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Abstract—We present a neural virtual machine that can be
trained to perform algorithmic tasks. Rather than combining
a neural controller with non-neural memory storage as has
been done in the past, this architecture is purely neural and
emulates tape-based memory via fast associative weights (one-
step learning). Here we formally define the architecture, and
then extend the system to learn programs using recurrent policy
gradient reinforcement learning based on examples of program
inputs labeled with corresponding output targets, which are
compared against actual output to generate a sparse reward
signal. We describe the policy gradient training procedure used,
and report its empirical performance on a number of small-
scale list processing tasks, such as finding the maximum list
element, filtering out certain elements, and reversing the order
of the elements. These results show that program induction via
reinforcement learning is possible using sparse rewards and solely
neural computations.

Index Terms—Neural Networks, Policy Gradient, Program
Induction, Fast Weights

I. INTRODUCTION

Neural program induction (NPI) is the problem of training
a neural network to perform an algorithmic task (like sorting
a list), based on examples of program input (an unsorted list)
and target output (the sorted list) [1]–[5]. Recent approaches to
NPI often use a hybrid approach where neural controllers are
coupled with non-neural memory. Humans also leverage non-
neural memory (e.g., pen and paper) when solving algorithmic
tasks, but the brain’s working memory plays an equally
important role. The most realistic AI models of working
memory are those based on Hebb’s rule [6], [7]. In the deep
learning context these models are said to use “fast weights” in
contrast with gradient descent, since Hebbian learning is very
fast and in fact can be part of the forward pass rather than
the gradient descent step [8], [9]. However, the use of fast
weights specifically for NPI is underexplored. Moreover, NPI
approaches (with fast weights or not) often use a supervised
learning paradigm, which dictates the specific time-step at
which each element of an output sequence must be produced.

In this work, we explore the alternative of a reinforcement
learning (RL) paradigm [10] for NPI using solely neural
computations (working memory but no external memory).

This work was supported by DARPA award HR00111890044 and ONR
award N00014-19-1-2044. K. Gupta’s contribution was work done while at
Syracuse University.

From an engineering perspective, sparse reward signals (i.e., a
single non-zero reward at the end of an episode), as opposed
to timed supervision, may afford NPI with more flexibility in
determining an effective algorithm. From a scientific perspec-
tive, our motivation is to advance NPI a small step towards
greater biological relevance. For this purpose we modify a
recently proposed fast-weight model called the “Neural Virtual
Machine” (NVM) [11]. The NVM contains a set of working
memory layers, which use a fast-weight associative learning
rule that combines elements of Hebbian and anti-Hebbian
learning. The NVM also includes a recurrent controller sub-
network, that decides when fast learning and/or activation
should occur in working memory layers, via multiplicative
gating [12], [13]. Neural activity patterns in working memory
layers are used to emulate various components of a typical
computer architecture such as “register contents” and “memory
addresses.” The controller manipulates those patterns over time
to emulate execution of a traditional computer program. In
other words, the NVM is a purely neural model that can
represent and emulate computer programs.

In [11], the NVM was “programmed by hand:” explicitly
provided, human-authored source code was converted into a
purely neural representation using a specialized algorithm. In
this paper, we instead train a modified NVM model without
explicit source code, using examples of program input and
target output, and compare target and actual output to generate
a reward signal. We redesign the NVM controller as an RL
agent, and maximize the reward signal using recurrent policy
gradient ascent [14]. We refer to this architecture as NVM-RL.
The next section formally defines the NVM-RL architecture
and training process, and subsequent sections report empirical
performance on a number of algorithmic list processing tasks.
The code is open-source and freely available online.1

II. THE NVM-RL ARCHITECTURE

The NVM-RL contains a set L of working memory layers
and a set P of associative pathways (i.e., fast-weight matri-
ces) between them. As detailed below, layers in L represent
computer registers and tape-based memory addresses, while
pathways in P are used to emulate operations like register

