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Abstract—In recent years, the topic of explainable machine
learning (ML) has been extensively researched. Up until now,
this research focused on regular ML users use-cases such as
debugging a ML model. This paper takes a different posture and
show that adversaries can leverage explainable ML to bypass
multi-feature types malware classifiers. Previous adversarial
attacks against such classifiers only add new features and not
modify existing ones to avoid harming the modified malware
executable’s functionality. Current attacks use a single algorithm
that both selects which features to modify and modifies them
blindly, treating all features the same. In this paper, we present
a different approach. We split the adversarial example generation
task into two parts: First we find the importance of all features
for a specific sample using explainability algorithms, and then
we conduct a feature-specific modification, feature-by-feature. In
order to apply our attack in black-box scenarios, we introduce
the concept of transferability of explainability, that is, applying
explainability algorithms to different classifiers using different
features subsets and trained on different datasets still result
in a similar subset of important features. We conclude that
explainability algorithms can be leveraged by adversaries and
thus the advocates of training more interpretable classifiers
should consider the trade-off of higher vulnerability of those
classifiers to adversarial attacks.

I. INTRODUCTION

In recent years, the topic of explainable and interpretable
machine learning (ML) has been extensively researched. Ex-
plainable machine learning can be used by the ML model
users and developers, e.g., to debug prediction errors of an
existing ML model on specific samples or to provide human
explanations of models’ decisions by highlighting the features
that had the highest impact on a specific sample decision.

In this paper, we demonstrate the ability of an adversary to
use the explainability of multi-feature types malware classifiers
algorithms to produce the most important features for a known,
white-box model. Then, due to the concept of transferable
explanations, the same important features are relevant to the
target black-box classifier. Therefore, by modifying existing
malware’s important features by the white-box model’s ex-
planation to fool it, not only the white-box model would be
fooled, but also the target black-box model.

The principle of transferability of adversarial examples, that
is, adversarial examples crafted against one model are also
likely to be effective against other models, is already known
[1], [2], [3] and was also evaluated in the cyber security
domain [4]. However, most research related to adversarial
examples is focused on adversarial examples containing a

single feature type: changing pixel’s color in an input image,
modifying words in an input sentence, etc. In those cases,
modifying each feature has the same level of difficulty, because
they all have the same feature type.

In contrast, in the cyber security domain there is a unique
challenge which is not addressed by previous research: Mal-
ware classifiers (which gets an executable file as input and
predict the labels of benign or malicious for each file) often
use more than a single feature type (see Section I-A2). Thus,
adversaries who want to subvert those systems should consider
modifying more than a single feature type. Some feature types
are easier to modify without harming the executable func-
tionality than others (see Section I-A2). In addition, even the
same feature type might be modified differently depending on
the sample format. For instance, modifying a printable string
inside a PE file might be more challenging than modifying a
word within the content of an email, although the feature type
is the same. This means that we should not only take into
account the impact of a feature on the prediction, but also
the difficulty of modifying this feature type [5]. In addition,
some features are dependent on other features, meaning that
modifying one feature requires modifying other features for
the executable to continue functioning. For instance, adding
strings to the file (as done in [4]) will necessarily impact the
features dependent on printable characters, e.g., entropy.

The end result is that when adversaries want to modify a PE
file without harming its functionality, the feature modification
must be done manually. In this way, only features that are easy
to modify, not dependent on other features who are challenging
to modify (which is feature specific) would be modified. Thus,
we would want to modify the smallest numbers of features,
because each feature’s modification requires a manual effort.
Moreover, each modified feature can create a feature distri-
bution anomaly that could be detected by anomaly detection
algorithms (e.g., [6]). Therefore, the adversary aims to modify
as little features as possible, even if he/she could modify
all features automatically. In order to achieve this goal, the
adversary would like to get the list of most impactful features
for a specific sample (the malware which tries to bypass the
malware classifier) and manually select the features that are the
easiest to modify. This is the approach we take in this paper,
as opposed to previous adversarial attacks, that try to do both
in the same algorithm and thus try to modify all features in
the same manner, resulting in generating malware executables
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that don’t run.
In order to select the most indicative features for a sample,

the adversary can use explainability algorithms. However,
the adversary is not familiar with the architecture of the
target malware classifier. In order to resolve this issue, he/she
can train his/her own malware classifier and use its features
instead. Those features are likely to have a high impact even
in the target classifier, due to the concept of transferability of
explainability.

A. The Challenges in End-To-End Adversarial Examples of
Malware Executables

Most published adversarial attacks, including those that
were published at academic cyber security conferences have
focused on the computer vision domain, e.g., generating a
cat image that would be classified as a dog by the classifier.
However, the cyber security domain – and particularly the
malware detection task - seems a much more relevant domain
for adversarial attacks, because while in the computer vision
domain, there is no concrete adversary who wants cats to
be classified as dogs, in the cyber security domain, there are
actual adversaries with clear targeted goals. Examples include
ransomware developers who depend on the ability of their
ransomware to evade anti-malware products that would prevent
both its execution and the developers from collecting the
ransom money, and other types of malware that need to steal
user information (e.g., keyloggers), spread across the network
(worms) or perform any other malicious functionality while
remaining undetected.

