M

]
(18)

The 2 matrix Euclidean and angle implementation will be
abbreviated by LVQ2M and ALVQ2M respectively.

III. DATASETS

We demonstrate our newly developed classifiers on two
datasets: a synthetic 2-class dataset and a publicly available
multi-class heart disease dataset as explained in the following
subsections.

A. Synthetic non-linear dataset (Football)

We used the open-source software system Chebfun [16] to
create a synthetic 2 class dataset resembling the pattern of
a football (see Fig.1). The function producing the pattern is
f(x) = 2 sinh(5x1 · x2 · x3) with f(x) ≤ 0.5 belonging to
class 0 and f(x) > 0.5 to class 1. We created 5000 samples for

Fig. 1. Football: 3 different views of a non-linearly separable synthetic dataset.

training and validation splits in cross-validation and additional
25000 samples serve as hold-out test set to investigate the
generalization ability of the classifier. The data is available
online1. Performance on this dataset is reported in terms of
training and test errors, as well as sensitivity and specificity.

1github.com/sreejita− rug/Synthetic Chebfun football.git



B. Heart disease dataset from UCI

This dataset, also known as the Cleveland heart disease
(HD) dataset [17], contains 303 subjects in total (164 healthy,
and 139 with varying degrees of heart problems). The predictor
variable is originally 5 unique values, 0 indicating healthy
(164), while 1 (55 subjects), 2 (36 subjects), 3 (35 subjects),
and 4 (13 subjects) indicating patients with different heart
conditions. Furthermore, six subjects contain missing values.
The dataset originally consists of 76 features but most research
has been done on a subset of 13 of these. For easy comparison
we investigate the same 13 features and details about them can
be found at the UCI repository [17].

Exploratory analysis showed that while there is a very
good separation between healthy and HD subjects considered
in binary classification, the multi-class problem differentiat-
ing between the 4 classes of HD patients turns out to be
remarkably difficult. Therefore, besides the more interesting
multi-class problem, we added an investigation of the binary
sub-problem to compare the performance to the majority of
earlier results reported on this dataset. However, unlike most
contributions we did not discard entries with missing values,
since our method can be trained in variable dimensional
spaces. According to [17] the missing values in the data were
replaced by a value of -9. For the binary problem we report
the performance keeping this, to compare to earlier results. In
the multi-class analysis however we revert the -9s to NaNs.

Literature on the heart disease dataset investigating the bi-
nary problem, showed good performance by SVMs with non-
linear kernels, neural networks, k-nearest neighbour (kNN)
using k = 16, 19, 28, Fischer Discriminant Analysis (FDA),
Linear Discriminant Analysis (LDA), NB and ensemble clas-
sifiers such as RF [18]–[20]. Although these classifiers per-
form well in binary classification of this HD dataset, direct
interpretation and visualization of the trained models remains
difficult, with exception of the RF. Models with enhanced in-
terpretability as proposed in this contribution can alternatively
deliver additional insight. This is also demonstrated on the
more interesting multi-class problem.

IV. EXPERIMENTS

In this section we explain the experimental setup for the
synthetic and heart disease dataset and the performance met-
rics used for comparison. Results are summarized in tables
with abbreviations as introduced before: global feature rele-
vances Euclidean and angle based (LVQg and ALVQg), local
relevances (LVQl and ALVQl), Random Forest (RF), and the
2 matrix versions providing visualisations of the nonlinear
decision boundaries (LVQ2M and ALVQ2M ) The superscripts
denote the value of hyperparameters β for ALVQ and the
number of trees in the RF classifier.

A. Synthethic data

We demonstrate the difference of the localized and 2 matrix
Euclidean LVQ versions and our angle based extensions on the
synthetic football pattern data set. Therefore, we performed a
10-fold cross validation for comparison and model selection

TABLE I
EXPERIMENTS PERFORMED ON THE HEART DISEASE DATASET.

classes Method Hyperparameters Preprocessing
Binary LVQg ℘, rank of Ω z-score
Binary ALVQg ℘, rank of Ω, β z-score
Binary RF No. of trees z-score
5-class ALVQg ℘, rank of Ω, β z-score, SMOTEg

5-class ALVQl ℘, ranks of {Ψc}, β z-score, SMOTEg

5-class ALVQ2M ℘, ranks of Ω&{Ψc}: , ℘, β z-score, SMOTEg

5-class RF No. of trees z-score, SMOTEs

with 5000 samples. The generalization ability of the selected
model is evaluated on 25000 hold-out test samples and perfor-
mance is reported in terms of training and test errors, as well
as sensitivity and specificity. We use 3 prototypes per class
(℘ = 6) and class-wise matrices on this dataset.

