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Abstract—Space Weather (SW) poses a hazard to modern
society. SW phenomena depend on the Sun’s magnetic field and
understanding and forecasting the solar magnetic field is an
important research subject. To achieve this goal, in this paper
Global Oscillation Network Group (GONG) solar magnetograms
2006-2019 are investigated with different approaches provided
by unsupervised and supervised Computational Intelligence tech-
niques. Such techniques were successful at providing insights into
the behavior and evolution of the photospheric magnetic field,
revealing patterns of activity and their relation with the different
phases of the solar cycle. On the one hand, representative
prototypes of synoptic maps were found, capturing the variations
in homogeneity, intensity and variability of magnetic activity.
On the other hand, Convolutional neural networks combined
with transfer learning and dimensionality reduction techniques
were helpful in providing classification models which accurately
predict classes associated to the main stages of the cycle. Such
models provide results in good correspondence with the natural
classes found in feature spaces and have classification errors
concentrated mostly at transition periods of the solar cycles.

Index Terms—Space weather, solar synoptic maps, computa-
tional intelligence, MSSIM image similarity, intrinsic dimension,
clustering (optics, pam, kmeans), low dimensional mappings, deep
learning, convolutional neural networks, transfer learning, svm.

I. INTRODUCTION

Space Weather (SW) represents a chain of processes that
begin at the Sun. They can adversely affect technology on
Earth and pose hazards to modern society. For these reasons,
significant research efforts are undertaken to understand and
forecast SW and its impacts on Earth activities. More specif-
ically, the complex interplay between plasma and magnetic
field is the source of solar disturbances such as solar flares
and Coronal Mass Ejections (CME). Since the magnetic field
controls the solar outputs, information about the magnetic
field is widely used in research and operational SW models.
Although regular space and ground based measurements of
the Sun’s magnetic field are available, they are restricted to
the side of the Sun facing the Earth (near side) and to the

photosheric/chromspheric heights [22]. At these heights, close
to the surface of the Sun, the plasma density is high enough
for a favorable signal-to-noise ratio. The noise level represents
a significant challenge for measurements on the limbs of the
solar disc, which is the visible surface of the Sun. Furthermore,
due to the approximately 7.25 degree tilt of the Sun’s rotation
axis in respect to the ecliptic plane, the polar regions are not
always visible and different techniques are used to fill the gaps
in the polar regions [28].

SW has many unanswered questions about physical pro-
cesses and significant gaps still exists. Due to the fact that
a significant amount of solar observations exists in the solar
and SW community, Machine Learning (ML) could be a
viable solution to provide significant scientific and application
advances. Such ML techniques aim at examining the behavior
and determining the evolution of the Sun’s magnetic field.
Since measurements of the field are restricted to the near side,
there is an interest to predict active regions on the far side
of the Sun. This is particularly important for SW forecasting
since, as the Sun rotates, these regions emerge on the near side
where associated solar disturbances are more geoeffective.

This paper uses machine and deep learning techniques
from Computational Intelligence (CI) techniques to study
and characterize the behavior of the Sun’s magnetic field.
To achieve this goal we relied on magnetic field data from
the Global Oscillation Network Group (GONG) observations
[14]. GONG provides solar magnetograms of the photospheric
magnetic field with 24 h coverage of the Sun. These data are
widely used in the research and operational SW community.
For example, GONG synoptic maps are used with numerical
models to derive the coronal magnetic field [20], [21], and to
forecast CME propagation and arrival times [27], [23].

The paper is organized as follows. In Sections II and III,
solar magnetograms, GONG synoptic maps and data prepro-
cessing are described. The machine and deep learning CI
techniques employed for magnetograms characterization are
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Fig. 1. Photospheric magnetic field of the Sun as viewed from the Earth on
January 29, 2007 (05:54 UT). The field is saturated at ±25 Gauss. E, W, N
and S denote East, West, North and South, respectively. The small square in
the image represents the projection of the Earth on the solar disc.

described in Sections IV and V respectively. The results of
the work are presented in Section VI and the conclusions are
given in Section VII.