1https://github.com/garrettkatz/ghu
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moves and tape shifts. We use p to denote a pathway, and q
and r to denote layers. The activity vector in layer q at time t,
which can represent current register contents or tape positions,
is denoted vqt , and the weight matrix of pathway p at time t
is denoted W p

t . The NVM-RL also includes a simple recurrent
“controller” network Cθ, with trainable parameters θ, which
determines when associative learning and recall occur in any
given pathway. Cθ has a single hidden layer whose activity at
time t is denoted ht. Its inputs are the previous hidden state
ht−1 as well as the working memory vectors {vqt }q∈L. Its out-
puts are scalar 0/1 multiplicative gates {`pt }p∈P and {upt }p∈P .
The gate value `pt modulates associative learning in pathway p
at time t, while upt modulates associative recall in pathway p at
time t, as given in the equations below. The NVM-RL interacts
with an environment E which has an unobservable state ψt
at time t and can alter the patterns in the working memory
layers. The NVM-RL’s forward pass for one time-step consists
of four sub-steps: (1) the controller observes current working
memory and decides where to perform associative learning and
recall; (2) associative recall occurs in the chosen pathways, (3)
associative learning occurs in the chosen pathways, and (4) the
environment provides external input by overwriting zero or
more working memory layers with new activity vectors. The
controller’s “decision” to perform recall or learning in a given
pathway is implemented by the corresponding multiplicative
gates in its output layer. Mathematically, the sub-steps are:

{upt }p∈P , {`
p
t }p∈P ,ht = Cθ({vqt }q∈L,ht−1) (1)

v̂qt+1 = tanh

∑
p∈Pq

W p
t v

rp
t u

p
t

 (2)

W p
t+1 = W p

t + ∆W p
t `

p
t (3)

{vqt+1}q∈L, ψt+1 = E({v̂qt+1}q∈L, ψt) (4)

where Pq is the set of incoming pathways to layer q; rp is the
source layer for pathway p; v̂qt+1 is the new neural activity
before any modifications by the environment; and ∆W p

t is a
fast weight update to pathway p at time t, described shortly.

The NVM is reframed for RL by viewing the controller as
an agent, the controller’s gating outputs as its actions, the
working memory layers as its state observations, and E as the
underlying environment’s state transition function. To perform
NPI with this system, certain working memory layers are
designated for representing program inputs and outputs. The
environment provides program inputs and consumes program
outputs by accessing and modifying the designated layers.

For the purposes of this study we assume that program
input/output symbols are elements of a finite “alphabet” A,
each represented by patterns of neural activity. A program
manipulates these symbols by moving them between registers
or reading/writing them from/to tape-based memory, similarly
to a Turing machine [15]. Different registers, as well as the
tape memory’s read-write head, are represented by different
working memory layers. The symbols currently stored in a
register, as well as the current head position, are represented
by the current activity patterns in the corresponding layers.

The pattern in layer q representing symbol a ∈ A is denoted
vq[a]. This assigned pattern is fixed before training and may
or may not equal the actual pattern vqt occurring in layer q
at any given time t. The patterns are randomly chosen from
{−ρ, ρ}Nq , where Nq is the number of neurons in layer q,
and ρ ∈ (0, 1) is a fixed hyperparameter chosen by the user
(values near 1 work best in practice; this study uses ρ = 0.99).
The set of all pattern assignments is Ω = {vq[a]}q∈L,a∈A,
and in principle could also be treated as part of the trainable
parameters.

The fast weight update in the NVM-RL is a combination
of Hebbian learning and unlearning. Formally, we define the
update function H(·, ·, ·) by

H(W,x,y) =
(
tanh−1(y)−Wx

)
x>/(Nxρ

2), (5)

where W is the current weight matrix, x and y are activity
patterns being associated, and Nx is the number of neurons
in pattern x. The weight update formula is then given by
∆W p

t = H(W p
t ,v

rp
t ,v

qp
t ), where qp is the destination layer

for pathway p. The normalization term Nxρ
2 is chosen in

this way so that associative recall from input patterns with
±ρ entries will tend to produce output patterns also with
±ρ entries. In one-time step, this rule adjusts the associative
weights W so that the output pattern y can be recalled from
the input pattern x. Moreover, any previous association of x
with some other pattern ỹ will be erased, which is useful
for emulating “over-writing” a tape position. [11] proved that
H does indeed have this behavior - with certainty when the
symbol encodings in Ω are pair-wise orthogonal, and in expec-
tation when they are sampled uniformly from {−ρ,+ρ}Nx . In
this work we use orthogonal encodings due to their superior
reliability. We generate sets of orthogonal pattern vectors using
the randomized Hadamard matrix technique from [11].