B. Heart disease data

We compare the proposed angle LVQ variants with results
from the literature [20], [21]. Contrary to past results our
method can perform on the existing dimensions only. This
avoids imputation and offers additional insights in the form
of feature relevance determination and visualisation of the
decision boundaries. This dataset was z-score transformed
in each fold using the mean and standard deviation of the
corresponding training set. Earlier results were typically ac-
quired by 10-fold cross validation, since most of them simplify
the problem to two classes, combining all diseases into one.
However, we use 5-fold cross validation, since the smallest
minority class contained only 14 subjects justifying only a
lower number of folds for the analysis of the multi-class
problem. Albeit the multi-class problem being severely more
difficult we show that the enhanced interpretability offers
additional insight into the problem.

Table I shows an overview of the experiments performed
and intrinsic method hyperparameters. The imbalance of the
classes is handled by the Synthetic Minority Oversampling
TEchnique (SMOTE) as described in [22]. SMOTEg denotes
a geodesic variant for oversampling on a hypersphere as intro-
duced and explained in [12]. They were used to oversample
all minority classes in the training set to contain the same
number of samples as the majority class (Healthy). Based
on exploratory analysis we chose k = 3 nearest neighbours
for both SMOTE and SMOTEg . We investigated the intrinsic
dimensionality by training full rank matrices Ω for which
subsequent Eigen-value decomposition of the resulting metric
tensor Λ delivered insight into the required dimensions for
classification. Afterwards we limit the rank for visualisation
purpose. We experimented with varying number of prototypes
per class (1, 2 and 3), such that ℘ ∈ {2, 4, 6} for the binary
class problem, and ℘ ∈ {5, 10, 15} for 5-class problem, and
investigated the influence of the hyperparameter β with β ∈
{1, 5, 10, 50, 80, 100}. As proposed in [23] we set minimum
observation(s) per tree leaf in RF to 1, and number of random
variables at each decision split to

√
D =

√
13 ≈ 4.



TABLE II
FOOTBALL COMPARISON: MEAN PERFORMANCE (STANDARD DEVIATION)

Method Etrain Etest Sensitivity Specificity
LVQ2M 0.272 (0.019) 0.277 (0.027) 0.68 (0.093) 0.76 (0.103)
LVQl 0.223 (0.047) 0.224 (0.050) 0.78 (0.118) 0.76 (0.113)
ALVQ10

g 0.268 (0.035) 0.273 (0.036) 0.78 (0.115) 0.67 (0.103)
ALVQ30

g 0.273 (0.040) 0.285 (0.047) 0.76 (0.127) 0.68 (0.115)
ALVQ50

g 0.271 (0.040) 0.279 (0.041) 0.76 (0.118) 0.69 (0.111)
ALVQ80

g 0.284 (0.048) 0.290 (0.051) 0.74 (0.139) 0.68 (0.145)
ALVQ100

g 0.277 (0.042) 0.288 (0.046) 0.75 (0.130) 0.68 (0.135)
ALVQ120

g 0.286 (0.047) 0.298 (0.048) 0.74 (0.123) 0.66 (0.123)
ALVQ10

l 0.199 (0.056) 0.202 (0.060) 0.82 (0.117) 0.77 (0.111)
ALVQ30

l 0.176 (0.066) 0.182 (0.070) 0.82 (0.140) 0.82 (0.113)
ALVQ50

l 0.197 (0.059) 0.204 (0.064) 0.79 (0.144) 0.80 (0.117)
ALVQ80

l 0.196 (0.062) 0.208 (0.064) 0.79 (0.129) 0.80 (0.108)
ALVQ100

l 0.191 (0.059) 0.200 (0.060) 0.79 (0.141) 0.82 (0.100)
ALVQ120

l 0.201 (0.057) 0.208 (0.061) 0.77 (0.142) 0.81 (0.110)
ALVQ10

2M 0.24 (0.057) 0.24 (0.059) 0.80 (0.124) 0.72 (0.116)
ALVQ30

2M 0.23 (0.052) 0.23 (0.056) 0.77 (0.140) 0.76 (0.122)
ALVQ50

2M 0.22 (0.058) 0.22 (0.061) 0.79 (0.133) 0.75 (0.117)
ALVQ80

2M 0.24 (0.058) 0.25 (0.062) 0.76 (0.146) 0.74 (0.136)
ALVQ100

2M 0.24 (0.058) 0.24 (0.060) 0.78 (0.140) 0.73 (0.130)
ALVQ120

2M 0.24 (0.061) 0.24 (0.063) 0.77 (0.141) 0.73 (0.140)