II. SOLAR MAGNETOGRAMS

A solar magnetogram represents an image of the magnetic
field on the solar disc. To illustrate, in Figure 1 we show
the GONG solar magnetogram of the photospheric magnetic
field for January 29, 2007 (05:54 UT). Here, we use zeropoint
corrected data (“mrzqs” and the UT timestamp in the filename)
from the GONG archive (https://gong.nso.edu). The red and
blue color represent the magnetic field directed away from and
towards the Sun, respectively. The field in Figure 1 represents
the radial component of the magnetic field Br(R0, θ, φ),
where, RO is the radius of the Sun, θ is the colatitude, and φ
is the longitude. In the figure a region with a strong magnetic
field is visible on the East limb of the solar disc. As the Sun
rotates, with about 27.27 day rotation period, this active region
will move from East (E) to West (W) and cross the central
meridian. The solar magnetograms can be combined into so-
called synoptic maps which are often used in SW research and
operations [14]. These maps that represent full surface maps
of the Sun’s magnetic field will be detailed in the next section.

III. SYNOPTIC MAPS AND DATA PREPROCESSING

In this paper we use re-meshed GONG synoptic maps S
(organized as matrix [sθ,φ = Br (R0, θ, φ)]), with uniform 1◦

resolution in θ and φ. These re-meshed maps improve the
accuracy of the widely used potential field source surface
model of the solar corona, particularly spherical harmonics
in the polar regions [29], [20].

Figure 2 shows two examples of re-meshed synoptic maps
S, for (a) January 29, 2007 (05:54 UT), and (b) September 6,
2014 (17:04 UT). The map time is associated with the central
meridian that is denoted with the dash-dash line, while the
dash-dot line denotes projections of the Earth on the map at
different times. As the Sun rotates, the region φ < −60◦ will

Fig. 2. GONG synoptic maps of the photospheric magnetic field for (a)
January 29, 2007 (05:54 UT) and (b) September 06, 2014 (17:04 UT). The
magnetic field is saturated at ±25 Gauss. The central meridian and sub-Earth
locations are denoted with dash-dash and dash-dot line, respectively.

cross the central meridian. The synoptic map in Figure 2a
corresponds to the solar magnetogram from Figure 1, and
illustrates the magnetic field of the Sun close to the solar
cycle 23 minimum, while Figure 2b shows the field around
the maximum of solar cycle 24.

The GONG synoptic maps are assembled from many
measurements of the photospheric magnetic field, including
measurements from different observatories to provide daily
coverage of the Sun. All those measurements are weighted
when computing the synoptic map. Since a particular measure-
ment can capture only the field on the near side of the Sun,
the far side on the synoptic map consists of non-updated, past
data. Furthermore, due to the limb noise, only the longitudinal
region −60◦ < φ < −60◦ most accurately captures the Sun’s
magnetic field.

Summing up, in this paper we consider synoptic maps
S ∈ RΘ×Φ, where Θ = 181 and Φ = 360. We use two
maps per day, from November 1, 2006, to September 30, 2019,
typically obtained at 05:04 and 17:04 UT. When the maps are
not available at those times, the closest ones are used if the
time difference is less than two hours. There are some days
when no map is available in the GONG archive.

To be used as input for the deep learning solutions proposed
in Section V, the maps are converted to images by assigning
a three-dimensional color (from any perceptual uniform col-
ormap) in the interval [−100, 100]. All the values out of this
interval are considered as the nearest value of the interval, i.e.,
−100 for negative values and 100 for positive ones.



IV. MACHINE LEARNING TECHNIQUES FOR SOLAR
MAGNETOGRAMS CHARACTERIZATION

The machine learning analysis of solar magnetograms has
two main goals. First a low-dimensional representation is
found (Sections IV-A to IV-C). After that, in Section IV-D,
clustering methods are employed to study the data structures
in this new representation.