A. The controller network

We implement the controller Cθ with a simple recurrent
network, linear read-outs, and sigmoid and softmax activa-
tion functions to compute a stochastic policy. The binary
learning/recall gates are then sampled from the policy. More
formally, the controller network update is given by:

ht = tanh

∑
q∈L

W h,qvqt +W h,hht−1 + bh

 (6)

lt = σ(W l,hht + bl) (7)

u
Pq
t = µ(W q,hht + bq) (8)

where σ denotes logistic sigmoid, applied element-wise, and
µ denotes softmax. Optionally one can use relu in place of
tanh for the hidden layer update. lt is a pattern with one
neuron per pathway in P , whose value is the probability that
fast learning will occur in that pathway at time t. uPqt is a
pattern with one neuron per pathway in Pq, whose values
sum to one and which collectively represents a multinomial
distribution over the incoming pathways to layer q: i.e., for
each destination layer q, associative recall is only allowed in



one of its incoming pathways at a time. The weights and biases
in (6)-(8) comprise the trainable parameters of Cθ:

θ = {W h,h,bh,W l,h,bl} ∪
⋃
q∈L
{W h,q,W q,h,bq}

Lastly, the gates are sampled from the output probabilities:

`pt ∼ B(lpt ) (9)

pqt ∼M(u
Pq
t ) (10)

upt =

{
1 if ∃q : p = pqt
0 otherwise

(11)

where lpt is the particular neuron in lt corresponding to
pathway p, pqt is the incoming pathway to layer q chosen
for associative recall, and B and M denote Bernoulli and
multinomial distributions, respectively. As described above,
each layer q only allows associative recall in one incoming
pathway at a time, so the set of multiplicative gates {upt }p∈Pq
will be “one-hot” for each q, as formalized in (11).

B. Training Episodes

The NVM-RL can manipulate its working memory layers
over the course of a training episode to emulate execution of
a computer program. We assume program inputs and outputs
take the form of sequences, where each sequence element is
a symbol in the alphabet A. Without loss of generality we
can denote the symbols 0, 1,..., K-1, with K = |A|. We
designate 0 as a special “delimiter” or “padding” symbol that
can surround meaningful symbols in the input and output.

As a concrete example, consider the task of swapping two
elements in a list. Given an input sequence 1,2, the NVM-
RL should produce a target output sequence 2,1. However,
we allow that one or more 0 symbols can be interspersed
throughout the sequences while the NVM-RL is performing its
computations. For example, the input sequence for the first five
time-steps could be [1,2,0,0,0]. This input is represented by
the corresponding patterns in a designated input layer, in:

vin0 = vin[1],vin1 = vin[2],vin2 = vin[0], ...

We use the environment E to stream in these values for vint
in (4), overwriting any intermediate activity v̂int produced
internally by (2). Two possible correct output sequences are
[0,0,0,2,1] and [0,0,2,0,1], while an incorrect example
output is [0,2,0,3,1]. The NVM-RL is responsible for pro-
ducing a correct output sequence in another designated layer
out. This layer gets set by the NVM-RL dynamics and is left
unchanged by the environment, i.e., voutt = v̂outt . The actual
output can then be compared with the target output by first
removing all occurrences of the delimiter symbol 0, and then
measuring sequence similarity. In this work we use a simple,
sparse “all or nothing” reward. The rewards at each time-step,
denoted rt, are all zero except possibly for the last time-step. If
the actual and target outputs match perfectly, then the reward
at the final time-step is 1; otherwise it is also 0.