Given the obvious relevance of the cyber security domain
to adversarial attacks, why do most adversarial learning re-
searchers focus on computer vision? Besides the fact that
image recognition is a popular machine learning research
topic, another major reason is that performing an end-to-end
adversarial attack in the cyber security domain is more difficult
than performing such an attack in the computer vision domain.
The differences between adversarial attacks performed in those
two domains and the challenges that arise in the cyber security
domain are discussed in the subsections that follow.

1) Executable (Malicious) Functionality: Any adversarial
executable must preserve its malicious functionality after the
sample’s modification. This might be the main difference be-
tween the image classification and malware detection domains,
and pose the greatest challenge. In the image recognition
domain, the adversary can change every pixel’s color (to a
different valid color) without creating an “invalid picture” as
part of the attack. However, in the cyber security domain,
modifying an API call or arbitrary executable’s content byte
value might cause the modified executable to perform a
different functionality (e.g., modifying a WriteFile() call to
ReadFile() ) or even crash (if you change an arbitrary byte in
an opcode to an invalid opcode that would cause an exception).

In order to address this challenge, adversaries in the cyber
security domain must implement their own methods (which are
usually feature-specific) to modify features in a way that will
not break the functionality of the executable. For instance, the

adversarial attack used in Rosenberg et al. [4] modifies API
call traces in a functionality preserving manner.

2) There are Many Feature Types : In the cyber security
domain, classifiers usually use more than a single feature
type as input (e.g., malware detection using both PE header
metadata and byte entropy in Saxe et al. [7]). Some feature
types are easier to modify without harming the executable
functionality than others. For instance, in the adversarial attack
used in Rosenberg et al. [4], appending printable strings to
the end of file is much easier than adding API calls using a
dedicated framework built for this purpose. In contrast, in an
image adversarial attack, modifying each pixel has the same
level of difficulty.

3) Executables are More Complex than Images: An image
used as input to an image classifier (usually a convolutional
neural network, CNN) is represented as a fixed size matrix of
pixel colors. If the actual image has different dimensions than
the input matrix, the picture will usually be resized, clipped,
or padded to fit the dimension limits.

An executable, on the other hand, has a variable length:
executables can range in size from several KB to several GB.
It’s also unreasonable to expect a clipped executable to keep its
original classification. Let’s assume we have a 100MB benign
executable into which we inject a shellcode at a function near
the end-of-file. If the shellcode is clipped in order to fit the
malware classifier’s dimensions, there is no reason that the file
would be classified as malicious, because its benign variant
would be clipped to the exact same form.

In addition, the code execution path of an executable may
depend on the input, and thus, the adversarial perturbation
should support any possible input that the malware may
encounter when executed in the target machine.

While this is a challenge for malware classifier imple-
mentation, it also affects adversarial attacks against malware
classifiers. Attacks in which you have a fixed input dimension,
(e.g., a 28*28 matrix for MNIST images), are much easier to
implement than attacks in which you need to consider the
variable file size.

The main contributions of this paper are as follows:

1) This is the first paper to demonstrate end-to-end ad-
versarial examples (that is, runnable malware) against
malware classifiers that rely on multiple types of inter-
connected and dependent features. This is also the first
such attack which not only adds features, but also mod-
ify them while maintaining the malware functionality.

2) This is the first paper to discuss the usage of ex-
plainability by adversaries, in order to both choose
specific features to perturb and maintain the minimal
perturbation (that is, number of perturbed features).

3) This is the first paper analyzing the concept of transfer-
ability of explainability, using explainability of a white-
box substitute model to explain a black-box model, using
a subset of the same indicative features.



Fig. 1. Explainability Algorithms in the Image Recognition Domain (Taken
from [8])

II. RELATED WORK

A. Explainable Machine Learning

In this paper, we evaluate the usage of explainability algo-
rithms (which ranks the features by impact on the classification
of a specific sample, see Definition 1) in order to generate an
adversarial example with a small perturbation size. Several
such algorithms have been introduced:

Integrated Gradients [9], computes the partial derivatives
of the output with respect to each input feature. Integrated
Gradients computes the average gradient while the input varies
along a linear path from a baseline x̄ to x. The baseline
is defined by the user and often chosen to be zero. The
importance (also known as attribution) of xi, the i-th element
in the vector x:

R(xi) = (xi − x̄i)
1∫

α=0

∂C(x̃)

∂x̃i
|x̃=x̄+α(x−x̄)dα (1)

, where C(x) is the classifier prediction for x. Integrated
Gradients satisfies an important property termed completeness:
the attributions sum up to the target output minus the target
output evaluated at the baseline:

∑N

i=1
R(xi) = C(x) −

C(x̄).
Layer-wise Relevance Propagation (LRP) [10] is computed

with a backward pass on the network. Let us consider a
quantity r

(l)
i , called "relevance" of unit i of layer l. The

algorithm starts at the output layer L and assigns the relevance
of the target neuron c equal to the output of the neuron itself
and the relevance of all other neurons to zero (Equation 2).

r
(L)
i =

{
Ci(x) if unit i is the unit of interest

0 otherwise
(2)