A. Similarity Measures (MSSIM)

In this paper, the similarity between two solar magne-
tograms S1 and S2 is estimated with the Mean Structural
Similarity Index (MSSIM) [10], which is a state-of-the-art
perception-based method able to detect changes in the data
structural information and it has been proven to capture the
human notion of image similarity [6], [34]. It is computed by
averaging the Structural Similarity Index (SSIM) on M low-
pass filtered versions S(j) of the original image (here, a solar
magnetogram), with M filters of different sizes, i.e.:

MSSIM (S1, S2) =
1

M

M∑
j=1

SSIM
(
S

(j)
1 , S

(j)
2

)
(1)

The SSIM is then computed as follows:

SSIM (S1, S2) =
(2 · µ1 · µ2 + C1) · (2 · σ12 + C2)

(µ2
1 · µ2

2 + C1) · (σ2
1 · σ2

2 + C2)
(2)

where S1 and S2 are two magnetograms, C1 and C2 are two
regularization constants, µ1, σ1, µ2, σ2 are the means µ and
the standard deviations σ of S1 and S2, respectively, and σ12

the correlation coefficient of S1 and S2.
Finally, the notion of MSSIM dissimilarity (dMSSIM ) is

derived as the complement of the MSSIM similarity:

dMSSIM (S1, S2) = 1−MSSIM (S1, S2) (3)

B. Intrinsic Dimension

Independently from the way the data are represented, either
in a descriptor space or by a structure of pairwise dissim-
ilarities, the data might be concentrated in low-dimensional
manifolds. The goal of intrinsic dimension analysis is to find
the dimensionality of such manifolds, to better understand
the data structure and, in turn, improve the learning ability
of machine learning models [32]. The solar magnetograms
are here represented by a structure of pairwise dMSSIM
dissimilarities (defined in Eq. (3)), and the intrinsic dimension
estimation is performed with the following four methods: the
maximum likelihood estimator (MLE) [17]; the correlation
integral [12]; the Nearest Neighbour estimator [30], [32]; and
the U-statistic [13].

C. Low-Dimensional Spaces for Data Exploration

Once the intrinsic dimension has been estimated, techniques
to represent the data in low dimensional spaces are needed.
In this paper, we focus on transformations that preserve the
local distances/dissimilarities or the conditional probability
distributions within neighbourhoods in the higher and lower
dimension spaces, i.e., the Sammon nonlinear mapping [24]

and the t-Distributed Stochastic Neighbor Embedding (t-
SNE) [15].

More specifically, the Sammon nonlinear mapping [24]
preserves the local dissimilarities by minimizing the following
error function:

Se =
1∑

i<j δ
∗
ij

∑
i<j

(δ∗ij − dij)2

δ∗ij
(4)

where δ∗ij denotes the dissimilarity between two objects in
the original space and dij the distance in the projected space
(Euclidean in our case).

In t-SNE [15], the mapping to a lower dimensional space is
formulated in terms of matching conditional probability dis-
tributions between the original and the target spaces. Defined
as pj|i the probability of an object xi to be a neighbour of xj ,
we have:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
(5)

where σ2
i is the variance around object xi and k is a parameter

(perplexity), related to local neighbors sizes.
Both transformations (Eqs. (4) and (5)), use the dMSSIM

dissimilarity (Eq. (3)) as δ∗ and ‖ respectively. We also empha-
size that, in our case, the objects xs of the two transformations
are the magnetograms.

D. Clustering

Clustering methods are used for investigating the structure
of the data from an unsupervised perspective. In particular,
Optics [8] and k-Medoids (PAM) [16] were used.