A typical solution to the swap problem above would use
an additional register. Similarly, the NVM-RL can solve this

problem if it has another layer, say tmp, to serve as a
general-purpose register for temporary information storage.
If an association between vq[a] and vr[a] has already been
learned for each symbol a and each pair of layers q and r,
then a “register move” operation can be emulated by nothing
more than associative recall in the corresponding pathway.
To that end, we initialize these associations in each NVM-RL
pathway prior to training as shown in Algorithm 1. The set
of pathways can include auto-associative recurrent pathways
from each layer to itself, which are used to maintain the current
symbol in a layer as long as it is needed there. In other words,
rp = qp is possible for some p.

Algorithm 1 Associations for register moves
1: for p ∈ P do
2: Initialize W p

0 with all zero entries
3: for a ∈ A do
4: W p

0 ←W p
0 +H(W p

0 ,v
rp [a],vqp [a])

5: end for
6: end for

A generalization of swap beyond length 2 is reversing the
elements of a list, but this calls for a different approach. For
longer lists, it is preferable to emulate tape memory, in which
a read-write head can be incremented and decremented, and
contents can be written to or read from the head location. To
this end, we replace tmp with a new working memory layer m
that represents the current position of the read-write head. In
addition to the same auto-associative pathway as before, there
are two additional pathways from m to itself, named inc and
dec, each with a distinct weight matrix, used to increment
or decrement the head position, respectively. Prior to training,
these pathways learn associations between consecutive head
positions as appropriate, as shown in Algorithm 2 (since A
is finite, we use arithmetic modulo |A| for k ± 1). As a
result, head increments and decrements are nothing more than
associative recall in the corresponding pathways. With this
setup, if the current symbol in layer q is c (i.e., vqt = vq[c]),
and the current head location is k (i.e., vmt = vm[k]), then c
can be “written” to tape address k via associative learning in
the pathway p from m to q:

W p
t+1 = W p

t +H(W p
t ,v

q
t ,v

m
t ) (12)

Note that this need not happen prior to training: the controller
can “decide” to perform this operation during an episode
via (3), by emitting the appropriate gate value. Later in the
episode, if the head location is restored to position k, the
symbol c stored there can be retrieved by associative recall in
pathway p. Due to the anti-Hebbian term inH, this process can
be performed multiple times per episode (a tape location can
be overwritten with new contents multiple times if necessary).

C. Policy Gradient Ascent

The NVM-RL can be trained to maximize rewards using
recurrent policy gradients [14]. The state observation at time



Algorithm 2 Associations for tape-head movements
1: Initialize W p

0 with all zero entries, for p ∈ {inc,dec}
2: for k ∈ A do
3: W inc

0 ←W inc
0 +H(W inc

0 ,vm[k],vm[k + 1])
4: W dec

0 ←W dec
0 +H(W dec

0 ,vm[k],vm[k− 1])
5: end for

t is the set of working memory activities:

st = {vqt }q∈L (13)

The action at time t is the collection of gating decisions:

at = {pqt }q∈L ∪ {`
p
t }p∈P (14)

The probability of action at given all observations so far is
the stochastic policy π(at | s0, ..., st), which depends on the
probability distributions output by Cθ. The hidden state ht
encodes the history of state observations s0, ..., st. Likelihoods
of individual gate values are computed from the output of Cθ:

Pr(`pt |ht) =

{
lpt if `pt = 1

1− lpt if `pt = 0

Pr(pqt |ht) = u
pqt
t

Here u
pqt
t denotes the neuron in softmax layer uPqt correspond-

ing to the selected recall pathway pqt ∈ Pq. We generate each
gate value independently of the others, conditional on ht, so
the stochastic policy has the formula

π(at | s0, ..., st) =
∏
g∈at

Pr(g |ht), (15)

where at is viewed as the set in (14). The objective is to
maximize the expected net reward over all possible episodes:

max
θ

E

[∑
t

rt

]
(16)

which is optimized via gradient ascent. The gradient is esti-
mated from a sample of episodes. To reduce the variance of the
estimate, we use baselines and rewards-to-go [16]. The reward-
to-go at time t in episode e is Rt,e =