The algorithm proceeds layer by layer, redistributing the
prediction score Ci until the input layer is reached. One
recursive rule for the redistribution of a layer’s relevance to
the following layer is the ε − rule described in Equation 3,
where we define zji′ = w

(l+1,l)
ji′ x

(l)
i′ + bj to be the weighted

activation of a neuron i’ onto neuron j in the next layer and
bj the additive bias of unit j. A small quantity is added to the
denominator of Equation 3 to avoid numerical instabilities.
Once reached the input layer, the final importance is defined
as R(xi) = r

(1)
i .

r
(l)
i =

∑
j

w
(l+1,l)
ji x

(l)
i∑

i′
(zji′) + ε ∗ sign

(∑
i′

(zji′)
)r(l+1)

j (3)

LRP together with the propagation rule described in Equa-
tion 3 is called ε − LRP , analyzed in the remainder of this
paper.

DeepLIFT [11] proceeds in a backward fashion, similarly
to LRP. Each unit i is assigned an attribution that represents
the relative effect of the unit activated at the original network
input x compared to the activation at some reference input x̄
(Equation 4).

r
(L)
i =

{
Ci(x)− Ci(x̄) if unit i is the unit of interest

0 otherwise
(4)

Reference values ¯zji′ for all hidden units are determined
running a forward pass through the network, using the baseline
x̄ as input, and recording the activation of each unit. As in
LRP, the baseline is often chosen to be zero. The relevance
propagation is described in Equation 5. The attributions at the
input layer are defined as R(xi) = r

(1)
i as for LRP.

r
(l)
i =

∑
j

zji − z̄ji∑
i′

(zji′)−
(∑

i′
( ¯zji′)

)r(l+1)
j (5)

In Equation 5, z̄ji′ = w
(l+1,l)
ji′ x̄

(l)
i′ + bj is the weighted

activation of a neuron i onto neuron j when the baseline x̄ is
fed into the network. As with Integrated Gradients, DeepLIFT
was designed to satisfy Completeness. The rule described in
Equation 5 ("Rescale rule") is used in the original formulation
of the method and it is the one we will analyze in the
remainder of the paper.

[8] formalized the above-mentioned methods in similar
terms and found some interesting similarities between them.
For instance, all methods are equivalent when the model
behaves linearly, e.g., when the network is very shallow.

SHAP (SHapley Additive exPlanation) [12] values also
explain the output of a classifier C as a sum of the effects
R(xi) of each feature being introduced into a conditional
expectation. However, unlike the above-mentioned methods,
SHAP is a black-box method, which doesn’t require any
knowledge about the architecture of the explained network.



Therefore, it cannot compute partial derivatives of the gradi-
ents with respect to specific features. In order to evaluate the
effect missing features have on a model C , it is necessary to
define a mapping between the missing features and the original
function input space. Therefore, In order to compute SHAP
values, we define Cx(S) = E (C(x)|xS) where S is the set
of analyzed features, and E (C(x)|xS) is the expected value
of the function conditioned on a subset S of the input features.
SHAP values combine these conditional expectations with the
classic Shapley values from game theory together to attribute
R(xi) values to each feature:

R(xi) =
∑

S⊆F−{i}

|S|! (|F − S| − 1)!

|F |!
[fx (S ∪ {i})− fx (S)]

(6)
, where F is the set of all input features. Note that for non-

linear functions the order in which features are introduced
matters. SHAP values result from averaging over all possible
orderings. Proofs from game theory show this is the only

possible consistent approach where
∑|F |

i=0
R(xi) = C(x).

SHAP outperforms other state-of-the-art black-box explain-
ability algorithms, e.g., LIME [13].

Very few papers have been published about explainability in
the cyber domain. Gue et al. [13] extends the LIME algorithm
to a variant called LEMNA, so it can be used for recurrent
neural networks (RNNs), commonly used in the cyber security
domain (but not in this paper and therefore it is not being
evaluated here). This is done using Gaussian mixture to better
handle the non-linearities of RNNs and fused lasso to merge
features with similar importance together.

Warnecke et al. [14] have evaluated the explainability
of several of the algorithms mentioned above for different
datasets in the cyber security domain and concluded that
white-box explainability algorithms, such as integrated gradi-
ents (Equation 1) and LRP (Equation 3) select features which
are both have a higher impact on the classification and provide
better human interpretable explanations, comparing to black-
box explainability algorithms such as SHAP (Equation 6) and
LEMNA [13].

B. Adversarial Examples

[1] and [15] formalize the search for adversarial examples
as a similar minimization problem:

argr minC(x + r) 6= C(x) s.t. x + r ∈D (7)

The input x, correctly classified by the classifier C, is per-
turbed with r such that the resulting adversarial example x+r
remains in the input domain D, but is assigned a different
label than x. To solve Equation 7, we need to transform the
constraint C(x+ r) 6= C(x) into an optimizable formulation.
Then we can easily use the Lagrange multiplier to solve it.
To do this, we define a loss function Loss() to quantify this
constraint. This loss function can be the same as the training
loss, or it can be chosen differently, e.g., hinge loss or cross
entropy loss.

