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Abstract—Real-world data sets often contain both continuous
and categorical variables yet most popular machine learning
methods cannot by default handle both data types. This cre-
ates the need for researchers to transform their data into a
continuous format. When no prior information is available, the
most widely applied methods are simple ones such as one-
hot encoding. However, they ignore many possible sources of
information, in particular, categorical dependencies, which could
enrich the vector representations. We investigate the effect of
natural language processing techniques for learning continuous
word-vector representations on categorical variables. We show
empirically that the learned vector representations of the categor-
ical variables capture information about the variables themselves
and their dependencies with other variables similar to how word
embeddings capture semantic and syntactic information. We also
show that machine learning models using unsupervised categor-
ical embeddings are competitive with supervised embeddings,
and outperform them when fine-tuned, on various classification
benchmark data sets.

Index Terms—Machine Learning, Categorical Variables, Em-
bedding Methods

I. INTRODUCTION

Most machine learning models assume that their input
values come from a continuous set (e.g. Rd) or that, at least,
a distance or similarity between inputs is defined. This is true
for many applications but real-life data sets often contain both
continuous and categorical variables. When presented with
categorical values, it is often not obvious how to convert these
to a continuous representation. Current categorical coding
schemes may, very generally, be divided into nominal and
ordinal.
Ordinal schemes, such as Helmert coding or polynomial cod-
ing [1], [2], assume an order and/or a structure in the variables.
When such assumptions are not possible or sensible, the values
may be treated as nominal and encoded using methods that
replace the categorical values by certain calculated statistics,
e.g. frequency encoding and target encoding [3]. Frequency
encoding replaces the categorical value by its (normalized)
frequency. Target encoding techniques replace the categorical
values by certain statistics computed using the current variable
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value and their corresponding target variable values (e.g.
mean encoding). The most popular technique, which does not
calculate any statistics nor requires any assumptions, is one-
hot encoding, also known as dummy encoding [4]. This tech-
nique replaces all values by equidistant indicator vectors. The
disadvantage of this method is that the vector size increases
with the cardinality of the variable. Furthermore, it does not
capture any useful information about the variable itself or its
interaction with other variables. As such, this encoding scheme
completely leaves the interpretation and transformation of the
variables and its values to the machine learning model.
In natural language processing (NLP), however, the standard
is to encode the input, such as words, as continuous vector
representations, called embeddings [5]. Recently, there has
been some interest in learning embeddings [6], [7] for general
categorical variables instead of using the standard encoding
techniques. However, the focus has been on learning em-
beddings as a part of the supervised classification model,
limiting their reusability. To our knowledge, few researchers
investigated the general applicability of unsupervised NLP
embeddings methods to categorical features.
This paper is organized as follows. In section II embeddings in
natural language processing and the most popular methods to
create them are introduced. In section III we discuss how these
embedding methods may be applied to categorical variables.
In section IV we show the ability of categorical embeddings to
extract structure and dependencies and how they may improve
classification performance compared to one-hot encoding and
supervised neural embedding methods. We conclude the paper
in section V and offer possible insights into future work in
section VI.