V. RESULTS AND DISCUSSION

This section contains the detailed comparison of results
from experiments performed on both datasets, followed by
discussion and visualizations as enabled by the proposed
ALVQ2M . For the real-world heart disease we also showed
a detailed investigation of interpretable parameters leading to
further insight into the classification performed. RFs, which
are also interpretable to some extent, makes it possible to
extract feature importance. Therefore we were able to compare
findings from the ALVQs and RFs.

A. Synthetic football dataset results

Table II summarizes the performance of the classifiers in
terms of error on training and test set during cross validation
and report the sensitivity and specificity with respect to the
hold-out test set. We included the results using different
hyperparameters β to provide information about the robustness
and selected the model exhibiting best training performance as
highlighted in boldface. As expected, earlier LVQ extensions
perform worse on this non-Euclidean data set as depicted in the
first 2 rows. The local relevance angle LVQ (ALVQl) clearly
outperforms the other two being the most complex and flexible
model with the largest number of parameters handling the
nonlinearities of this data best. However, as mentioned before,
visualization of the decision boundaries with local metric
tensors is not straightforward. Therefore we demonstrate the 2
matrix extension ALVQ2M with complexity and performance
in between the global and local variants. Figure 2 shows a
corresponding example visualization of the nonlinear decision
boundaries and prototypes in the spherical classification space
seen from 3 different perspectives. Individual data samples
have been omitted in the illustration to reduce visual clutter,
but can be added of course for investigation.

B. Heart disease (binary class problem) results

First, we investigated the binary subproblem combining all
diseases to one class and estimate the intrinsic dimensionality

prot C1 prot C2 C1 C2

Fig. 2. Three different perspectives of the nonlinear decision boundaries in
the spherical classification space of ALVQ2M trained on the Football dataset.
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Fig. 3. Eigenvalues of Λ across 5 folds and 5 runs.

TABLE III
BINARY HD: MEAN PERFORMANCE (STD) OF GLOBAL FULL RANK ALVQ

Method Etrain Eval Sensitivity Specificity
ALVQ1

g 0.112 (0.009) 0.171 (0.029) 0.79 (0.084) 0.86 (0.094)
ALVQ5

g 0.110 (0.010) 0.178 (0.044) 0.78 (0.097) 0.86 (0.086)
ALVQ10

g 0.112 (0.015) 0.188 (0.040) 0.78 (0.120) 0.84 (0.098)
ALVQ50

g 0.130 (0.018) 0.181 (0.044) 0.80 (0.066) 0.83 (0.089)
ALVQ80

g 0.133 (0.019) 0.180 (0.046) 0.80 (0.076) 0.84 (0.090)
ALVQ100

g 0.140 (0.025) 0.202 (0.050) 0.77 (0.088) 0.82 (0.081)

by investigating the eigenvalue profile of the trained Λ = Ω>Ω
with full rank Ω ∈ RD×D and one prototype per class. Since
there is not enough data to create a hold-out generalization set
we report the sensitivity and specificity of the classifiers as
observed on the test set of the cross-validation splits. Figure 3
shows box plots of the estimates of the intrinsic dimensionality
according to different settings of the hyperparameter β and the
average performance of corresponding models is summarized
in Table III. Even though there are 13 features in the dataset
much lower dimensionality seems necessary for classification
as indicated by most Eigenvalues being close to 0. The best
performing β depicts only three Eigenvalues significantly
bigger than 0 indicating the problem can be visualized in three
dimensions with limited loss of information. Thus we re-train
the models by limiting the rank to three (M = 3).