There are three types of adversarial examples generation
methods:

Gradient based attacks - Those adversarial perturbation are
generated in the direction of the gradient, that is, in the
direction with the maximum effect on the classifier’s output,
e.g., FGSM [2] or JSMA [16]) Those attacks are effective but
require adversarial knowledge about the targeted classifier’s
gradients. Those attacks can be conducted on the targeted
model, if white-box knowledge is available, or via the usage of
a surrogate model, using the transferability property (Appendix
B) for a black-box attack.

Score based attacks - Those attacks are based on white-
box knowledge of the confidence score of the target classifier.
The target classifier’s gradient can be numerically derived
from confidence scores of adjacent input points [17] and then
continue like gradient-based attack, following the direction
of maximum impact. A different approach is using a genetic
algorithm, where the fitness of the genetic variants is defined
in terms of the target classifier’s confidence score, to generate
adversarial examples [18].

Decision based attacks - These attacks use only the label
predicted by the target classifier. [19] starts from a randomly
generated image classified as desired and then adds perturba-
tions that decrease the distance to the source class image, while
maintaining the target classification. The more noise you add,
the larger the chance of successfully modifying the classifier’s
decision. However, the challenge is usually to use as little
noise as possible, since more noise might damage the original
functionality of the input. For instance, adding “benign” API
calls to a malware might cause a malware classifier to classify
it as benignware, but might also add performance overhead to
the modified malware, due to the added API calls. [20] uses
Natural Evolutionary Strategies (NES) optimization to enable
query-efficient gradient estimation, which leads to generation
of misclassified images like gradient based attacks.

1) The Transferability Property: Many black-box attacks
(e.g., [4]) rely on the concept of adversarial example transfer-
ability, presented in [1]: Adversarial examples crafted against
one model are also likely to be effective against other models.
This transferability property holds even when models are
trained on different datasets. This means that the adversary can
train a substitute model, which has similar decision boundaries
as the original model and perform a white-box attack on
it. Adversarial examples that successfully fool the surrogate
model would most likely fool the original model, as well
([21]).

The transferability between DNNs and other models such
as decision tree and SVM models was examined in [3].
The reasons for the transferability are unknown yet, but a
recent study [22] suggests that adversarial vulnerability is
not “necessarily tied to the standard training framework, but
is rather a property of the dataset (due to representation
learning of non robust features)”, which also clarifies why
transferability happens regardless of the classifier architecture.

2) End-To-End Adversarial Examples against Malware
Classifiers: Attacks vary based on the amount of knowledge



the adversary has about the classifier being subverted: Black-
Box attacks requires no knowledge about the model beyond
the ability to query it as a black-box (a.k.a. the oracle model),
i.e., inserting an input and getting the output classification,
while white-Box attacks assume the adversary has knowledge
about the model architecture and even the hyperparameters
used to train the model. In this paper, we focus in black-
box attacks, which are a more realistic scenario in the cyber
security domain, in which security vendors don’t reveal their
architecture to avoid being copied or bypassed.

Grosse et al. [23] presented a white-box attack against
an Android static analysis fully connected DNN malware
classifier. The static features used were from the Android-
Manifest.xml file, including permissions, suspicious API calls,
activities, etc. The attack is a discrete FGSM [2] variant,
which is performed iteratively in two steps, until a benign
classification is achieved: (1) Compute the gradient of the
white-box model with respect to the binary feature vector
x. (2) Find the element in x whose modification from zero
to one (i.e., only feature addition and not removal) would
cause the maximum change in the benign score, and add this
manifest feature to the adversarial example. Unlike our attack,
Grosse et al. only adds features and the APK format used is
much simpler than the PE format used in our attack, with no
interdependent features.

Xu et al. [18] generated adversarial examples that bypass
PDF malware classifiers, by modifying static PDF features.
This was done using an inference integrity genetic algorithm
(GA), where the fitness of the genetic variants is defined in
terms of the target classifier’s confidence score. The GA is
computationally expensive and was evaluated against SVM,
random forest, and CNN using static PDF structural features.
This attack requires knowledge of both the classifier’s features
and the target classifier’s confidence score. Unlike our attack,
Xu et al. only adds features and the PDF format used is
much simpler than the PE format used in our attack, with
no interdependent features.

Suciu et al. [24] implemented an attack against MalConv,
a 1D CNN, using the file’s raw byte content as features
(Raff et al. [25]). The additional bytes are selected by the
FGSM method and are inserted between the file’s sections. in
a black-box manner by appending bytes from the beginning of
benign files. Unlike our attack, Suciu et al. use only a single
feature type (raw bytes) and only add features (and not modify
features), which is a less realistic scenario than ours.

Rosenberg et al. [4], [26] presented a black-box inference
integrity attack that adds API calls to an API call trace used
as input to an RNN malware classifier in order to bypass
a classifier trained on the API call trace of the malware.
A GRU substitute model was created and attacked, and the
transferability property was used to attack the original clas-
sifier. The authors extended their attack to hybrid classifiers
combining static and dynamic features, attacking each feature
type in turn. The target models were LSTM variants, GRUs,
conventional RNNs, bidirectional and deep variants, and non-
RNN classifiers (including both feedforward networks, like

fully connected DNNs and 1D CNNs, and traditional machine
learning classifiers, such as SVM, random forest, logistic
regression, and gradient boosted decision tree). The authors
presented an end-to-end framework that creates a new malware
executable without access to the malware source code. Unlike
our attack, Rosenberg et al. only adds features, not modify
them and only uses two feature types, which are independent,
making this case less challenging and realistic than ours.