II. NATURAL LANGUAGE PROCESSING

The data representation in natural language processing
evolved from standard encoding techniques such as one-hot
encoding and N-grams [8] to rich continuous vector space
representations, called embeddings. Originally, neural embed-
dings were simply the continuous output of an intermediate
neural network layer [9]. However, word embeddings only
became widely accepted as the new standard after the introduc-
tion of the Skip-gram and Continuous Bag-of-words (CBOW)
models [10]. These models allowed for efficient training due
to their simple log-linear structure. Many extensions to these
embeddings models have been made to allow them to work
on i.a. character [11], sentence [12] or document [13] level.
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The goal of embeddings is to capture useful semantic and
syntactic information from the input data. One of the most
noticeable properties about these embeddings is the ability to
perform vector arithmetic in the embeddings space, that mean-
ingfully translates back to the input space. The most famous
example that illustrates this effect is that when one subtracts
the vector for Man from King and adds instead the vector
for Woman, one gets the vector for Queen: vector(King) −
vector(Man) + vector(Woman) ≈ vector(Queen) [10]. It
should be noted that recent work argued that this should be
taken with a grain of salt [14], [15].
As an alternative to neural embeddings, we can use the
matrix factorization methods. In general, matrix factorization
or decomposition is the process of transforming a matrix
into a multiplication of multiple, often structured, matrices
with desired properties. In natural language processing, these
methods do not work on the texts themselves, as the embed-
ding methods, but on varying types of co-occurrence counts
extracted from the corpus. Following the creation of such a
co-occurrence matrix, the embeddings are created by applying
low-rank matrix approximation methods, such as the Singular
Value Decomposition (SVD). One of the most influential
examples is Latent Semantic Analysis (LSA) [16], which
works on the term-document matrix of a corpus. Another
approach that instead uses a term-term co-occurrence matrix
is the Hyperspace Analogue to Language (HAL) method [17].
However, a problem with count-based methods is that very
frequent or infrequent words contribute a disproportionate
amount. As such, recent work often focuses on how to properly
transform the counts such that useful semantic information is
extracted, while attempting to eliminate the side effects of
these models [18]–[20].

A. CBOW and Skip-gram

The Continuous Bag-of-Words and Skip-gram models [10],
commonly referred to as word2vec, are unsupervised methods
for learning word vector representations. The CBOW model
predicts a word based on the surrounding context words, while
the skip-gram model predicts the context words based on
the current word. Multiple improvements on these models
have been made. It has been shown that for the Skip-gram
model sub-sampling of frequent words and the use of negative
sampling instead of hierarchical softmax allows for faster
training and higher quality word vectors [21].
Words may also be split into multiple parts, N-grams, in order
to capture subword information in N-gram embeddings. These
embeddings may then be joined together in order to create the
corresponding word embeddings [22], [23].

B. LSA

Latent Semantic Analysis (LSA) [16] produces word and
documents vector representations using a term-document co-
occurrence matrix. The rows of this matrix represent the
terms and the columns represent the documents. Tf-idf [4]
normalization is applied to the co-occurrence matrix to reduce
the weight of uninformative high-frequency words. Finally,

the dimensionality is reduced by performing the (truncated)
Singular Value Decomposition (SVD). The resulting low rank
approximation is used to obtain the word embeddings.

C. GloVe

One of the limitations of local context methods, such as
CBOW and Skip-gram, is that they do not take global statistics
of the data into account. GloVe [24] is a method for creating
word embeddings that combines the local context methods and
the global factorization methods. The algorithm first constructs
the word-word co-occurrence matrix X , denoting Xij as the
number of times j occurs in context of word i. Using this
matrix, the goal is to discover the relations between words,
formulated as the ratio of their co-occurrence probabilities in
some context. It can be shown that this goal can be structured
as a weighted least squares regression problem,

min
w,b

V∑
i,j=1

f (Xij)
(
wTi w̃j + bi + b̃j − logXij

)2
. (1)

With wi, w̃i ∈ Rd and bi, b̃j respectively the (context) word
vectors and biases for the words in vocabulary V . The weight-
ing function f has as goal to limit the effect of frequent (and
infrequent) co-occurrences and was selected to be,

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise. (2)

This function has two additional, positive-valued, parameters:
xmax and α. The xmax determines at which point the function
returns 1 and the α value is the power used to, possibly non-
linearly, scale the fraction. It was found empirically that setting
the values for xmax and α to be respectively 100 and 3/4
offered the best performance for natural language processing
tasks [24].