∑T
t′=t rt′,e, where T

is the duration of the episode and rt,e is the value of rt in
episode e. We use the average over all episodes as a time-
dependent baseline: bt =

∑
eRt,e/E, where E is the total

number of episodes. The resulting policy gradient estimate is:

∇θE[R0] ≈ 1

E

∑
t,e

∇θ log π(at,e | s0,e, ..., st,e)(Rt,e − bt)

(17)

where at,e and st,e are the actions and states at time t in
episode e, respectively. Note that R0 is the reward-to-go from
time 0, i.e., the net reward for an episode.2

2In this study, since we use a sparse reward where rt is zero except possibly
at the last time-step, the rewards-to-go Rt,e do not actually vary over time.
We use the more general formulation to cover both sparse and dense rewards.

For more challenging tasks, we found it useful to augment
the objective with an additional heuristic term to guide the
policy search. Specifically, we note that in many tasks, such
as swap, the proper gating sequence should not depend on the
actual list contents. In other words, the probability distributions
output by Cθ should be identical across episodes. We can
formalize this by minimizing the empirical variance in those
distributions:

D =
1

E

(∑
t,e

||lt,e − lt||2 +
∑
t,e,q

||uPqt,e − u
Pq
t ||2

)
(18)

where overbars denote averages over all episodes, and again
e indexes the episode. Minimizing this term is equivalent to
maximizing its negative in the objective function:

max
θ
f(θ) (19)

f(θ) =E[R0]− λD (20)

where λ is a hyper-parameter balancing expected reward vs.
the regularization term. We optimize f starting from random
initial parameters θ(0) and using basic gradient ascent:

θ(n+1) ← θ(n) + η∇θf(θ(n)) (21)

where learning rate η is another hyper-parameter. We call each
iteration of (21), which involves E episodes, an “epoch.”

III. COMPUTATIONAL EXPERIMENTS

We tested NVM-RL learning on multiple sequence process-
ing tasks of increasing difficulty. In each task, we used three
registers, as described above: in, out, and tmp (except tmp
is replaced with a read-write head layer m in the final task).
All tasks use an alphabet of size |A| = 10 (except in the final
task), a learning rate of η = 0.1, and sparse “all-or-nothing”
reward as described above. We found that this configuration
consistently worked well for most tasks we attempted.

Input sequence length L varied as appropriate to the task
and ranged from 3 to 6. We also varied E, the number of
episodes used to compute each gradient update, and N , the
number of neurons in each layer. Heuristically we chose larger
E and N for tasks that we perceived to be more challenging. In
some tasks we tried non-zero values for λ. We also made task-
specific restrictions on the set of pathways where associative
learning was allowed, based on prior knowledge of the task.

For training/testing data, we first enumerated the set of
all possible input sequences, and then randomly split that
set into 80% for training and 20% for testing. In each task
we performed 30 independent trials of policy search, each
time using a different random train/test split and random
initial controller parameters θ(0). In each epoch of each trial,
E input sequences were selected uniformly at random with
replacement from the 80% training set and fed through the
NVM-RL. The resulting NVM-RL actions and rewards were
used to compute the policy gradient update. After each update,
we also fed E random samples from the 20% test set through
the NVM-RL to track its performance on the test data (i.e.,
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Fig. 1. Rewards at each training epoch for the swap task, averaged over E
episodes. Each light grey curve is an independent trial, and the average over
all trials is shown in black. Top: Rewards on the training data, which were
used to compute the policy gradient updates. Bottom: Rewards on the test
data (measured at every epoch, but not used in the gradient computation).

generalization ability) during the learning process. But no test
data was used in the computation of the policy gradient.

We describe each task and its empirical performance in
the following sub-sections. Table I summarizes the hyper-
parameters used in each task, as well as approximate com-
puting time and space requirements. All experiments were
performed on an 8-core Intel i7 CPU with 32GB of RAM.
Automatic gradients were calculated with PyTorch [17] but
we did not make use of any GPUs. Using GPUs in future
work may improve the computation times in Table I.

