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Abstract—This paper deals with the detection of mu-
suppression from electroencephalographic (EEG) signals in
brain-computer interface (BCI). For this purpose, an efficient
algorithm is proposed based on a statistical model and a linear
classifier. Precisely, the generalized extreme value distribution
(GEV) is proposed to represent the power spectrum density
of the EEG signal in the central motor cortex. The associated
three parameters are estimated using the maximum likelihood
method. Based on these parameters, a simple and efficient
linear classifier was designed to classify three types of events:
imagery, movement, and resting. Preliminary results show that
the proposed statistical model can be used in order to detect
precisely the mu-suppression and distinguish different EEG
events, with very good classification accuracy.

Index Terms—Motor imagery, Mu-suppression, Generalized
extreme value, Electroencephalography, Brain-computer inter-
face

I. INTRODUCTION

Electroencephalograms (EEG) are a non-invasive longstan-
ding medical modality that measures the brain’s activity by
recording the electromagnetic field at the scalp. Since its
creation, EEG has played a fundamental role in understanding
several major neurological disorders, by analyzing their ma-
nifestation into brain rhythms. For example, the study of de-
ceases such as depression, age-related cognitive deterioration,
epilepsy, anxiety disorders and subnormal brain development
in children have benefited from this technology. The typical
brain rhythms are distinguished by their different frequency
ranges, called delta (δ) within the range 0.5 to 4Hz, theta (θ)
within the range 4 to 7.5Hz, alpha (α) within the range 8
to 13Hz, beta (β) within the range 14 to 30Hz, and gamma
(γ) within the range 30 to 64Hz. In this study, we focus
on the brain rhythm called mu (µ) within the range 7.5 to
11.5Hz. Mu-waves are considered to emerge naturally and
may convey information about what the functioning of brain
hierarchies [1]. According to [2], there exist three historical
theoretical hypotheses to explaining the mu-brain rhythm: i)
the neuronal hyperexcitability related to the rolandic cortex;
ii) the superficial cortical inhibition explaining its suppression
with motor activity; and iii) the somatosensory cortical idling,

related to the afference-dependent phenomenon. This study
considers the second hypothesis, as the mu-rhythm relates
strongly to the sensorimotor cortex and associated areas, in
particular, the changes in the bilateral brain activities subject
to physical and imaginary movements [3]. Based on the same
consideration, this rhythm has been studied in brain-computer
interface (BCI) [4], [5]. The underlying idea of BCI is to
supply communication and control of devices through the
monitoring of brain activity, by using EEG channels.

The generalized extreme value (GEV) distribution is a
family that includes continuous probability distributions ob-
tained as the limit of maxima of a sequence of independent and
identically distributed random variables [6]. This distribution
has been used in [7] to detect interictal spikes in epileptic EEG
signals, using time-frequency properties. The underlying idea
was to identify strong outliers using GEV to model normalized
EEG data. In [8], showed that both EEG and MEG signals
can be correctly modeled using GEV distribution. Luca et
al. [9] used an unsupervised method to detect hyper-motor
epileptic seizures, where GEV was applied for extracting
maxima in EEG signals, using multivariate kernel density. In
[10], GEV was used to assess characteristics of Alzheimer’s
disease using EEG signals, where the variance of the power
of each frequency were used to derive an index of neuronal
abnormality. For applications in other biomedical signals see
[11].

The purpose of this paper is to present a novel and rapid
algorithm for detecting mu-suppression in EEG signals by
using the generalized extreme value distribution. The under-
lying idea is to estimate the maximum and minimum values
of the signal in the central motor cortex using statistical
modeling, for motor imagery events, corresponding to mu-
suppression. To the best of our knowledge, this statistical
model has not been investigated yet for detecting the mu-
suppression in EEG signals, despite the extensive study of
this phenomenon [12]–[14]. Several other methods have been
proposed in the literature to estimate mu-suppression in motor
imagery, see [15], [16] for a comprehensive state-of-the-art.
Table I summarizes the most common methods, such as
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independent components analysis, common spatial patterns,
linear discriminant analysis, and the support vector machines.