As before we perform model selection and highlight in
boldface based on the best training set performance and
report sensitivity and specificity on the respective test splits.
Reducing the rank of the matrix regularizes the model leading
to improved generalization performance as depicted in Table
IV. We also notice that the Euclidean versions of LVQ, i.e.
GMLVQ, exhibits poor performance on this data set. This



TABLE IV
BINARY HD: MEAN PERFORMANCE (STD) FINAL COMPARISON

Method Etrain Eval Sensitivity Specificity
LV Qg 0.459 (0.001) 0.459 (0.005) 0.00 (0.000) 1.00 (0.000)
ALVQ1

g 0.114 (0.009) 0.169 (0.034) 0.81 (0.077) 0.85 (0.098)
ALVQ5

g 0.116 (0.012) 0.178 (0.048) 0.79 (0.110) 0.85 (0.088)
ALVQ10

g 0.122 (0.013) 0.187 (0.050) 0.79 (0.101) 0.83 (0.095)
ALVQ50

g 0.145 (0.023) 0.199 (0.044) 0.80 (0.081) 0.80 (0.074)
ALVQ80

g 0.168 (0.029) 0.210 (0.052) 0.76 (0.096) 0.81 (0.080)
ALVQ100

g 0.163 (0.033) 0.204 (0.052) 0.79 (0.075) 0.80 (0.066)
RF 50 0.001 (0.002) 0.179 (0.044) 0.78 (0.084) 0.86 (0.058)
RF100 0.0 (0.0) 0.179 (0.044) 0.77 (0.082) 0.86 (0.048)
RF150 0.0 (0.0) 0.170 (0.043) 0.78 (0.081) 0.87 (0.046)
RF200 0.0 (0.0) 0.177 (0.050) 0.77 (0.082) 0.86 (0.053)
NBKol NA NA 0.86 0.833
MLPKol NA NA 0.836 0.80
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Fig. 4. Feature relevances (top panel), as well as healthy and disease
prototypes (bottom row) obtained by ALVQ1

g on the binary HD classification.

might be due to the presence of missing data, which the angle
version is able to deal with. RF with 100 and more trees
have had perfect training, but the sensitivity on the validation
set is similar to that of angle LVQ. We also observe similar
performance in comparison with results reported in [19] for
the NB and Multi Layer Perceptron (MLP) marked as NBKol

and MLPKol. They used 10-fold cross-validation, but standard
deviation across the different splits or training and test error
were not reported.

Classifiers of the LVQ family can also identify relevant
features for a particular task, along with finding typical rep-
resentatives of each class (prototypes). Figure 4 shows the
feature relevances and prototypes of the healthy and disease
class learned during training corresponding to the best setting
(ALV Q1

g) in Table IV. The features 3 (Chest pain type),
12 (number of major vessels as coloured by fluoroscopy) and
13 (status of heart, w.r.t the organ being normal having had
the anomaly fixed, and having a reversible defect) are among
the most highly relevant ones, followed by features 2 (sex),
8 (maximum heart rate achieved) and 9 (exercise induced
angina). Important features extracted from RF models are
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Fig. 5. Summary of the feature importance determined by RF over 5 folds
and 5 runs, trained for the binary class problem.

shown in Fig. 5. RF and ALVQ feature sets agree with regard
to features 3, 8, 9, 10, 12, and 13 being the more distinguishing
ones, whereas features 4, 5 and 7 do not contribute as much.
In contrast to RF we can also investigate the prototypes of
the healthy and patient class. Notably, the features found also
visibly differ in the adapted prototypes of the healthy and
patient. We see in Figure 4, that feature 3 value lie below
the 0.5 mark for class-Healthy whereas it is higher that than
0.5 mark for the HD prototype. Similarly for value of features
12, 13, 2, and 9. For features 8 and 10 the opposite trend
is seen: the maximum heart rate achieved for the prototype
describing the healthy subjects was much higher than the 0.5
mark whereas for the patients it was significantly lower than
that mark. Conversely, features which were not deemed highly
relevant by our classifier, such as features 1 (age), 4 (resting
blood pressure), and 7 (resting ECG), are seen to have values
in the mid-part of the prototype plots for both the classes,
thus indicating that they are not as integral to distinguishing
between healthy subjects and HD patients. These findings also
agree with those mentioned in [20], [21].

C. Heart disease (5-class problem) results

More challenging and potentially more interesting is the
investigation of the 5 class problem keeping the original HD
sub-classes. Since there are 5 classes we show the performance
in terms of training and test errors, and class-wise accuracies.
The class-wise accuracy of the Healthy class (C0) is the same
as specificity and therefore omitted in the following. Table
V shows that the class-wise accuracies during validation are
better from the more complex local model of angle LVQ
(ALVQl), whose prototypes and local relevances are depicted
in Figure 7. Additional interpretation can be gained by using
the proposed 2 matrix variant ALVQ2M . For this problem we
compared using 1, 2 and 3 prototypes per class but report
only the results using 2 prototypes per class, since it depicted
the best averaged class-wise accuracy on training. The study
in [20] attempts to investigate the disease classes considering
one class versus all classification. Their highest sensitivity per
condition in this simplified setting were reported to be: 0.891
(Healthy, Sequential minimal optimization (SMO)), 0.321 (HD
class 1, IBK from Weka), 0.405 (HD class 2, NB), 0.472 (HD
class 3, NB) and 0.214 (HD class 4, IBK) furthermore confirm-