In Anderson et al. [27], the features used by the gradient
boosted decision tree classifier included PE header metadata,
section metadata, and import/export table metadata. A black-
box attack which trains a reinforcement learning agent was
presented. The agent is equipped with a set of operations (such
as packing) that it may perform on the PE file. The reward
function was the evasion rate. Through a series of games
played against the target classifier, the agent learns which
sequences of operations are likely to result in detection evasion
for any given malware sample. The differences from our attack
are: (1) Our attack also achieve higher attack effectiveness
then Anderson et al. with less adversary’s knowledge (different
classifier’s type and architecture, training set and feature
subset), due to our usage of transferability of explainability. (2)
The attack in Anderson et al. uses whole-PE transformations
like packing, which increases the chances of the generated
malware to be detected by anomaly detection methods (e.g.,
[6]). (3) Our attack effectiveness is 37%, as opposed to less
than 25% for Anderson et al. on the same dataset and using the
same attacked classifier. Note that both attacks have a lower
effectiveness than image-based attacks due to the challenges
mentioned in Section I-A.

This paper is the first to present end-to-end PE structural
features adversarial examples, which, unlike previous attacks,
include feature modification (and not just addition) without
harming the malware functionality and interdependent fea-
tures.

3) Using Explainable ML in Adversarial Scenarios: Sev-
eral papers have tried to leverage the usage of explainability
to detect adversarial examples, although none of them are in
the cyber security domain.

Tau et al. [28] generated a mapping to the neurons critical
for specific attributes and amplified the activation of those
neurons to make the classifier more robust to adversarial
attacks. Carlini [29] demonstrated that this robust classifier
is still vulnerable to the Carlini and Wagner attack.

Fidel et al. [30] used the SHAP values computed for the
internal layers of a DNN classifier to discriminate between
normal and adversarial inputs. Amosy et al. [31] used a similar
approach.

To the best of our knowledge, our paper is the first to
leverage explainability algorithms from the adversary side,
to generate and facilitate adversarial attacks (as opposed to
detecting them).



Algorithm 1 End-to-End PE Structural Features-Based Ad-
versarial Example Generation

1) Train a substitute neural network model on a training set
and features believed to accurately represent the attacked
malware classifier.

2) Select a malware binary he/she wants to bypass the
attacked malware classifier.

3) Use explainable machine learning algorithm (see Def-
inition 1) to get a list of features importance for the
classification of the malware on the substitute model (see
Section IV-B).

4) From those features, choose those easier to modify (see
Section III-D3).

5) Modify each “easily modifiable” feature using the list of
predefined feature values (see Section III-D3), selecting
the value that result in the lowest confidence score.
Repeat until a benign classification is achieved by the
target black-box malware classifier.

III. METHODOLOGY

A. Threat Model

The adversary’s goal is to modify a malware executable for
it to bypass a multi-feature types malware classifier without
harming the executable’s functionality (Section I-A1), that is,
generating an end-to-end malware adversarial example. In this
paper we limit ourselves to static features, that is, features
that can be extracted from the file without running it. Static
features are the malware file’s content and properties (e.g., the
file’s size) either as raw bytes or pre-processed to parse them
in the way used by the operating system loads them, termed
PE structural features. Raw-byte features require a very long
training process and current state-of-the-art GPU hardware
usually limits the file size which can be classified using such
classifier (e.g. [25]), making this a non realistic use case.
Using dynamic features (e.g., executed API calls in Rosenberg
et al. [4]) is also less common use case, since it requires a
sandbox environment in order to avoid running a malware on
the computer we want to protect, which might harm it. We
therefore decided to focus on PE structural features, which
are used by real-world classifiers. We assume the adversary
has no knowledge or access to the attacked malware classifier,
e.g., the classifier type, architecture or training set (a black-
box attack, as defined in Section II-B2). Our attack would be a
decision-based attack (by the definition in Section II-B), as this
is the most realistic scenario. We do assume the adversary can
figure out some of the features used by the attacked malware
classifier, but not all of them. This is a common case in cyber
security, especially with static features, where many classifiers
are using similar PE structural features, (e.g., [7], [27], [32])
but the exact subset of features is unknown.

B. Generating an End-to-End Adversarial Example

In order to evade detection by the malware classifier, the
adversary is using the method specified in Algorithm 1.

In this method, we use the following definition:

Definition 1. An explainable machine learning algorithm
A(m,v) takes as arguments a machine learning model m and
a sample’s vector v and returns a vector of length(v) values
which represent the weights of impact of the features in v,
such that a higher weight indicates a more impactful feature
for classifying the vector v by the model m.

This method is relying on two assumptions, evaluated in the
following subsections:

(1) The most important features in the attacked malware
classifier would be similar to those of the substitute model,
and they would also be found by an explainability algorithm.
Thus, modifying these features in the method mentioned
above would affect the attacked malware classifier as well.
Detailed in Section III-C, and (2) The adversary can modify
the malware binary without harming its functionality. Detailed
in Section III-D.