Method Features Electrodes Classf. Perf. Ref.
GEV from
periodogram

GEV parame-
ters

C5, C3,
C1, Cz,
C2, C4,
C6

LDA 100% our

AAR + BP Coefficients
from AAR
and BP

C3, Cz LDA 80%
[17]

RFE Welch method
from RFE

C1, C2,
C3, C4,
FC3,
FC4,
CP3,
CP4

SVM 87%
[18]

ICA vs. CSP log-
transformed
normalized
variances

C3,
C4, Cz,
CP1,
CP2,
CPz, Fz,
Pz

LDA 84%
[19]

CSP Eigenvalue
spectrum

multi-
channels

LDA 84%
[20]

EMD Periodograms
fluctuations
from intrinsic
mode
functions and
the Hilbert
evelope

C3, C4 NR NR
[21]

SCSP Variance of
the spatially
filtered signals

C3, C4,
Cz

SVM 94%
[22]

ICA time-
frequency
average

multi-
channels

LAT 90%
[16]

TABLE I
STATE-OF-THE-ART METHODS TO THE MU-SUPPRESSION ESTIMATION IN

EEG SIGNALS, COMPARED IN TERMS CLASSIFICATION TECHNIQUES,
FEATURES, AND REPORTED PERFORMANCE. ABBREVIATIONS ARE AS

FOLLOWS: ADAPTIVE AUTOREGRESSIVE MODEL (AAR), BAND POWER
ESTIMATION (BP), RECURSIVE FEATURE ELIMINATION (RFE),

INDEPENDENT COMPONENTS ANALYSIS (ICA), COMMON SPATIAL
PATTERNS (CSP), EMPIRICAL MODE DECOMPOSITION (EMD), SPARSE
COMMON SPATIAL PATTERN (SCSP), LINEAR DISCRIMINANT ANALYSIS

(LDA), SUPPORT VECTOR MACHINE (SVM), ACCORDING TO THE
LATENCY (LAT), NOT REPORTED (NR). FIGURE 1(A) SHOWS CHANNEL

LOCATIONS. NOTE THAT OUR METHOD (HIGHLIGHTED IN RED) HAD
EXCELLENT ACCURACY RESULTS.

The remainder of the paper is organized as follows. In
Section II-B, the generalized extreme value distribution is pre-
sented. Section II describes the database used and the proposed
methodology. Experimentation using the EEG dataset of motor
imagery from [23] is presented in Section III and the results
discussed. Finally, Section IV draws conclusions and future
works.

II. MATERIALS AND METHODS

A. Motor Imagery database

A motor imagery EEG database of the left and right hands
taken from [23] was used. EEG data of 52 healthy subjects
were recorded using a 64 channel montage based on the
international 10-10 system, with a 512 Hz sampling rate. In
this database, 3 events were taken into account. First, non-task,

with the motor cortex, data was recorded in order to under-
stand each subject’s performance related to their eye blinking,
eyeball up/down movement, eyeball left/right movement, head
movement, jaw clenching, and resting state. Second, real right
and left-hand movement was measured, where subjects had
to follow certain established patterns. Finally, motor imagery
data was computed when asking subjects to imagine hand
movement. The signals were preprocessed with a high pass
and low pass Butterworth filter of order 4th, having an 8-
30 Hz bandpass. Data was validated by using the percentage
of bad trials, event-related desynchronization/synchronization
(ERD/ERS) analysis, and classification analysis. The central
motor cortex was selected for this study, see Fig. 1(a).

(a) Central motor cortex (b) Channel Cz

Fig. 1. Figure (a) shows the central motor cortex channels
(C5,C3,C1,Cz,C2,C4,C6) following the international 10-10 system.
Figure (b) shows an example of the central channel for each type of event.
Imagery event (grey) having the highest amplitude, movement event (yellow)
with a medium amplitude, and resting event (blue) corresponds to the lower
amplitude. Note that, imagery signals and movement signals may have very
close amplitudes.