TABLE I
EXPERIMENT CONFIGURATIONS

Task L E N λ Time∗ Space∗

Swap 3 100 32 0 4s 0.2GB
Echo 1-3 100 32 0 30s 0.2GB
Max 5 500 32 0 30s 0.2GB
Filter (w/ repeats) 5 1000 32 0 1.5m 0.2GB
Filter (w/o repeats) 5 1000 32 0 1m 0.2GB
Key-value lookup 6 5000 64 0.5 27m 2.7GB
Reverse 4 5000 64 0.5 19m 1.7GB
∗Approximate time and memory used per trial, averaged over 30 trials.

A. Swap

As a starting point, we tested the NVM-RL on a small
swap task, similar to the example above. After the fast-weight
initialization prior to training, we disabled associative learning
during the episodes, so that the only actions available dealt
with associative recall. For this initial task we limited the
episode duration to 3 time-steps. Fig. 1 shows the learning
curves from 30 independent trials. In all cases, learning con-
verged to essentially perfect success rate on both training and
testing data. Test performance is slightly lower than training
performance on average, but the difference is negligible.

B. Delayed Echo

Next, we trained the NVM-RL to echo an input symbol after
a delay. As with swap, we disabled associative learning in this
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Fig. 2. Learning curves for the echo task. Each light grey curve is a separate
trial. Darker grey curves are the average over 30 trials at each episode duration
(T), progressing from upper left (T=3) to the right and down (T=6). The top
and bottom panels show rewards on training and testing data, respectively. The
latter were measured every epoch but excluded from gradient computation.

task after the initial symbol associations were formed. The
input sequence was all 0 except for one random time-step
in the first half of the episode (the “input window”) when
a non-delimiter symbol was inserted. The target output was
also all 0, except for echoing the same non-delimiter symbol
exactly once in the second half of the episode (the “output
window”). The episode duration T is the total number of time-
steps for the episode including both input and output windows.
We used input windows ranging from 1 to 3 time-steps and
corresponding episode durations from 3 to 6 time-steps. Fig. 2
shows the learning curves for all trials and episode durations.
On average, convergence to the global optimum is very rapid
for shorter episode durations. For longer episodes, convergence
was slower, but in all cases the task was solved or nearly
solved within 200 epochs. Fig. 3 shows the distribution of
rewards on the test data, grouped by episode duration. Early
in the training process (epoch 50), generalization performance
is clearly better on the shorter duration variants, but by the
end (epoch 200), all averages are near 1.0.

C. Filtering

Both swap and echo can be solved with simple algorithms
that ignore the input symbols and are only concerned with
timing. Here we turn to list filtering tasks, which require the
NVM-RL to exhibit branching behavior depending on which
input symbols are encountered. For these tasks we used a
fixed input length of 5. The first task was to extract the
maximum element from a list, where each element was drawn
from A with replacement. A concept of numeric ordering
is not explicitly built in to the NVM-RL (each symbol is
ultimately represented by a random activity pattern), but we
hypothesized that the controller could learn to classify pair-
wise inequalities drawn from a finite set as “true” or “false”
and branch accordingly. For this task an all-or-nothing reward
of 1 was given at the last time-step of the episode when the
output symbol was indeed the maximum of the input sequence.
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Fig. 3. Box plots of average reward on the echo task testing data, early (top)
and late (bottom) in the training process. Note the different y-axis scales.

The second variant of this task was to filter out all list elements
greater than a fixed cut-off of 4. For this second variant we
tried list elements drawn both with and without replacement.
For reward calculations we used output symbols produced
during the entire episode (including before the input sequence
was finished). An all-or-nothing reward of 1 was given when
the output sequence contained only the elements greater than
4, in the same order and multiplicity as they appeared in the
input. During this output sequence, the delimiter 0 was also
allowed as “padding” in between filtered elements without
incurring a reward penalty.

Figure 4 shows the test set rewards for each variant of the
filter task. In most cases the NVM-RL learns to generalize with
near-perfect success rate, although more training epochs are
required for the cut-off variants than the max variant, and there
are some outlier trials that do not learn to perform effectively
within the 300 epoch training window. We also confirm that
the learning curves become smoother when more episodes are
used at each epoch, as one might expect since the gradient
estimate becomes more accurate.