III. METHODOLOGY

Although categorical variables are very closely related to
words, two important differences must be considered. The
first is that the interpretation of a combination of categorical
variables does not depend on the location of those variables.
Put differently, the columns of the input data matrix may be
permuted without loss of meaning. This is not the case in
natural language, where the order of characters, words and
sentences are a large part of what determines the meaning of
the text.
The second difference lies in the relations between the values
of the categorical variables. It is perfectly valid for a value, or
even a complete category, to be independent or unrelated to the
values of other variables. This is not the case in a meaningful
sentence or text. No matter how unimportant a word, it is
still needed to adhere to the syntax or to convey the correct
meaning.
To translate these changes to the existing word embeddings
methods, we need to make some adjustments. The first is
the context window length. Since sentences have different



lengths and the assumption may be made that words closer
together are more strongly related than those further away, it
makes sense to limit the size of the context window to some
reasonable number. In the case of categorical variables, the
window should initially span all variables since the length is
always the same and the meaning of these variables is location
independent.
In the case of GloVe, there are two parameters that require
extra attention: the weighing of occurrences and the α value
(cf. Eqn. 2). By default, the values in the co-occurrence matrix
are weighted by the distance to the focus word. Based on this
distance, the co-occurrence count of a context word is update
by 1/d, with d the distance. In this way, occurrences that
are further away are assumed to be less important than those
closer. For categorical variables, this count should always be
updated by one, independent of the distance.
The α parameter determines a transformation of the a co-
occurrence counts, with a value 1 meaning the identity. Em-
pirically, a value 0.75 was shown to perform well on natural
language. In our experiments, we found that for certain data
sets values α ≥ 1 performed better, while for other data sets,
values even lower than 0.75 were needed to achieve the best
performance. This indicates the need to treat the α as a tuning
parameter.
In the next section, we show how these changes to the
embeddings methods allow them to be applied to categorical
variables. We apply them to an artificially created data set to
clearly show their respective strengths and then show that we
can make the same observations on a more complicated data
set. Finally, we show empirically that these embeddings offer
an increase in classification performance compared to when
using one-hot encoding and are competitive with supervised
neural embedding methods.

IV. EXPERIMENTS

A. Simple Example

In this section we use a handcrafted example data set to
illustrate how the embedding methods may be used to extract
dependencies and structure out of categorical variables. The
data set contains three categorical variables: Activity, Animal
and Disposition. By default, all values of a variable are equally
likely to appear. In addition to this, three relations, in the form
of conditional probabilities have been created to simulate the
dependency between variables. For example, given that the
value Barks appears in the Activity column, the second column
will contain Dog with a probability of 0.8.
On figure 1 the word vectors are depicted using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [25] as a dimension-
ality reduction and visualisation technique. Perplexity values
of 5 to 10 often provided the clearest figures. The choice was
made to use t-SNE for all embedding visualisations because
this technique generates clearer and more interpretable figures
than alternatives such as principal component analysis (PCA).
However, it is important to note that, for all experiments,
the exact same observations can be made on figures where
PCA was used as the dimensionality reduction technique. To

Activity Animal Disposition
Barks Dog Playful
Roars Cat Lazy
Talks Bird Aggressive
Sings Penguin Calm
Dances Mouse

Relation Probability
P(Dog | Barks) 0.8
P(Playful | Dog) 0.85
P(Lazy | Cat) 0.8

TABLE I
LEFT: THE CATEGORICAL VARIABLES WITH THEIR CORRESPONDING
VALUES OF THE ARTIFICIAL DATA SET. RIGHT: THE CORRESPONDING

MANUALLY CREATED RELATIONS PRESENT IN THE DATA SET.

show this, the PCA visualisations of the two best models are
additionally provided on figure 2. All three neural embedding
methods were set up to generate embeddings of size 50.
Additionally, for GloVe, the number of epochs and α were set
to be 50 and 1.5, respectively. For LSA, the truncated SVD
was performed using 2 components.

