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Abstract—In this paper, we propose a small-footprint wake-
up-word speech recognition (WUWSR) system with two stages
to recognize a two-syllable wake-up word. In the first stage, con-
volution neural network (CNN) is trained to predict the posterior
probability of context-dependent state. Thus a wake-up-word is
detected according to the confidence score obtained by dynamic
programming. In the second stage, we cascade bidirectional long
short-term memory network (LSTM), convolutional modules and
deep feed-forward network (BLCDNN) successively to verify
the detection. The first stage quickly filters out speech without
wake-up word, and the second stage refines the detection. In
addition, without the intervention of any decoding modules, the
proposed system can guarantee low latency. The experimental
results demonstrate the effectiveness of this method. Our system,
named CNN-BLCDNN, reaches high accuracy and maintains low
false alarm rate.

Index Terms—wake-up word speech recognition, human-
computer interaction, deep neural network.

I. INTRODUCTION

Systems that can recognize the specific word and initiate
voice input are facing increasingly more demands. This kind
of systems are supposed to reach high accuracies with low
latency and low computational consumption. WUWSR system
provides a practical solution to this issue. In an audio stream,
WUWSR system retrieves and identifies the wake-up words in
the speech, rejects words outside the wake-up-word vocabulary
and understands the content.

Researchers contribute considerable efforts to WUWSR
system. Compact WUWSR system adopts a template matching
algorithm with distance-based scores [1]. [2] treats the con-
sistency of the spatial eigenspace formed by speech source at
different frequencies and the resonant curve similarities of the
wake-up words as features, then detects wake-up words by a
Bayes risk detector.

Recently, keyword spotting-based methods with deep mod-
els have been reported: (1). [3], [4], where wake-up words
are set as keywords, uses deep feed-forward network (DNN)
and CNN to build systems. Without constructing lattice for
decoding, these systems can guarantee low latency. Though
DNNs predict keywords or sub-keywords directly, they fail
to model context influence. Besides, these approaches lack
flexibility. Retraining is required when keyword sets alter;
(2). A typical exemplar-based keyword spotting method is
proposed in [5], where LSTM-based feature extractor converts

speech with keywords and testing speech to fixed-length tem-
plates and testing feature vectors respectively. Finally, it makes
decisions based on the differences between the templates and
testing vectors. This method can identify specific speakers.
[6] investigates LSTM-based feature extractor by adopting
different model units and two dynamic time warping (DTW)
approaches. The methods above are based on template match-
ing. Though they have low computational complexities and
are easy to be deployed on embedded devices, the accuracy is
limited. There are also some methods based on speech recogni-
tion framework. [7], [8] reveal the effects of different features
and devote them to WUWSR system to promote performance.
An end-to-end DNN system, a connectionist temporal clas-
sification framework, is transferred to spot wake-up words
[9]. Then a refinement step is applied to updating parameters.
A DNN-based WUWSR system with two-stage detection is
proposed in [10]. This method uses deep acoustic model and
a customized decoder to recognize wake-up words. Support
vector machine (SVM) works as the subsequent classifier. In
paper [11], LSTM is used to model sequential information.
Besides, the normalization method and the dynamic search
enable the network can detect and recognize multiple wake-
up words and be run on real time. [12] modifies the original
DTW to generate a gray scale image. A CNN is trained on
these images to classify the presence or absence of keyword.
Paper [13] combines DTW and CNNs to develop an ASR-free
keyword spotter.

There exists massive speech without wake-up words in gen-
eral environments, which are constantly collected by receivers.
It tends to cause a lot of false alarm (FA), which means
frequent wrong activations. However, manual reductions of
these undesired activations may omit useful speech containing
wake-up words. It is necessary to hold high accuracies and low
FA rates. Simple systems are hard to meet these requirements,
while sophisticated models with high accuracies cause delay
easily because of their heavy loads and high computational
consumptions.