More specifically, Ordering Points to Identify Cluster Struc-
ture (Optics) [8] is a density-based clustering method. The
number of clusters is not specified a priori, and the algorithm
finds the clusters by identifying regions with high-density,
given the maximum distance ε at which to look for neighbours
and the minimum number N of samples to define a cluster.
In Optics, a rechability distance metric is introduced between
two points xi and xj (in our case the magnetograms) and
it is defined as the maximum between the core distances
of xi and the distance between xi and xj , where the core
distance is the distance between xi and the N -th farthest
point in the Nε neighbourhood of xi. The core distance is
undefined if the point xp has not N neighbours within the
distance ε. The reachability distance defines an ordering of
points such that clusters are identified as valley regions in the
reachability function (a plot of the reachability distance vs.
the point reordering).

The Partitioning Around Medoids (PAM) technique [16],
[25] aims at dividing the data into a given number of clusters,
similarly to the k-Means algorithm [19]. However, it is more
robust to the presence of outliers, and produces medoids
which are prototype objects (cluster representatives) for which
the average dissimilarity w.r.t. all other cluster members is
minimal1.

1The sum of intra-clusters dissimilarities is the cost function of the PAM
algorithm.



S ∈ RΘ×Φ

Feature Extractor ϕ (·)

PCA for Dimensionality
Reduction ς (·)

Classifier SVM C(·) kMeans or GMM
Clustering K(·)

ς ◦ ϕ (S)

Fig. 3. The proposed deep learning architecture to characterize solar mag-
netograms Ss. On the extracted features ς ◦ ϕ (S), various supervised or
unsupervised techniques can be applied.

V. DEEP LEARNING SOLUTIONS TO CHARACTERIZE
SOLAR MAGNETOGRAMS

A. Solar Activity Classes Definition

The solar activity within solar cycle 24 has been divided
into four (unbalanced) classes, trying to respect as much as
possible the physical structure of the problem, starting from
what described by Schwabe [26]:
• Low (794 magnetograms): the initial period of a solar

cycle, characterized by low solar activity. In our cases,
the low activity period start from the beginning of cycle
24, estimated in December 2008 up to the end of 2009;

• Rising (848): after the low activity phase, a small transi-
tion period to the high activity one exists, here considered
as a standalone class. It covers the period from January,
1 2010 to the end of February 2011;

• High (2866): this is the phase of the solar cycle charac-
terized by the highest solar activity and, the highest solar
disturbances. It covers the period from March 1, 2011 to
January 31, 2015;

• Decline (3406): after the high activity phase, the solar
activity declines up to the next solar cycle. This period
covers the magnetograms from February 2015 to the last
available ones in the series2.

It is noteworthy to point out that the crisp boundaries between
these phases are artificially introduced, while in real world
situations they are smooth. For this reasons, classification
errors close to such boundaries are reasonably expected (since
most classification algorithms assume sharp boundaries). The
definition of classes is shown in Figure 10b, together with
the 10.7 cm solar radio flux that is an indicator of solar
activity [18], [31].

B. Deep Learning Solutions

The pre-processed solar magnetograms S are converted to
images, where each color corresponds to a magnetic field value
in the [−100, 100] interval. Such images are processed by
a suitable defined deep learning solution, whose architecture
described in Figure 3. In particular, the solution comprises the
following steps:

2The end of solar cycle 24 is indeed estimated to be in late 2019.

TABLE I
INTRINSIC DIMENSION ESTIMATION WITH DIFFERENT APPROACHES.

Estimator Value

Correlation Integral [12] 5.73
Maximum Likelihood Estimation [17] 4.53

Nearest Neighbor Information [30], [32] 5.45
Convergence Property of U-stats [13] 3

• a pre-trained Convolutional Neural Network (CNN) ϕ (·)
acting as a feature extractor following a transfer learning
approach [7], [33]. We relied on transfer learning since
since in CNNs the first layers tipically extract general
and common features, such as the color blobs, edges and
corners, whereas deeper ones extract application specific
features [33]. Hence, as done in [1], [3], the feature
extractor ϕ considered here is general enough to extract
the features for the subsequent processing.