D. Key-Value Lookup

All tasks described so far are “online” list processing
algorithms that can be solved solely with associative recall
and the fast weight initializations before the episode begins.
We now turn to tasks that require fast weight changes during
the episode. In the “key-value lookup” task, the NVM-RL must
store key-value pairs in its working memory, and later retrieve
one of the values when prompted with the corresponding key.
For this experiment, in addition to the delimiter 0, we allocated
5 symbols as possible keys and another 4 as possible values.
In each episode, two distinct keys and two distinct values were
randomly selected. All symbols are ultimately represented
by random activity patterns, so for the sake of clarity and
without loss of generality we use a and b instead of numeric
symbols to denote keys in this task. In each episode, the keys
were interleaved with their corresponding values in the input
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Fig. 4. Generalization on the list filtering tasks. Top: Producing the maximum
list element. Middle: Producing all elements greater than 4 (no repeated input
elements). Bottom: Like the previous, but with repeats in the input sequence.
Note the different x-axis scale in the top panel for the max task.

sequence, followed by a prompt key and then the delimiter 0.
The value associated with the prompt was the target output.
For example, with the input [b,1,a,2,b,0], the NVM-RL
should produce an output of 1 at the last step, since b was
initially paired with 1 and then used as the prompt. An all-
or-nothing reward of 1 was given when the output symbol
at the last time-step of the episode was correct. Just for this
task, we enabled associative learning in one pathway from
tmp to out, so that the NVM-RL could store a key-value
pair by moving the key into tmp, the value into out, and
then performing associative learning between them. We also
allowed an output window of three time-steps after the prompt
had been presented. To receive a reward, the NVM-RL had to
output the correct value in any one of those three time-steps,
and the delimiter 0 in the other two. This was intended to give
the NVM-RL more flexibility in determining its algorithmic
strategy. Lastly, to deal with the comparatively long episode
duration, we used relu in place of tanh in (6).

Fig. 5 shows the results of training the NVM-RL on key-
value lookup. In the interest of time, we only measured
generalization performance after training was finished in this
experiment. Unlike the previous tasks, we found that this one
was more challenging and in general the NVM-RL was not
able to solve it perfectly, although performance was usually
still much better than if outputs had been selected randomly.
On inspection we found that the NVM-RL usually converged to
a sub-optimal strategy, such as always echoing the value from
the second pair, which will be correct half of the time. We also
found that the NVM-RL was more susceptible to overfitting
than in previous tasks.
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Fig. 5. Performance on key-value lookup. Top: Learning curves on the
training data during policy ascent. Bottom: Histogram of final performance
after training was complete on both the training data and testing data.

E. Reverse

Although key-value lookup involves fast associative learn-
ing during an episode, it does not require the tape-based
memory emulation described earlier, which is important to
make the NVM-RL truly relevant to program induction. To
this end, the final task we considered was list reversal. For
this task, a 0-terminated sequence of symbols was presented
to the NVM-RL, and after presentation was complete, it was
expected to produce a reversed version of that sequence as
output. Similar to key-value lookup, we allowed the delimiter
0 to appear in an output window that was one time-step longer
than necessary, to provide the NVM-RL more flexibility in its
solution. The sparse all-or-nothing reward was given if the
NVM-RL output during the output window (after removing
occurrences of 0) contained the entire input list contents
in reverse order and nothing else. We used an architectural
configuration similar to key-value lookup, but instead of a
normal register tmp, we used a read-write head layer m, with
two additional auto-associative pathways inc and dec, as
described earlier. We limited list length to 4.

Since key-value lookup had proved rather challenging for a
more generic NVM-RL configuration, we also made certain
modifications to constrain the search space based on our
prior knowledge of the task, to see if performance improved.
Specifically, we limited the size of the address space to equal
the list length (i.e., 4), and also limited |A| to 4 so that the
same symbols 0 through 3 could be conceptually “typecasted”
as either memory addresses or list contents. The input list
contents were drawn with replacement from the symbols 1
through 3. We also removed some pathways that we knew
were not necessary to solve the task (such as the ones from
other layers to inp), so that the set of choices available to the
controller at each time-step was smaller.
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Fig. 6. Performance on list reversal. Top: Learning curves on the training data
during policy ascent. Bottom: Histogram of final performance after training
was complete on both the training data and testing data.