C. Transferability of Explainability

The concept of transferability of explainability is defined as
follows:

Definition 2. Given two different models, m1 and m2 with
different classifier type and architecture trained on a similar
dataset and input features list, the output of an explainable
machine learning algorithm (see Definition 1) would be similar
for m1 and m2.

Note that this definition is different from adversarial ex-
amples transferability: Adversarial examples transferability
(see Section II-B1) is the concept of an adversarial exam-
ple generated to fool one classifier is also effective against
another classifier. Transferability of explainability means that
the feature group indicated to have a high impact on a specific
sample classification on one model would be similar to the
list of the same explainability algorithm on another model.
We argue that this holds true regardless of the classifier type,
architecture, training set or even explainable algorithm. The
only requirement is that the features used by both classifiers
need to be similar enough (otherwise impactful features in one
model are meaningless in the other model) - but not identical.
A visual example of the transferability of explainability can be
seen in Figure 1. We see that three different explainable algo-
rithms (Integrated Gradients [9], DeepLIFT [11] and Layer-
wise Relevance Propagation (LRP) [10]) highlight similar
features as the most important to classify a gartner snake image
(mainly, pixels in the snake’s head area).

This concept is especially important for multi-feature types
malware classifiers: On the one hand, the adversary is unaware
of the attacked classifier architecture, so using transferability
is essential. On the other hand, modifying too many features
might cause the adversarial example to be caught by anomaly
detectors (e.g., [6]). Therefore, a small perturbation (that is,
modifying a small amount of features) is desired.

Using transferability of explainability to generate adversar-
ial examples is also usable in scenarios where using trans-



ferability of adversarial examples (as done in the adversarial
attacks mentioned in Section II-B for a black-box scenario) is
not:

(1) When there are dependent features, which modification
requires the modification of other features for the file to
continue being runnable, as in the case of PE structural
features, discussed in this paper (see Section III-D2). In this
case, it’s very hard to take into account which features need
to be modified to keep a small perturbation automatically.

(2) When some features are harder to modify than others,
which is very hard to take into account in any mathematical
form [5], which can be used automatically.

In contrast, a manual modification of the features by their
order of impact is a preferable approach to keep the pertur-
bation small. Such cases might be the reason why there are
no adversarial attacks published on end-to-end PE structural
features yet (see Section II-B2).

D. End-to-End Feature Modification for PE Structural Fea-
tures

In this paper we are focusing on malware running on
Windows OS, since most malware target the Windows OS.
Thus, we focus on the static features of the executable format
on Windows, named portable executable (PE).

1) PE Structural Features Overview: In this section we
discuss the features that exist in the dataset used in this
paper, Ember. However, as mentioned in Section III-A, many
classifiers are using similar PE structural features, so this
description is valid to all of them. A more detailed list of
the Ember model features appear in [32]. Here we will only
describe some major key points regarding the feature types
used in the model. Some features are naive values extracted
from the PE header with no modification at all and some
features are engineered, for example, string features which
count occurrences of Windows path strings. On a high-level,
the PE file itself is composed of the PE header, sections and
overlay. The PE header in turn is composed of various fields
and additional headers, e.g., DOS header and Optional-Header.
The sections are either code sections (machine instructions),
data sections (holding variables) and resource sections (hold-
ing embedded fonts, images, etc). The overlay is defined as
any addition to the PE file that is not defined in the various
fields in the headers and therefore not loaded into the process
memory. The PE structure has a lot of flexibility. For example,
there are numerous entries to describe a section but only few
are necessary. Moreover, some values differ when loaded into
memory and when viewed statically as they appear in the file.
For example, various offsets and relocation are resolved by the
Windows process loader and the values are modified during
process mapping preparation before executing it.

a) Feature types description: The different feature types
in Ember model are:

(1) Byte histogram - A total of 256 features that describe
the byte value histogram in the entire file.

(2) Byte entropy histogram - A total of 256 features that
roughly approximates the joint distribution of byte value and
local entropy (see [7]).

(3) String related features - A total of 104 string related
features, s.a., total count, average string length, Windows path
count, etc. 96 features of this group are printable character
distribution. We will mostly focus on this subset of the string
features.

(4) General information features - A total of 10 features
describing properties of the PE file, e.g., import and export
functions count, has relocation table, has resource table, etc.

(5) COFF header features - A total of 62 features describing
values from the COFF header. Out of these, 50 features use the
hash trick with 10 buckets over 5 fields in the COFF header.

(6) Section features - A total of 255 features describing
values from the section headers. Out of these, 5 are counters
and the other 250 features are hash trick with 50 buckets over
5 fields.

(7) Imports features - A total of 1280 features. All use the
hash trick, 256 hash buckets for import library names and 1024
for imported function names.

(8) Exports features - A total of 128 features. All use the
hash trick for exported function names.

(9) Data directories features - A total of 30 features,
describing values of size and virtual size for 15 data directories
entries present in the PE.