• a dimensionality reduction operator ς (·). This step is
crucial to mitigate the curse of dimensionality prob-
lem deriving from high-dimensional spaces that typically
characterize CNNs [11]. In this work we used Principal
Component Analysis [9] as feature extractor operator.
The feature space defined by ς ◦ ϕ (·) represents solar
magnetograms S in the reduced space of CNNs.

• Finally, the reduced feature vector can be processed by
both supervised and unsupervised ML techniques. In this
paper, we focus on Support Vector Machines [2] as super-
vised, and on k-Means [19] and Gaussian Mixture Models
as unsupervised clustering techniques. More specifically,
the supervised classification is meant to recognize the
solar activity classes defined in Section V-A, whereas
clustering techniques should validate the definition of
these classes by identifying clusters that match them
(ideally, each cluster should contain samples belonging
to only one class).

We emphasize that the proposed deep learning architecture
does not require training, except for the computation of the
PCA ς . However, nothing avoid to refine the feature extractor
ϕ, for example, with some solar magnetogram images Ss.

VI. RESULTS

A. Machine Learning Analysis

The results obtained with Optics and PAM clustering in
the original magnetograms space are shown in Figure 4.
Optics clustering (with ε = 1 and N = 14) exhibits a very
sharp drop in the reachability distance (Figure 4a), indicating
the presence of two major clusters, in turn subdivided into
higher and lower density areas, as evidenced by inflection
points 3300 and 8900 in the reordered object axis of the
reachability function. The estimates of intrinsic dimension for
the dMSSIM dissimilarity matrix are shown in Table I for all
the considered methods. Interestingly, most estimates place the
intrinsic dimension in the [5, 6] interval, indicating that even
though the dimensionality is not excessively high, it is larger



(a) Optics clustering. It shows two main and two smaller clusters.

(b) PAM clustering. It exhibits an elbow at k = 10 medoids.

Fig. 4. Clustering results.

than 3. Accordingly, the nonlinear mapping of the dissimilarity
information to 3D spaces should be taken as an approximation,
useful for orientation purposes.

The low-dimensional mappings obtained with the Sam-
mon and the t-SNE techniques are presented in Figure 5.
Optics cluster memberships are not used when computing
the mappings and are overlaid in Fig. 5 for comparison
purposes. The higher density regions within the red and blue
classes correspond to the start and decline of the solar cycle
(comprising 4527 and 3340 objects, respectively), while the
cyan and green classes correspond to the middle part of
the cycle (comprising 1294 and 273 objects, respectively)
that are typically associated to the states of higher intensity
and variability in magnetic activity. The t-SNE space clearly
illustrates the association of the drop in reachability with
the onset of the high magnetic activity period (the large
discontinuity at the center of Figure 5b), as well as the more
oscillatory behavior of the process, indicated by the spiraling
pattern of the objects in the cyan class and part of the blue
class. As the cycle starts to decline, the spiraling pattern in the
blue class fades and almost disappears at the end of the cycle
(the higher density region of the blue class at the lower-right
in Figure 5b).

The behaviour of PAM’s clustering cost function (described
in Section IV-D) w.r.t. the number of medoids is shown in
Figure 4b. The elbow at 10 medoids suggests the appropriate
number of clusters. The medoids are represented in Figure 6
on the Sammon mapping, with spheres proportional to the
cluster size. The vector polyline joining the clusters indicate
the time evolution, mostly associated to the negative X axis
(from left to right on Figure 6), despite the difference between
the intrinsic dimension of the data and the 3D representation.
Finally, the bigger clusters (and thus similarity among mem-

(a) Sammon mapping with overlaid Optics clusters.

(b) t-SNE mapping with overlaid Optics clusters.

Fig. 5. Sammon and t-SNE mappings with overlaid Optics clusters.

bers) lie at the beginning and end of the cycle, indicating a
larger variability in the high activity phases of the cycle itself.