Fig. 6 shows the results of 30 independent policy search
trials. Although the NVM-RL frequently failed to learn the task
perfectly, it sometimes reached perfect success rate on both
training and testing data, and was less susceptible to overfitting
than key-value lookup.

We also used this task to explore the effect of regularization
term D (see (18) and (20)), i.e. the controller output distri-
bution variance, in more depth. Fig. 7 shows the behavior
of D during training for all 30 trials, and compares it with
average rewards in three representative examples. In many
cases (although not always), rapid transitions in reward from
near-zero to near-one were accompanied by rapid transitions
in distribution variance down to near-zero. This effect is also
visualized in Fig. 8, where we show the per-epoch changes
in reward vs. per-epoch changes in D. Small changes in
reward exhibit little correlation with changes in D, but large
changes are negatively correlated. Based on these results, we
hypothesize that including D in the optimization can gradually
destabilize intermediate solutions that have settled at sub-
optimal reward plateaus, sometimes leading to higher-reward
solutions by the end of the training process. However, Fig. 8
contains too few datapoints with large |∆E[R0]| for a definitive
conclusion, and more work is needed to test this hypothesis.

IV. DISCUSSION

We have shown that it is possible to use fast weights
and recurrent policy gradients with sparse rewards to train
the NVM-RL, a purely neural program induction architecture.
We explained how the NVM-RL emulates both register- and
tape-based memory, and showed empirically that it can learn
to solve a number of algorithmic list processing tasks. The
significance of these results is that RL-based NPI in a purely
neural architecture may have increased relevance to program



0 100 200 300 400 500
0.000

0.025D
Distribution variance

Avg. of 30 trials

0 100 200 300 400 500
0

1

Tr
ia

l 8 �[R0] D/max(D)

0 100 200 300 400 500
0

1

Tr
ia

l 2
7 �[R0] D/max(D)

0 100 200 300 400 500
Epoch

0

1

Tr
ia

l 2
0 �[R0] D/max(D)

Fig. 7. Top: Distribution variance D during list reversal training for each trial
(light grey) and averaged over all trials (black). Others: Three representative
learning curves (average training data reward, an empirical estimate of E[R0]),
superimposed on the corresponding distribution variance (D) at each epoch.
For easier comparison with E[R0], the D values were rescaled to a [0, 1]
range by dividing by the maximum value over the course of training.
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Fig. 8. Changes in empirical average training reward from one epoch to the
next (∆E[R0]) versus changes in distribution variance from one epoch to the
next (∆D). The datapoints are collected from all epochs in all trials of list
reversal.

induction in biological organisms, and it opens up new pos-
sibilities for solving general, high-level cognitive tasks with
artificial neural systems. Based on these results, RL may be
more competitive than previously thought, compared to the
supervised learning paradigm more common in NPI. Using RL
for NPI may afford the learning system with more flexibility
in determining an algorithmic solution strategy.

Although our results are encouraging, in that learning al-
ways worked very effectively for the simplest tasks that we
studied, there are many avenues for improvement. Future work

should focus on larger problem instances and test whether
an NVM-RL trained on one sequence length can generalize
to other lengths. In addition, we found that the NVM-RL could
not consistently achieve perfect success on the most complex
tasks we attempted (key-value lookup and list reversal). Future
work should focus on more modern and sophisticated RL
methods, such as advantage function approximation and trust-
region policy optimization [18], and reduce the reliance on
task-specific architectural constraints like those imposed for
list reversal. Along those lines, it would be interesting to derive
or learn λ from the properties of a dataset rather than setting
it heuristically. We are hopeful that future versions of the
NVM-RL approach will use less task-specific engineering, scale
to larger problem instances, and take further steps towards
modeling program induction in biological systems.
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