2) Feature Modification Challenges: Our goal is to change
the model prediction for a given PE file, while not harming
the functionality of the PE (Section I-A1). It is easy to see that
some feature types are interdependent, for example, modifying
some of the string features will affect the byte histogram
and byte entropy histogram. Other features may prove to be
difficult to near impossible to modify. For example, the hash
buckets values can be affected by inserting the relevant value
and making sure that the generated hash falls in the required
bucket, however it is not always possible to use the resulting
value(s) in every field. With strings it may be simple but
changing certain values in the header might render the PE file
as non executable. It is important to notice that we can only
affect feature values in a limited way. Some values cannot be
altered, for example if an import function is being used, we
will not able to alter the value of the hash bucket to other than
a non-zero value.

3) Easily Modifiable PE Structural Features: Analyzing the
feature types mentioned above, we notice that there are types
of features which can be modified easily without affecting the
execution of the PE file as a process when loaded into memory
by the OS (and thus the modified PE file’s functionality).

One such example is the printable character distribution
(Section III-D1). Considering the character distribution fea-
tures, we needed to not only keep the values that resulted
in the greater shift in prediction score but also recalculate the
entire distribution of characters in the file and generate a buffer
that when appended to the original file will tilt the distribution
accordingly. That buffer can be appended to the end of the file
(overlay) but we also chose to insert it as a new section to the



PE file, therefore making it a little less trivial to explain the
prediction score difference change by an examining eye. The
buffers themselves were bound by size but in most test cases
we only need several hundred kilo-bytes of data to successfully
shift the prediction.

Other features we can modify come mostly from the PE
header and its composing headers and values. Listed below
is a short description of such features: (1) PE COFF Header
timedate stamp - 4 bytes that hold the linkage time of the
executable. It has no affect whatsoever on the execution of the
PE file. (2) PE CLR Runtime Size - A field that describes the
.Net runtime size, used only by the .NET VM when the pe is
linked with mscoree.dll (3) PE CLR Runtime Virtual Address
- A field that describes the .Net header virtual address, used
only by the .NET VM when the pe is linked with mscoree.dll
. The features we perturbed can be seen in our git repository.

For each feature, our attack (Algorithm 1, step 5) iterates
over a list of predetermined features and alters each of them
according to a predefined set of values that matches the feature
type possible values. The predefined list of values per feature
serves two purposes:

(1) It limits the amount of iterations it takes to complete
the brute-force for a specific file, and (2) It verifies that the
value ranges fits the feature. For instance, the header feature
MajorOperatingSystemVersion is the minimum version of the
operating system required to use this executable. Putting a
large value (e.g., Windows 10) might prevent the Windows
loader from running the modified file on relevant machines
(e.g., Windows 7 hosts).

IV. EXPERIMENTAL EVALUATION

A. Dataset and Classifiers

As mentioned in Section III-D1, we used the Ember dataset.
It is thoroughly described in [32], and is the state-of-the-art
dataset of 1M malware and benign-ware, equally distributed.
We split the dataset into a training-set of 300K malware and
300K benignware and a test set of 200K malware and 200K
benignware.

As the target classifier, we used the gradient boosted deci-
sion tree (GBDT) classifier used in [32], which outperformed
state-of-the-art raw features model [25]. This classifier input is
a vector of 2381 Ember’s PE structural features and its output
is a binary classification: malicious or benign file. It is trained
using LightGBM with 100 trees and 31 leaves per tree.

As a substitute model, trained by the adversary, we used
an architecture similar to the one used in Saxe et al. [7],
which also uses PE structural features. It contains two hidden
dense layers with 128 neurons, ReLU activation functions and
dropout rate of 0.2, followed by a final dense layer with a
sigmoid activation layer. The input and output are identical
to the attacked malware classifier. The substitute model was
trained with keras, using a tensorflow backend.

B. Transferability of Explainability for PE Structural Features
Based Multi-Feature Type Malware Classifiers

We want to evaluate the concept of transferability of ex-
plainability (Section III-C) in our setting. Mainly, we want to
show that the most impactful features in the substitute model
are similar to those in the attacked classifier, allowing the ad-
versary to have only black-box access to the attacked malware
classifier. We therefore want a measure of the correspondence
between two rankings. We evaluated three metrics: We used
Kendall’s tau [33] to compare between the feature rankings
of different classifiers. Kendall’s tau between two rankins, r1

and r2, with the same number of elements, is defined as:

τ(r1, r2) =
P −Q√

(P +Q+ T ) ∗ (P +Q+ U)
(8)

, where P is the number of agreeable (concordant) pairs, Q
the number of non-agreeable (discordant) pairs, T the number
of ties (two elements are the same) in r1, and U the number
of ties in r2. If a tie occurs for the same pair in both r1

and r2, it is not added to either T or U . Values close to 1
indicate strong agreement (and transferability), values close
to -1 indicate strong disagreement (and lack of transferability)
between the ranking orders of the two classifiers. Kendall’s tau
has advantages over other rank metrics such-as Spearman’s
rho: The distribution of Kendall’s tau has better statistical
properties, and the interpretation of Kendall’s tau in terms of
the probabilities of observing the agreeable and non-agreeable
pairs is very direct.