B. Deep Learning Analysis

1) Implementation: The architecture, detailed in Section V,
has been implemented in Python (PyTorch). In particular, two
CNNs have been considered for the feature extractor ϕ: the
AlexNet [4] at the end of each convolutional block (precisely,
the pooling layer at the first, second, and fifth block, the Relu
non linearities at the others), and the ResNet-101 [5] after each
of the 32 residual blocks. The PCA ς are computed, in each
case, on the number of components that keep the 95% of the
variance. Finally, the seed has been fixed in all experiments,
for homogeneity and reproducibility.

2) Results: The classification results for the considered
CNNs are shown in Figure 9, with a 50-50% training/testing
split of the solar magnetograms. The AlexNet (Figure 9a)
shows an extremely high accuracy on the High activity class
as well as some difficulties with the other classes, especially
the Rising one. The fourth layer (relu4) exhibits the best
performances on all classes with a global accuracy of 0.925,



Fig. 6. Sammon mapping with overlaid 10 medoids.
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Fig. 7. Time distribution on the first two PCs of the feature space.

whereas the fifth layer (pool5) has a very low accuracy on the
Low class, despite comparable or better performances on other
classes w.r.t. relu4 layer. The first eight ResNet layers show a
low accuracy for the Low class, whereas the last layer exhibits
a drop in accuracy for all classes. However, layers 9 to 31 (at at
the end of forth and fifth convolutional layers), provide a high
accuracy, i.e. above 0.9 for all classes. These results indicate
that a nine-layer architecture is appropriate for all classes.
This specific architecture will be the considered in the sequel.
Interestingly, the plot of the first two PCs dimensions (Fig. 7)
exhibits a clearly distinctive class structure, with only a slight
overlapping between neighboring classes. From the beginning
of the magnetogram series (≤ 2009, top-left) to its end
(≥ 2018, bottom-left), time follows a coherent horseshoe path,
which is a pattern similar to the one found in Figs 6 and 10a.
Future studies with more data from the next and subsequent
solar cycles (from 25-th on) would allow to characterize the
transition dynamics in the spaces of Figs 6, 10a, and 7,
providing new tools to the analysis of solar phenomena.

The error distribution information shown in Fig. 11 re-
veals that classification error are concentrated on neighboring
classes and with a time occurrence associated to the transition
between classes. This is a consequence of the fact that we

set sharp boundaries between classes while, in the physical
process class transitions are gradual and with local variations
within global trends.

The k-Means [19] and the GMM clustering algorithms,
introduced in Section VI-B, are run on a random subsample
of the training dataset, where each class has an equal number
of representatives. The results shown in Fig. 12 reveal that
there is a good correspondence between the original classes
and those found through clustering. The only exception is the
cluster that should represent the Rising class, that contains a
greater number of High samples.

VII. CONCLUSIONS

Space weather is an important hazard to modern society
with potentially severe negative effects on technology and the
economy. This phenomenon strongly depends on the Sun’s
magnetic activity, investigated here with machine and deep
learning computational intelligence techniques. The structure
of the synoptic magnetograms with the dMSSIM dissimilarity
measure corresponds to a space of at most 6 dimensions. Clus-
tering techniques identified two distinct high density regions
corresponding to the initial and final stages of the solar cycle
respectively, where magnetograms show more homogeneous
and less intense activity, although of a different kind. An
intermediate region associated to the middle phase of the cycle
exists and shows a high magnetic intensity and variability in
both space and time. Deep learning solutions based on CNNs
produced highly accurate models that successfully identified
the main stages of the solar cycle. Class and time distributions
were in good agreement with unsupervised results and errors
concentrated at class boundaries.

Computational intelligence approaches proved very effec-
tive for characterizing the solar magnetic field and provided
valuable insights on its behavior, structure, variation and
evolution along a solar cycle.

ACKNOWLEDGMENT

The work utilizes data obtained by the Global Oscilla-
tion Network Group (GONG) Program (https://gong.nso.edu),
managed by the National Solar Observatory, which is op-
erated by AURA, Inc. under a cooperative agreement with
the National Science Foundation. The data were acquired by
instruments operated by the Big Bear Solar Observatory, High
Altitude Observatory, Learmonth Solar Observatory, Udaipur
Solar Observatory, Instituto de Astrofı́sica de Canarias, and
Cerro Tololo Interamerican Observatory.