LSTM-based WUWSR [11] has high model complexity
and poor forward propagation efficiency. Besides, in the first
stage of [10], DNN fails to model frequency variations. In
the second stage, SVM classifier has limited generalization
ability because of the hand-designed features. Most products
function normally under the ≥ 3-syllable words condition,
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Fig. 1. The detailed architecture and pipeline of two-stage-based WUWSR.

but users tend to pronounce simple orders like 2-syllable
wake-up words. Due to the more frequent homophony, the
implement of 2-syllable supported systems is far more difficult
than ≥ 3-syllable circumstances. Thus, we build a novel two-
stage WUWSR system that can recognize two-syllable words.
The aim of our first stage is to quickly detect the wake-up
words by using a lightweight model. In this stage, most speech
without wake-up words is screened out. In the second stage,
the detected speech is further verified, and we predict whether
the speech contains a certain wake-up word or not. This stage
can markedly reduce FA while holding high accuracies.

From the statistics collected by smart devices less than
10% of signals collected by devices contain wake-up words.
Because most speech filtered out by the first stage contain no
wake-up word, the second stage has no need to work in most
cases. Thus our strategy can achieve low computational cost
while ensuring good performances. The detailed structure of
the proposed two-stage strategy-based WUWSR is depicted
in Figure 1. Specifically, in the first stage, a CNN is trained
to predict the posterior probability of context-dependent state.
Then dynamic programming produces confidence score. The
wake-up word is recognized when corresponding confidence
score exceeds the predefined threshold. Moreover, phonet-
ic knowledge is integrated with model-based classification
method to detect wake-up word. The speech segment which
passes the first stage will be sent to the next stage. Then
BLCDNN is utilized to determine whether this segment is a
wake-up word. Otherwise, it will be omitted and the detect
process will continue to the next speech segment.

Compared with CNN-based baseline, CNN-BLCDNN
achieves an 83.44% relative FA rate decrease under the same
operating point, which indicates that BLCDNN can effectively
reduce FA. The performance of the overall system is measured
by equal error rate (EER). For EER, compared with the
baseline, our CNN achieves a 15.94% relative improvement.
By combining CNN and BLCDNN, the best WUWSR sys-
tem can achieve a 69.93% relative improvement over DNN-

based system and a 31.40% relative improvement over DNN-
BLCDNN.

The rest of this paper is organized as below. Section II
introduces the model and modules utilized in the first stage.
Section III introduces the model used in the second stage. Data
preparation and experimental setup are described in Section
IV, while the results of our experiment are presented in Section
V. Finally, Section VI gives conclusions and discussions.

II. CNN-BASED DETECTION STAGE

The first stage can be divided into three sub-modules:
feature extraction module, deep neural network module and
dynamic programming search module: Feature extraction mod-
ule (in Section IV-B) converts original signals into features;
deep neural network module receives features and outputs the
posterior probability of each frame; dynamic programming
search module converts posterior probabilities to confidence
score. A wake-up word is obtained when the confidence score
exceeds a threshold.

A. Deep neural network module

The deep neural network works as conventional acoustic
models. We firstly train a GMM-HMM system, and the
training labels are context-depend HMM states.

In this stage, we are more interested in rapidly selecting
speech that contains a wake-up word from abundant voice
input from the environment. Besides, our model needs to be
small-footprint and has low-computing cost. Therefore, CNN
is applied to the acoustic model in the first stage.

Convolutional layers are good at modeling frequency vari-
ations [14]. Some acoustic variations can be effectively nor-
malized and the resultant feature representation may be im-
mune to speaker variations, colored background and channel
noises. Besides, filters that work on local frequency region
can efficiently represent local structures and properly describe
their combinations, which contribute to classifications. Since
the output nodes display the tied-triphone states, the number
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Fig. 2. Diagram of dynamic programming search

is far more than the number of hidden nodes, which means
the output layer has more parameters than others. In order to
further compress the model while maintaining performance,
low-rank matrix factorization [15] is applied to the output
layer.

Our CNN occupies 5 convolutional layers and 3 fully-
connected (FC) layers. In (inChannel, outChannel, kernelW,
kernelH) format, the convolutional layers line up by (1, 4, 5,
5)-, (4, 4, 3, 3)-, (4, 8, 5, 5)-, (8, 8, 3, 3)- and (8, 8, 1, 1)-
convolution layer from shallow to deep, and have no pooling
and share 1 stride. The FC layers have 3 layers with 512, 128,
5191 nodes respectively. ReLU works as the activation units,
and layernorm [16] is adopted to further promote performance.