B. Statistical modeling

We propose to model the periodogram power spectral den-
sity of the EEG data using the generalized extreme value
distribution (GEV). The choice of this distribution is motivated
by its flexibility. It is a family that combines the Gumbel (type
I), Fréchet (type II) and Weibull (type III) maximum extreme
value distributions through three parameters, namely location
(µ ∈ R), scale (σ > 0), and shape (ξ ∈ R ). Its probability
density function (PDF) is given by

f(x, µ, σ, ξ) =
1

σ
t(x)ξ+1 exp−t(x) (1)

where

t(x) =

{
(1 + ξ(x−µσ ))−1/ξ , if ξ 6= 0

exp
x−µ
σ , if ξ = 0

(2)

ξ determines the domain of the PDF as follows:

x ∈
[
µ− σ
ξ

,+∞
)

, when ξ > 0, type II (3)

x ∈ (−∞,+∞), when ξ = 0, type I

x ∈
(
−∞, µ− σ

ξ

]
, when ξ < 0, type III



In order to fit the GEV distribution to the data, we calcu-
lated the parameters µ and σ using the maximum likelihood
estimators [24]

µ̂ = −σ̂ log

(
1

n

n∑
i=1

exp
Xi
σ̂

)
(4)

σ̂ = X̄ −
∑n
i=1Xi exp−Xi

σ̂∑n
i=1 exp−Xi

σ̂

(5)

The cumulative density function (CDF) is given by

f(x, µ, σ, ξ) = exp−t(x) (6)

for x ∈ (2) and (3).
We refer the reader to [25] for a comprehensive treatment of

the mathematical properties of the extreme value distribution.

C. Proposed methodology

Let X ∈ RN×M denote the matrix of M EEG signals xm ∈
RN×1 measured simultaneously on different channels related
to the central motor cortex and at N discrete-time instants.
The proposed methodology is composed of three stages. In
the first-stage, the periodogram power spectral density (PSD)
is estimated from the EEG signal on the mu-brain rhythm,
in steps of half the sampling frequency without overlapping
using a symmetric Hamming window

P (f) =
∆t

N

∣∣∣∣∣
N−1∑
n=0

xm,n exp−2jπfn h(n)

∣∣∣∣∣
2

,
1

2
∆t < f ≤ 1

2
∆t

(7)

where ∆t is the sampling interval, 1 ≤ m ≤ 7 is related
to the seven channels in the central motor cortex (C5, C3,
C1, Cz, C2, C4, C6) and the Hamming window defined as
h(n) = 0.54− 0.46 cos

(
2π n

N

)
, 0 ≤ n ≤ N .

In the second-stage, the generalized extreme value distribu-
tion is fitted to the PSD of each event (imagery, movement and
resting), obtaining the corresponding parameters (µ, σ and ξ):

Ii = [µi, σi, ξi] (8)
Mi = [µi, σi, ξi] (9)
Ri = [µi, σi, ξi] (10)

Finally in the third stage, the vectors (8),(9) and (10) are
classified using a linear classifier derived from a linear dis-
criminant analysis (LDA) [26], [27]. Three classes {0, 1,−1}
are possible, respectively for imagery, movement and resting.

III. RESULTS AND DISCUSSION

Figures 2, 3, and 4 show the Goodness-of-fit measures for
the probability density function (PDF) and the cumulative
distribution density (CDF), and the CDF error for the central
motor cortex data. These measures are clearly significant. This
is corroborated by the CDFs errors (−0.05 ≤ CDF error ≤
0.05), and the p-values ≤ 0.05 using the Kolmogorov-Smirnov
(KS) score, where the imagery events exhibit a p = 0.0021,
the movement events a p = 0.0094, and the resting events a
p = 1.9847e− 04.

Tables II to IV show the mean values, with their 95% con-
fidence intervals, for the three GEV parameters corresponding
to the different events. It appears clearly that the proposed
statistical model allows for a threshold approach to detect the
mu-suppression by distinguishing imagery, from movement
and resting events. For illustration, in EEG data shown in
Figure 1(b), the imagery event has the highest amplitude, the
movement event has the medium amplitude, and the resting
event has a lower amplitude. While in Figure 5, showing
averages from Table II, the scale (σ) and the location (µ) para-
meters have the highest amplitude for resting state, the medium
amplitude for imagery event, and the lower amplitude for
movement event. Whereas, the shape (ξ) parameter shows the
movement event with the highest amplitude, the resting event
with the medium amplitude and the imagery state with the
lower amplitude. The combination of these different thresholds
makes it possible to use the three parameters, estimated by
fitting the GEV distribution to the periodogram, for detecting
the mu-suppression in motor imagery EEG signals.
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Fig. 2. Mu-band in imagery event
shape (ξ)

Ima 0.09 [-0.21,0.38]
Mov 0.26 [-0.06,0.58]
Res 0.15 [-0.26,0.56]

TABLE II
MEAN VALUES OF THE SHAPE PARAMETER OF THE GEV ADJUSTED TO

THE PERIODOGRAM OF MU-BAND, WITH THE 95% CONFIDENCE
INTERVALS.