TABLE V
5-CLASS HD: MEAN PERFORMANCE (STD) COMPARISON OF ALVQ VARIANTS AND RF

Method Etrain Eval Sens Spec C1 C2 C3 C4
ALVQ100

g 0.34 (0.032) 0.54 (0.081) 0.07 (0.043) 0.68 (0.130) 0.19 (0.111) 0.22 (0.209) 0.20 (0.180) 0.25 (0.260)
ALVQ80

g 0.33 (0.034) 0.52 (0.075) 0.08 (0.048) 0.69 (0.090) 0.21 (0.125) 0.23 (0.167) 0.26 (0.188) 0.29 (0.298)
ALVQ150

g 0.32 (0.043) 0.53 (0.061) 0.08 (0.053) 0.71 (0.090) 0.20 (0.134) 0.18 (0.148) 0.22 (0.143) 0.13 (0.204)
ALVQ10

g 0.35 (0.071) 0.48 (0.056) 0.08 (0.060) 0.76 (0.063) 0.21 (0.154) 0.21 (0.168) 0.26 (0.196) 0.23 (0.281)
ALVQ5

g 0.35 (0.071) 0.50 (0.074) 0.04 (0.045) 0.77 (0.097) 0.11 (0.112) 0.19 (0.153) 0.26 (0.210) 0.29 (0.313)
ALVQ1

g 0.37 (0.063) 0.49 (0.053) 0.05 (0.049) 0.79 (0.088) 0.12 (0.125) 0.19 (0.167) 0.25 (0.161) 0.22 (0.288)
ALVQ100

l 0.24 (0.048) 0.51 (0.067) 0.08 (0.060) 0.69 (0.090) 0.20 (0.155) 0.31 (0.131) 0.34 (0.193) 0.13 (0.226)
ALVQ80

l 0.21 (0.034) 0.49 (0.049) 0.09 (0.071) 0.73 (0.066) 0.22 (0.186) 0.31 (0.134) 0.28 (0.208) 0.15 (0.240)
ALVQ50

l 0.18 (0.038) 0.49 (0.062) 0.09 (0.066) 0.72 (0.061) 0.22 (0.168) 0.26 (0.152) 0.33 (0.164) 0.17 (0.276)
ALVQ10

l 0.16 (0.025) 0.48 (0.049) 0.08 (0.065) 0.76 (0.065) 0.20 (0.168) 0.28 (0.173) 0.31 (0.149) 0.05 (0.150)
ALVQ5

l 0.16 (0.025) 0.49 (0.052) 0.07 (0.061) 0.74 (0.084) 0.17 (0.159) 0.30 (0.206) 0.34 (0.179) 0.05 (0.132)
ALVQ1

l 0.17 (0.022) 0.50 (0.056) 0.07 (0.053) 0.74 (0.089) 0.18 (0.138) 0.23 (0.155) 0.31 (0.189) 0.08 (0.167)
ALVQ100