B. Dynamic programming search module

Dynamic programming search (DPS) module is applied to
converting posterior probability into confidence score. A wake-
up word is recognized if its confidence score exceeds the
predefined threshold.

In this work, wake-up word is firstly converted to state
sequence using GMM-HMM alignment. Different wake-up
words can be represented by different state sequences. Sec-
ondly, state sequences are used to build DPS graphs. For
convenience, we describe the following computation under
single-wake-up-word case. Thirdly, DPS module processes
speech in real time, thus the graph is built in real time. The
posterior probability for each frame is appended to DPS graph
in chronological order. A DPS graph is shown in Figure 2. The
ordinate of the graph represents the state sequence in order
and the abscissa represents the frame chronologically. In this
experiment, wake-up word is two-syllable, mostly covering
15-40 frames. Therefore, the graph is created from the start
frame forwarding to 15-40 frames, with a total of 25 graphs
constructed synchronously for one time. For each involved
graph, we operate dynamic programming to get confidence
score. Finally, from the first frame, we just follow the previous
step to iterate to the last frames.

In dynamic programming, starting from the beginning of
the graph, the state can only be specified to the next state in
order or stay in the original state. Finally, the state must reach
the end of the graph. The set of gray dots in Figure 2 indicates
the path with the highest confidence score in the graph. The
recursion formula of dynamic programming is:

CS i,s = MAX {CS i−1,s,CS i−1,s−1}+ pi,s, (1)

where i is time, s is state index. CSi,s is the highest confidence
score from beginning to (i, s). pi,s is the poster possibility of
state s in frame i. The confidence score of this graph is:

CS end = CS end/FrameNum, (2)

where FrameNum is the total number of frames used to
build the graph, and CSend represents the highest confidence
score from beginning to end point. If the confidence score
exceeds the threshold, the search is stopped and wake-up
word is considered to be detected. At the same time, the
start and end frames of wake-up word are also recorded.
Otherwise, it lasts until the end frame. In practice, for one
wake-up word, there might be alternative pronunciations in
different accents, which should also be considered. We address
this issue by constructing multiple graphs that represent the
alternative pronunciations.

The advantages of dynamic programming search are ob-
vious. Our method can run in real time and the content of
wake-up word can be recognized at the same time because of
the acoustic information which is brought by state sequence.
Besides, we can easily replace wake-up word by changing the
state sequence when building the graph. By building several
search graphs, multiple wake-up words can be recognized at
one time. In this process, there is no need to re-train CNN. We
only need to add new BLCDNN in the second stage, which
will be described in detail in section III.

DTW [17], [18], [19] and DPS are all based on dynamic
programming. But the difference is obvious. DTW is used to
measure the similarity of two templates with different lengths.
Each node in the constructed graph represents the distance
between the two templates. Besides, DTW has three search
directions. The proposed DPS measures the probability that
a wake-up word whether located in all sequential speech
segments or not. Each node in the constructed graph represents
posterior probability, which means the probability that the
current frame belongs to that state. As depicted in Figure 2,
DPS is operated on time sequences, thus there are only two
search directions.

III. BLCDNN-BASED VERIFICATION STAGE

In this section, an utterance-level BLCDNN-based verifica-
tion model is conducted to further determine whether there is
a wake-up word in the speech. The architecture is diagrammed
in Figure 3. Only speech that is judged as the host of wake-up
word in the first stage can be sent to the second stage, where
the speech is cut into segment according to the start and end
point, and the segment is fed into the verification model.
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Fig. 3. BLCDNN-based verification model.