This simple example was created in order to show the
relative strengths and weaknesses of the studied methods. As
can be seen on figure 1, both CBOW and Skip-gram appear
to perform well in discovering which values belong to which
variables, visualised by the distinct clusters. The methods are
less effective at discovering the relations between the values
themselves: they often fail to detect more difficult relations
such as the one with Dog, Barks and Playful. Skip-gram
performs slightly better in that aspect.
Making the link with natural language processing, one could
say that these methods are better at distinguishing syntax over
semantic relations.
LSA is able to extract the relations between the values of
different categorical variables, but is often worse at differen-
tiating between the categorical variables themselves. This is
indicated by the less clearly defined clusters of variables.
True to its original goal, GloVe performs equally well at
extracting relations and recognizing different categorical vari-
ables while respecting the distances between the embedded
variable clusters.
In general GloVe performs the best at extracting the structure
and relations out of this simple data set. Although, it should be
said that all techniques are able to represent more information
than would be the case when using popular transformations
such as one-hot encoding.

B. Nursery Data

The UCI nursery data1 [26] is a data set containing only
categorical variables. It is extracted from a hierarchical de-
cision model originally developed to rank applications for
nursery schools [27]. The structure derived from a decision
model makes it a suitable candidate to illustrate the use and
advantages of categorical embeddings on a more complicated
data set. The data consists of 12 960 samples, with eight
categorical variables that represent the hierarchical structure
(see table II) and a categorical variable that represents the
final decision of the model.
To compare with what a standard statistical method is able to

1https://archive.ics.uci.edu/ml/datasets/nursery



Fig. 1. The t-SNE visualisations of respectively CBOW, Skip-gram, LSA and GloVe for the simple example. CBOW and Skip-gram perform well at representing
the categorical variables, shown by the clear variable clusters. LSA is able to extract all dependencies, as indicated by the closeness of the related values in
embedding space, but has less distinct clusters. GloVe performs well at both tasks.

Fig. 2. The PCA visualisations of the two best performing models, LSA and GloVe, for the simple example. The visualisations show the same relations
as those that can be observed on the t-SNE plots: Both LSA and GloVE are able to extract the relations but GloVe is better at constructing clusters of the
categorical values.



extract, Cramer’s V score [28], [29] for all attribute pairs was
calculated. It is a measure of dependency between nominal
variables with 0 indicating no dependency and 1 indicating
complete dependency. The score was 0 for all variable pairs
except for the pairs including the target variable, which are
presented in table II. These scores show that a strong relation
exists between the 7th attribute (the health conditions) and the
target variable. However, the test does not detect any other
relations, such as the hierarchical structure.

The results of the embeddings methods can be found in
figure 3. As in the simple example, CBOW and Skip-gram
perform exceedingly well at creating representations of the
categorical variables themselves. To a lesser degree, the strong
relation between the health conditions and the target variable
(variables 7 and 8, respectively) can also be observed.
LSA performs well at picking up the relation between vari-
ables 7 and 8 but has trouble identifying the structure present
in the data. GloVe again shows the best results; in fact
the method is able to almost fully capture the hierarchical
structure of the decision model. The categorical variables
which are aggregated together in the tree structure are located
close in the embedding space. For example, variables 0-1
and 2-3 are aggregated into ”Employment of parents and
child’s nursery” and ”Family structure” respectively and are
clustered together in the embedding space. The relationship
extracted by Cramer’s V, between variable 7 and 8, is also
captured, demonstrated by the closeness of their corresponding
embeddings.
As in the simple example described in the previous section,
GloVe is able to extract the most information out of the data
set. Additionally, the experiments show that even on a more
difficult, real, data set, all methods are able to capture the
structure and dependencies, albeit to varying degrees.