REFERENCES

[1] C. Alippi, S. Disabato, and M. Roveri. Moving convolutional neural
networks to embedded systems: the alexnet and vgg-16 case. In Proceed-
ings of the 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks, pages 212–223. IEEE Press, 2018.

[2] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[3] S. Disabato and M. Roveri. Reducing the computation load of convolu-
tional neural networks through gate classification. In 2018 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[4] A. Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. In NIPS, volume 1 of NIPS ’12, pages 1097—-1105.
Curran Associates Inc., 2012.



Fig. 8. Time sequence of Earth side magnetograms corresponding to the 10 medoids of Fig. 6 and Fig. 4b.

Solar Activity Class: Low Rising High Decline

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AlexNet Layers

A
cc

ur
ac

y

(a) SVM results on top of the AlexNet + PCA feature extractor.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ResNet Layers

A
cc

ur
ac

y

(b) SVM results on top of the ResNet + PCA feature extractor.

Fig. 9. Accuracy of the AlexNet and ResNet CNNs using PCA feature spaces.

[5] H. He et al. Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
CPVR ’16, pages 770–778. IEEE, jun 2016.

[6] J. Søgaard et al. Applicability of existing objective metrics of perceptual
quality for adaptive video streaming. Electronic Imaging, 13:1–7, 2016.

[7] LeCun et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10).

[8] M. Ankerst et al. Optics: ordering points to identify the clustering
structure. ACM SIGMOD, 28(2):49–60, 1999.

[9] S. Wold et al. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

[10] Z. Wang et al. Image quality assessment: From error visibility to
structural similarity. IEEE Tran. on Image Processing, 13(4), 2004.

[11] Zimek et. al. A survey on unsupervised outlier detection in high-
dimensional numerical data. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 5(5):363–387, 2012.

[12] P. Grassberger and I. Procaccia. Measuring the strangeness of strange
attractors. Physica, D(9):189–208, 1983.

[13] M. Hein and J.Y. Audibert. Intrinsic dimensionality estimation of
submanifolds in euclidean space. In Proc. ICML, 2005.

[14] F. Hill. The Global Oscillation Network Group facility: An example of
research to operations in space weather. Space Weather, 16(10):1488–
1497, 2018.

[15] G.E. Hinton and S.T. Roweis. Stochastic neighbor embedding. In
Advances in Neural Information Processing Systems, 15:833–840, 2002.

[16] L. Kaufmann and P. Rousseeuw. Clustering by means of medoids. In
Y. Dodge, editor, Statistical Data Analysis Based on the L1–Norm and
Related Methods, pages 405—-416, 1987.

[17] E. Levina and P.J. Bickel. Maximum likelihood estimation of intrin-

sic dimension. Advances in Neural Information Processing Systems,
17:777–784, 2005.

[18] W Livingston, MJ Penn, and L Svalgaard. Decreasing sunspot magnetic
fields explain unique 10.7 cm radio flux. The Astrophysical Journal
Letters, 757(1):L8, 2012.

[19] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.
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Fig. 10. Class definition according to solar activity (right) and the distribution in the first two feature space PCs (conv4 0 layer of the ResNet CNN.
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(a) Confusion matrix of the Gaussian SVM.
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(b) Error distribution with time. For each month the number of errors is plotted.

Fig. 11. Gaussian SVM classification results on the features space defined by the output of ResNet layer conv4 0, followed by a 3468 PCs (containing 95%
of the variance). Right: Confusion matrix. Left: Error distribution with time. Note that almost all the errors are close to class transitions.
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Fig. 12. Clustering the deep learning two PCs feature space: (a) Comparison of cluster memberships with actual class composition. (b) k-Means results. (c)
GMM results.
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