We aim to use BLSTM to model the dependencies of the
speech and CNN to extract discriminative features that are
useful for the classification task. In convolutional layer, to
enable the network to extract complementary features and
enrich the representation, we learn several different filters
simultaneously. Convolutional filters with multiple sizes cap-
ture valuable features from different scales, which benefit a
lot to robust classification. The feature maps produced by
the convolution layer are forwarded to the pooling layer. 1-
max pooling is employed on each feature map to keep the
most dominant feature only. The dominant features are then
concatenated to form a feature vector to be fed to final layer.
This step transforms the variable-length, high-dimensional
vector into a fixed-length form. Finally, a FC layer maps it to
two output nodes. One of the nodes indicates that the segment
is related to the wake-up word and the other node represents
the segment without wake-up word.

BLCDNN model consists of 2 BLSTM layers, 1 convolu-
tional layer and 1 FC layer. Each BLSTM layer has 128 units.
In (kernelW, kernelH) format, the convolutional layer has 3
different filter sizes that are (5, 5), (3, 3) and (1, 1) both with
4 output channels and 1 stride. Final results can be obtained
by analyzing the output of BLCDNN.

IV. EXPERIMENTAL SETUP

A. Data preparation

Extensive experiments have been performed to demonstrate
the effectiveness of the proposed small-footprint WUWSR
system. Here, we select one two-syllable wake-up word, which
is ’{ruò}-{qı́}’ in Mandarin Chinese Pinyin. 12 DPS graphs
are constructed, which represent different pronunciations of
the wake-up word. For CNN acoustic model in the first stage,
close-talk dataset contains 3000-hour speech in training set
and 10-hour speech in development set.

In the second stage, training set contains 559400 utterances
that contain wake-up word and 445072 negative samples.
Development set has 20089 utterances, which has 10000 pos-
itive samples. We evaluate performance in one test set, which
contains 10451 positive samples and 100000 negative samples.
All the utterances utilized in the second stage and test set
are collected from our circular array with eight microphones.
Utterances are recorded in rooms with variant sizes, and
the ratio of the utterances of male to female is almost 6:4.
The distance between speaker’s mouth and microphone array

varies from 1m to 5m. The signal-to-noise ratio (SNR) ranges
between 10dB and 20dB. In our study, the development set
is used to choose the model. The experimental results are all
evaluated on the test set.

B. Training preparation

The multi-channel speech collected by microphones is en-
hanced by a minimum variance distortionless response beam-
former [20], and single-channel speech segment is divided into
frames. In the first stage, DNN and CNN are conducted as
frame level. For each frame, acoustic features of DNN are
generated based on 29-dimensional log-mel filterbank features
along with their first and second order derivatives. 5 past
frames and 5 future frames are appended to current frame,
constituting a total of 957-dimensional feature vector. For
CNN, acoustic features are generated based on 29-dimensional
log-mel filterbank features. Similarly, 5 past frames and 5
future frames are appended to current frame, constituting a
total of 319-dimensional feature vector. The alignments are
generated by a well-trained GMM-HMM system with 5191
senones. In the second stage, BLCDNN processes the input in
utterance level. The input is 29-dimensional log-mel filterbank
features. The features are extracted by Kaldi [21] and the
models are all trained on Tensorflow [22]. Adam algorithm
[23] is utilized for training where the base learning rate is
0.001.

V. RESULTS

A. Baseline systems

First, a DNN-based WUWSR baseline system that works
in the first stage is built. The baseline represented as DNN-
1stage uses a network with 4 hidden layers with 512 nodes
and 1 hidden layer with 128 nodes. ReLU non-linearity and
layernorm [16] are applied to each hidden layer. Another
baseline integrates DNN-1stage and an additional BLCDNN,
which is represented as DNN-BLCDNN.

Results are presented in three aspects. The first one is to
evaluate FA rate and accuracy under a fixed operating point
of the 1-st stage. In this experiment, the operating point is
randomly selected to make the system in the first stage reaches
98% accuracy, thus the accuracy and FA rate of the first stage
can be obtained. The commercial operation points are referred
to customer needs. The whole system is measured by the
change in accuracy and FA rate. The second evaluation metric
is EER, which represents the point at which false rejection
rate and FA rate are equal. Obviously, EER measures the
overall performance of the system. The Lower EER indicates
the better performance of the WUWSR system. The third one
is receiver operating characteristic (ROC) curve, the better
performance can be obtained if the ROC curve is closer to
the upper left corner.