C. Classification Performance

We compare the performance of the embeddings methods
with the one-hot encoding baseline on the Breast cancer2,
CMC3, Adult4 and Credit5 data sets from the UCI repository.
The first two data sets do not contain any continuous features
and are completely transformed using one-hot encoding or one
of the embedding methods. For the last two data sets, the cat-
egorical variables are embedded, and the continuous features
are left as is. For the CMC data set, the two minority classes
are treated as a single class to create a binary classification
task.
Classification models. All experiments were performed using
the same two simple models: a logistic regression and neural
network model, implemented using respectively scikit-learn
[30] and Tensorflow [31]. The neural network consists of
a single hidden layer with 512 neurons, a RELu activation
function and a dropout layer with a rate of 0.1 as regu-
larization. The neural embedding architecture has a separate

2https://archive.ics.uci.edu/ml/datasets/breast+cancer
3https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
4https://archive.ics.uci.edu/ml/datasets/Adult
5https://archive.ics.uci.edu/ml/datasets/credit+approval

input, followed by an embedding layer, for each categorical
variable of which the outputs are then concatenated. These
concatenated embeddings are then used as input for one or
more hidden layers. The experiments have been performed
with one hidden layer and a second hidden layer as a reference
to reflect the original architecture [6]. No architecture tuning
has been performed as the goal is to compare the embeddings
methods as unbiased as possible. For the logistic regression
model, the SAGA optimizer [32] was used while the neural
network model was trained using the Adam optimizer [33].
For the embeddings methods, the embeddings size and the
frequency scaling parameter, the α, were manually tuned. All
models have been trained for at least 10 times. The average and
best performance of the models, measured by the area under
the ROC curve (AUC), is given in table III. For the Adult data
set, the AUC was calculated on the provided test data set and
for the other three the 5-fold cross-validation score is reported.
Only categorical variables. For the Breast cancer and CMC
data sets, all embeddings methods significantly outperform
one-hot encoding. On the breast cancer data, Skip-gram and
CBOW performed the best on average, with Skip-gram and
GloVe obtaining the best performance for the logistic regres-
sion and the neural network model respectively. The best
results were observed using an embedding size of 50 to 100
and an α <= 0.75. For LSA, the number of components was
set to be 3 to 5.
On the CMC data set, GloVe is the best performing embedding
method consistently for both models. The optimal embedding
size and α values were found to be respectively 20 to 50
and 0.25. For LSA, we achieved the best results using 5
components.
Mixed variables. For the two data sets containing both con-
tinuous and categorical variables, Adult and Credit, categorical
embeddings again lead to the best results. However, the perfor-
mance gain by the embeddings methods was less pronounced.
On the Adult data, LSA performed best in combination with
the logistic regression model, while GloVe outperformed the
other methods when used in the neural network model. For
both models Skip-gram and CBOW benefited from an embed-
ding size of 20 and GloVe performed better with an embedding
size of 100 and an α value of 0.75 or lower. For both models,
7 components were selected for the LSA embeddings.
On the credit data set, CBOW and and Skip-gram perform
slightly worse on average than one-hot encoding. Neverthe-
less, the higher variability in their performance allows their
best achieved results to outperform the baseline. The best
performing embedding methods are GloVe and LSA for the
logistic regression and neural network models respectively.
These results were obtained with embedding sizes of 25 for
the Skip-gram and CBOW models. GloVe performed better
with an α value of 0.4 and an embedding size of 50-100. For
the LSA method, 6 components were selected.
In general, the best performing model is consistently one
with categorical embeddings as input, indicating that the
discussed embeddings methods are able to extract useful
information, such as structure and dependencies, that are



8: Final evaluation of applications for nursery schools
. Employment of parents and child’s nursery
. . 0: Parents’ occupation
. . 1: Child’s nursery
. Family structure and financial standings
. . Family structure
. . . 2: Form of the family
. . . 3: Number of children
. . 4: Housing conditions
. . 5: Financial standing of the family
. Social and health picture of the family
. . 6: Social conditions
. . 7: Health conditions

Attribute Cramer’s V
0 0.214
1 0.246
2 0.047
3 0.072
4 0.112
5 0.075
6 0.106
7 0.731

TABLE II
LEFT: HIERARCHICAL STRUCTURE OF THE VARIABLES OF THE NURSERY DATA. RIGHT: THE CRAMER’S V SCORE, A MEASURE FOR ASSOCIATION

BETWEEN CATEGORICAL VARIABLES, FOR THE CORRESPONDING VARIABLES WITH REGARDS TO THE FINAL EVALUATION.