To asses the quality of the proposed method for mu-band
suppression, we adopted a supervised classification approach
with 30 thousand randomized signals for training and testing
from the motor imagery database with the 3 GEV features for
each vector as follows:

• θ1 = [µ1, σ1, ξ1] 10 thousand randomized imagery events.
• θ0 = [µ0, σ0, ξ0] 10 thousand randomized movement

events.
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Fig. 3. Mu-band in movement event
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(b) Resting

Fig. 4. Mu-band in resting event

• θ−1 = [µ−1, σ−1, ξ−1] 10 thousand randomized resting
events.

A linear classifier derived from the linear discriminant
analysis (LDA) was designed to distinguish between the diffe-
rent events [θ1, θ0, θ−1]. Note that, the LDA computational
complexity is lower with respect to support vector machines

scale (σ)
Ima 143275.14 [110712.36, 185415.39]
Mov 31104.66 [23545.71, 41090.27]
Res 1273712.63 [945447.56, 1715953.13]

TABLE III
MEAN VALUES OF THE SCALE PARAMETER OF THE GEV ADJUSTED TO

THE PERIODOGRAM OF MU-BAND, WITH THE 95% CONFIDENCE
INTERVALS

.

location (µ)
Ima 196975.08 [149574.66, 244375.50]
Mov 33551.02 [23148.30, 43953.76]
Res 1241060.75 [778886.63, 1703234.88]

TABLE IV
MEAN VALUES OF THE LOCATION PARAMETER OF THE GEV ADJUSTED

TO THE PERIODOGRAM OF MU-BAND, WITH THE 95% CONFIDENCE
INTERVALS

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.15

0.2

0.25

Shape ( ) average

Imagery

Movement

Resting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
10

5 Scale ( ) average

Imagery
Movement

Resting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
10

5 Location ( ) average

Imagery

Movement

Resting

Fig. 5. Plot of the mean values from Tables II to IV. Note that, these
parameters allow the identification of imagery events (grey), the movement
events (yellow), and the resting events (blue) using a threshold approach.

(SVM), which is one of the most used classifiers. The LDA
computational complexity is O(mn + mt + nt), where m
is the number of samples, n is the number of features, and
t = min(m,n). While SVM complexity is O(n2) or O(n3)
depending on the parametrization, with n being the size of
the dataset, which is generally large when EEG signals are
analyzing [27].

Due to the big data volume generated, a 20-fold cross-
validation technique was used for training and testing, with
10 times repetition to ensure no bias in the partitioning
and to avoid imbalanced data [28]. Figure 6, shows the
scatter distribution of the different randomized events, namely
imagery, movement, and resting. It is interesting to note the
separability of the classes. This justifies evidently the use
of linear classification to distinguish events. The classifier
achieves a 100% sensitivity (True positive rate) and specificity
(True false rate) for mu-suppression detection.

IV. CONCLUSIONS

This work presented a study of detecting mu-suppression
in EEG signals, based on the generalized extreme value
(GEV) distribution. The three parameters of this distribution
were estimated from its periodogram power spectral density
for three events: imagery, movement, and resting. A linear



Fig. 6. Scatter plot example with randomized data. It is clearly possible to
use a linear classifier as imagery events (grey), the movement events (yellow),
and the resting events (blue) are well separated in the GEV parameter space.

classifier derived from the linear discriminant analysis (LDA)
was designed to distinguish between event types using these
parameters. The performance of the proposed method was
evaluated on a real dataset from 52 subjects achieving 100%
accuracy. In addition to its performance, an advantage of this
method is its low computational cost compared to existing
methods. These good results have the potential to shed new
light on mu-suppression detection in motor imagery EEG
signals in the central motor cortex.

The noise and artifacts were not taken into consideration in
this work, which constitutes its main limitation. Future work
will focus on the study of the noise and artifacts in order to
make the method applicable in real-time. A large scale testing
campaign will also be undertaken with other databases and
other possible channel locations with the idea of using the
least amount of channels possible.
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