B. CNN-based detection stage

In this section, we explore the impact of applying CNN
to WUWSR system, and CNN-1stage is constructed. From
Table I, we can quantitatively assess the system performance.



TABLE I
Comparison of WUWSR systems with different structures.

System Parameters (million) Fixed operating point EER (%) EER Relative
Improvement (%)Accuracy (%) FA rate (%)

DNN-1stage 2.28 98.00 3.82 2.76 −
CNN-1stage 2.30 98.00 3.08 2.32 15.94

DNN-BLCDNN 2.28 + 1.06 97.23 0.81 1.21 56.16
CNN-BLCDNN 2.30 + 1.06 97.36 0.51 0.83 69.93

Fig. 4. ROC curves of different WUWSR systems

With the help of CNN, CNN-1stage achieves improvement in
FA rate with the same accuracy. EER decreases significantly.
Compared with DNN-1stage, the EER of CNN-1stage de-
creases from 2.76% to 2.32%, with a relative improvement of
15.94%. The experimental results show that CNN can improve
the performance of WUWSR.

C. Two-stage-based WUWSR system

In this section, two-stage-based WUWSR systems, DNN-
BLCDNN and CNN-BLCDNN, are constructed. The operating
points are the same as the first stage. By using BLCDNN,
the accuracy keeps stable, but FA rate decreases dramatically.
Compared with CNN-1stage, the FA rate of CNN-BLCDNN
decreases from 3.08% to 0.51%, improved 83.44% relatively.
This shows that BLCDNN can be used to effectively reduce
FA while maintaining performance. The system performance
can be evaluated quantitatively by EER. The results are
all summarized in Table I. Compared with DNN-1stage,
DNN-BLCDNN achieves a 47.84% relative improvement,
from 2.32% to 1.21%. Compared with CNN-1stage, CNN-
BLCDNN achieves a 64.22% relative improvement, from
2.32% to 0.83%. In conclusion, compared with DNN-1stage,
CNN-BLCDNN achieves a 69.93% relative improvement,
from 2.76% to 0.83%. Compared with DNN-BLCDNN, CNN-
BLCDNN achieves a 31.40% relative improvement, from

1.21% to 0.83%. The experimental results show that, by
using CNN and two-stage strategy, WUWSR system can be
effectively improved.

ROC curves are depicted in Figure 4. It is obvious that
CNN-BLCDNN is closer to the upper left corner than others.
It indicates that under the same false alarm, CNN-BLCDNN
has higher true positive rate. The points of EER in Figure 4
are the crossover points of dotted line and ROC curves.

D. Model size and efficiency

As can be seen from Table I, employing CNN brings
performance improvement while a very small increase in
overall parameters. Besides, low-rank matrix factorization is
applied to compressing the model. These make the system
stay in small-footprint. In commercial situations, a mass of
speech and noise without wake-up words is constantly received
by the smart device. In the first stage, a simple and rapid
detection is applied to screening out speech without wake-up
words. Only a little speech is fed into the second stage for
further verification. Thus BLCDNN is omitted customarily.
This strategy greatly reduces the calculations and delays,
which also achieves high accuracy and low FA.

VI. CONCLUSIONS

In this paper, we propose a small-footprint WUWSR system
with two-stage strategy. The first stage quickly detect the
wake-up word by using a lightweight model. If the segment
is detected as the wake-up word, the second stage is used
to verify the detection. The proposed method successfully
processes two-syllable-based wake-up word, and the phonetic
knowledge of the wake-up word is also acquired by using
dynamic programming search. Experimental results show the
effectiveness of the method. Our system successfully recog-
nizes two-syllable word while maintaining high accuracy and
low FA. From the view of EER, our system, CNN-BLCDNN,
achieves a 69.93% relative improvement over DNN-1stage
and a 31.40% relative improvement over DNN-BLCDNN. Our
method is easy to implement and can be applied in practice.
Besides, no need for updating or adjusting hand-designed
features, our system can achieve satisfied performance in a
varied environment just by increasing the training data of the
second stage.
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