Fig. 3. The t-SNE visualisations of respectively CBOW, Skip-gram, LSA and GloVe for the nursery data set. CBOW and Skip-gram do well at representing
the categorical variables, indicated by their corresponding distinct clusters. LSA is able to extract more relations than CBOW and Skip-gram: some attributes
of the same hierarchical level are closer together in the embeddings space. GloVe performs well at both.



Method Breast cancer CMC

LR NN LR NN

Avg. Best Avg. Best Avg. Best Avg. Best
One-hot 62.03 ± 1.61 64.42 70.38 ± 1.36 71.75 73.76 ± 1.41 76.12 82.80 ± 0.77 83.97
CBOW 66.86 ± 0.87 68.08 71.96 ± 0.99 73.51 74.15 ± 1.72 77.47 85.16 ± 0.66 86.57

Skip-gram 67.19 ± 1.57 68.75 71.76 ± 1.46 73.04 76.20 ± 1.12 78.33 84.93 ± 0.53 85.91
LSA 65.30 ± 1.12 67.77 71.70± 0.94 72.91 77.92 ± 1.08 80.32 84.33 ± 0.74 85.60

GloVe 67.19 ± 1.14 68.30 71.50 ± 1.26 73.78 79.10 ± 0.91 80.58 86.05 ± 0.36 86.68

Adult Credit

LR NN LR NN

Avg. Best Avg. Best Avg. Best Avg. Best
One-hot 81.88 ± 0.0 81.88 90.30 ± 0.28 90.60 86.85 ± 0.35 87.67 92.50 ± 0.17 92.71
CBOW 81.98 ± 0.0 81.98 90.49 ± 0.23 90.73 86.71 ± 0.41 87.68 92.37 ± 0.31 93.06

Skip-gram 81.98 ± 0.0 81.98 90.45 ± 0.22 90.79 86.72 ± 0.40 87.98 92.32 ± 0.35 92.81
LSA 82.03 ± 0.0 82.03 90.41 ± 0.45 90.81 86.92 ± 0.35 87.72 93.05 ± 0.20 93.29

GloVe 81.92 ± 0.0 81.92 90.58 ± 0.37 90.96 87.22 ± 0.36 88.22 92.66 ± 0.24 93.01

TABLE III
OVERVIEW OF THE CLASSIFICATION PERFORMANCE OF THE BASELINE ONE-HOT ENCODING AND THE CATEGORICAL EMBEDDING METHODS ON THE

FOUR UCI DATA SETS. THE REPORTED VALUES ARE THE AVERAGE AUC WITH STANDARD DEVIATION AND THE BEST OBSERVED AUC FOR A LOGISTIC
REGRESSION MODEL (LR) AND A NEURAL NETWORK WITH ONE HIDDEN LAYER (NN). THE BEST PERFORMING MODEL IS CONSISTENTLY ONE WITH AS

INPUT CATEGORICAL EMBEDDINGS.

Architecture Breast cancer CMC Adult Credit

Avg. Best Avg. Best Avg. Best Avg. Best
One Hidden Layer 68.78 ± 1.52 71.78 83.25 ± 0.80 84.68 90.69 ± 0.13 90.88 92.25 ± 0.28 92.70
Two Hidden Layers 68.75 ± 1.34 71.52 83.25 ± 0.85 85.07 90.74 ± 0.20 90.99 92.50 ± 0.26 92.89
One Hidden Layer (Pretrained) 71.56 ± 1.33 74.19 86.38 ± 0.37 87.22 91.08 ± 0.03 91.12 93.14 ± 0.19 93.43
Two Hidden Layers (Pretrained) 72.30 ± 1.50 74.81 86.19 ± 0.72 87.64 91.11 ± 0.06 91.18 93.42 ± 0.26 93.87