2M 0.38 (0.064) 0.53 (0.071) 0.09 (0.066) 0.68 (0.109) 0.23 (0.172) 0.22 (0.190) 0.22 (0.160) 0.27 (0.315)
ALVQ80

2M 0.36 (0.058) 0.55 (0.074) 0.06 (0.053) 0.67 (0.121) 0.15 (0.136) 0.21 (0.149) 0.25 (0.212) 0.23 (0.308)
ALVQ50

2M 0.35 (0.059) 0.51 (0.075) 0.07 (0.063) 0.70 (0.122) 0.18 (0.161) 0.21 (0.154) 0.35 (0.207) 0.21 (0.232)
ALVQ1

2M 0.34 (0.050) 0.51 (0.063) 0.07 (0.046) 0.72 (0.098) 0.17 (0.117) 0.24 (0.177) 0.26 (0.160) 0.24 (0.268)
ALVQ5

2M 0.31 (0.033) 0.49 (0.073) 0.06 (0.052) 0.76 (0.108) 0.16 (0.133) 0.26 (0.168) 0.31 (0.198) 0.17 (0.252)
ALVQ1

2M 0.32 (0.043) 0.49 (0.072) 0.06 (0.050) 0.75 (0.089) 0.15 (0.129) 0.26 (0.180) 0.30 (0.216) 0.30 (0.337)
RF 50 0.0 (0.002) 0.46 (0.039) 0.06 (0.044) 0.85 (0.054) 0.15 (0.112) 0.31 (0.110) 0.15 (0.095) 0.06 (0.134)
RF 100 0.0 (0.0) 0.46 (0.030) 0.03 (0.028) 0.88 (0.060) 0.07 (0.069) 0.30 (0.164) 0.09 (0.071) 0.0 (0.0)
RF 150 0.0 (0.0) 0.44 (0.022) 0.05 (0.036) 0.88 (0.049) 0.13 (0.095) 0.28 (0.120) 0.23 (0.117) 0.0 (0.0)
RF 200 0.0 (0.0) 0.45 (0.020) 0.04 (0.039) 0.87 (0.049) 0.09 (0.102) 0.33 (0.144) 0.20 (0.117) 0.10 (0.204)

Fig. 6. Three example perspectives of the classification sphere depicting the
decision boundaries as determined by ALVQ2M on the 5-class HD problem.

ing the complexity of the multi-class problem we investigate.
Table V shows that the performance of RF and the ALVQ
classifiers were comparable in sensitivity and specificity in the
more complex 5-class setting. However the ALVQ models can
provide additional insight by prototypes and visualizations.

Figure 6 shows the decision boundaries of an example
ALVQ2M using β = 5 showing best performance according
to Table V. The picture confirms the non-linearity of this
dataset when investigated as 5-class problem. Individual data
samples are again omitted to avoid visual clutter but can
be added and investigated with respect to their distance to
the decision boundaries. The corresponding cross-validation
relevances of Ω>Ω and prototypes are depicted in Figure 8.
Next we investigate the models trained for the multi-class
problem in more detail to hypothesize why this problem
is so difficult. Figure 7 illustrates ALV Ql classifier with
β = 5 and Ψc of dimension 3 × 13, the hyperparameter
setting which showed best performance among angle local
LVQ according to Table V. We compare the feature relevance
from Ψc (Fig. 7) with those from figures 4 and 5. Features
3, 12, and 13 were among the most relevant features for the
binary class problem. However, for the multi-class problem, on
checking the prototype of each class, we see that these features
do not have a distinct value boundary which could help in
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Fig. 7. Local relevances (left) and prototypes (right) of Healthy, and HD-
patients of types 1-4, from ALVQl over 5 folds, for the 5-class problem.

identification of the different classes. If we consider feature
12 (Ca) for all the prototypes we can see how easily healthy
subjects and patients from class sick-1 would be confused,
similarly patients of sick class 2 would be easily confused with
those from sick class 3. According to Fig. 8 features 12 (Ca)
and 13 (Thal) are still the most relevant ones. However the
prototypes show that these features are good for distinguishing
between healthy and the rest of the classes, but not that
efficient for differentiating between the heart disease classes
themselves. These plots further explain why the specificity (or
the class-wise accuracy of Healthy class) remained high even
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Fig. 8. Global relevance, and prototypes (w) of Healthy and the 4 types of
HD patients, from ALV Q5

2M , over 5 folds, trained for the 5-class problem.

for the multi-class problem, whereas the class-wise accuracies
were comparably poor for the remaining.

VI. CONCLUSION AND FUTURE WORK

In this contribution we proposed three interpretable exten-
sions of the angular nearest prototype based classifier, namely
global angle LVQ, local angle LVQ and a 2 matrix version
allowing visualisation of the non-linear decision boundaries.
These set of classifiers are able to handle missingness as well
as make knowledge extraction straightforward. As increasing
number of human-centric sectors are becoming dependent
on ML, understanding the exact working and underlying
mechanisms behind a decision made by a model, are becoming
paramount. Some classifiers depict comparable (and some
even slightly higher) performance than these newly introduced
classifiers. However, the proposed classifiers, are interpretable
and have the possibility to shed light on what exactly makes a
classification problem difficult. This is highlighted in the given
analysis of the 5 class heart disease identification problem
where we achieve comparable performance to the RF. Even
though the 13 out of 76 features were capable of distinguishing
between healthy and heart disease patients, but features which
can differentiate between all these 5 classes satisfactory seem
not to be among these features. Future contributions should
investigate the larger feature set and the insight we can gain
from it using interpretable classifiers.
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