TABLE IV
OVERVIEW OF THE CLASSIFICATION PERFORMANCE OF THE NEURAL EMBEDDINGS WITH AND WITHOUT UNSUPERVISED PRETRAINING. THE REPORTED

VALUES ARE THE AVERAGE AUC WITH STANDARD DEVIATION AND THE BEST OBSERVED AUC. FOR THE BREAST CANCER, CMC AND CREDIT DATA
SET THE UNSUPERVISED METHODS OUTPERFORM THE NEURAL EMBEDDINGS WITHOUT PRETRAINING. IN ALL CASES, PRETRAINED NEURAL

EMBEDDINGS WITH FINE-TUNING OUTPERFORM THE STANDARD SUPERVISED NEURAL EMBEDDINGS AND ACHIEVE THE BEST RESULT ON ALL DATA
SETS.

helpful for the classification process. Among the embeddings
methods, there is no technique that consistently outperforms
the others. However, for the majority of our experiments
GloVe, more frequently, offered the largest classification per-
formance increase. This, in combination with the visualisation
experiments, where it was shown that GloVe was the best at
i.a. extracting relations, makes it the preferred initial choice
to create unsupervised categorical embeddings.
Supervised neural embeddings. The performance of su-
pervised neural embeddings and unsupervised embeddings
with fine-tuning is reported in table IV. The pretraining is
performed using the best reported method in table III, which
is GloVe for all data sets except for the Credit data set
where LSA performed better. For the standard supervised
embeddings (without pretraining), small embedding sizes of
5-20 performed better than large sizes. The supervised neural
embeddings also perform better than one-hot encoding. How-
ever, even without fine-tuning, the unsupervised embeddings
outperformed the supervised embeddings on all data sets ex-
cept on the Adult data. Finally, the unsupervised embeddings
with fine-tuning achieve the best results on all data sets.
We explain the competitive, and often better, performance
of the unsupervised methods by their ability to take global

statistics (e.g. LSA, GloVe) into account. In addition, it is
known that unsupervised pretraining, as in the case of the
NLP embeddings, is beneficial to the performance and gen-
eralization capabilities of neural network models [34]. The
experiments show that this is also the case for categorical
variables.

V. CONCLUSION

In this work we studied the applicability of unsupervised
NLP embedding methods to categorical variables. We ob-
served that the learned continuous vectors do not only rep-
resent the categorical variables efficiently, but also capture
dependencies and structure in an unsupervised way. Drawing
the link with natural language processing, the ability for
word embeddings to capture semantic and syntactic relations
translates well to categorical variables.
Additionally, we have empirically shown that pretrained cat-
egorical embeddings outperform one-hot encoding on various
popular classification benchmark data sets. Out of the dis-
cussed embedding methods, GloVe offered the most consistent
improvements.
When comparing the unsupervised methods to the supervised
neural embeddings, it was shown that they are at least competi-
tive with each other. But more often than not, the unsupervised



embeddings outperformed the supervised neural embeddings,
especially when the data set consisted only of categorical
variables. Finally, we showed that fine-tuned unsupervised
embeddings consistently outperformed any other embedding
method.

VI. FUTURE WORK

Categorical embeddings provide an attractive alternative to
commonly used methods such as one-hot encoding. However,
for the NLP techniques to be applicable to categorical vari-
ables, some changes to the treatment of the context window
and distance weighting needed to be made. Additionally, it was
often necessary to tune the frequency weighting parameter α
in order to obtain the best results. This offers future research
directions into specialized categorical methods and weighting
schemes. Additionally, real life data often contains both cat-
egorical and continuous data while the current unsupervised
embedding methods only take the categorical part into account.
Techniques may be developed that allow the training of the
categorical embeddings to take these continuous values into
account as well.
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