We also evaluated a variant of the weighted Kendall’s tau
[34] metric. The weighted Kendall’s tau is a weighted version
of Kendall’s tau in which exchanges of high weight are more
influential than exchanges of low weight. We used the metric:
τwpos(r1, r2) use additive hyperbolic weighing, that is, rank
r is mapped to weight 1/(r + 1), which has been shown to
provide the best balance between important and unimportant
elements [34]. Note that τwpos(r1, r2) gives more weight to
important features, while τ(r1, r2) weighs all features the
same.

We evaluated four different state-of-the-art explainability
algorithms. We focused on white-box explainability algorithms
on the substitute model because [14] showed that this yields
better results for cyber security classifiers. Therefore, we eval-
uated: Integrated Gradients [9], DeepLIFT [11] and ε−LRP
[10] (see Section II-A). We compared these methods to the
black-box explainability algorithm SHAP [12]. Each of these
algorithms’ feature ranks were used to compare between our
substitute model and the attacked malware classifier (detailed
in Section IV-A), on various levels of knowledge of the
adversary:

(1) The substitute model has the same training set and
features as the attacked classifier but a different architecture.

(2) The substitute model has the same features as the
attacked classifier but a different training set and architecture.

(3) The substitute model has different feature subset, train-
ing set and architecture.

https://github.com/microsoft/LightGBM
https://github.com/keras-team/keras
https://github.com/tensorflow/tensorflow


TABLE I
TRANSFERABILITY OF EXPLAINABILITY BY (τwpos(r1, r2) | τ(r1, r2))

METRICS

Explainability Algo-
rithm\Adversary’s

Knowledge

Same
training set
and features

Different
training set,

same
features

Different
training set
and feature

subset
Integrated Gradients

[9]
0.998 | 0.991 0.969 | 0.832 0.928 | 0.660

DeepLIFT [11] 0.998 | 0.992 0.962 | 0.797 0.923 | 0.641
ε− LRP [10] 0.998 | 0.992 0.963 | 0.801 0.926 | 0.652

SHAP [12] 0.997 | 0.989 0.981 | 0.889 0.934 | 0.682
Random Feature

Ranking
0.114 | 0.001 0.123 | 0.013 0.018 | 0.007

In our evaluation, the different architectures of the substitute
and attacked malware classifiers are specified in Section IV-A.
Different training sets were obtained by randomly dividing
the Ember training set (specified in Section IV-A) into two
equal-sized training sets of 300K samples (150K malicious,
150K benign) each, used by the attacked malware classifier
and the other by the substitute model. This means there
wasn’t even a single shared sample, but the samples were
from the same distribution (e.g., same prominent malware
families were represented in both training sets), as expected
in real-world cases. The accuracy of the attacked classifier
on the test set is 97.57% (95.55% for the substitute model).
When training the same classifier on half the training set,
the accuracy reduces to 97.23% (90.81% for the substitute
model), so the drop in accuracy is not big. Different features
were obtained by randomly picking two subsets of 1190 of
Ember’s 2381 features (50% of the features). This resulted
in 32% of the 2381 features being used by both attacked
and substitute classifiers, resulting in a reduced attack surface,
because only those features can be modified and affect the
attacked model. This emulates the real world scenario where
many malware classifiers use similar feature subsets (see
Section III-A). When training the attacked classifier on half the
training set using 50% of the features (the same subset used
in our attacks), the accuracy reduces to 96.77% (88.94% for
the substitute model), so the drop in accuracy is not big here
either. The false positive rate of all three models was about
1%. The substitute model achieved similar false positive rate
on the test set in all evaluated scenarios mentioned above.
The results are shown in Table I. When a random subset
was made (whether in the training set or the features), the
same random permutation was used in all use cases in the
table. We used the explainability algorithms implementation
in DeepExplain. We used the Kendall’s tau and weighted
Kendall’s tau implementation of scipy. The baseline x̄ for the
integrated gradients and DeepLIFT methods was chosen as a
vector of zeros.

We see that all the explainability algorithms operating on the
substitute model reach a much better correlation (or ranking
similarity) between the feature importance in the substitute
and attacked models than random feature ranking. Unlike

[14] , we see that SHAP is on par with the other, white-box
explainability algorithms, possibly due to the different metric
we used, which fit our use case of selecting the features to
perturb. This high correlation, very close to 1.0, shows that
the transferability of explainability does exist in our setting,
and the most important features explaining the substitute
model’s classification can just as well explain (and affect) the
classification of the attacked model. We see that, as expected,
the correlation (or ranking similarity) between the feature
rankings decreases, as expected when the attacker has less
information about the training set or the features. However,
even under those constraints, the correlation is relatively high.
We also see that τwpos(r1, r2) provides higher correlation
than τ(r1, r2) in all cases. This shows that while the ranking
might be different, the most important features (which are what
important for our attack, described in Algorithm 1) are still
ranked similarly.

C. PE Structural Features Based Multi-Feature Type Malware
Classifier End-to-End Adversarial Examples

In order to measure the performance of an attack, we
consider two factors:

The attack effectiveness is the percentage of malicious
samples which were correctly classified by the attacked mal-
ware classifier, for which the end-to-end adversarial example
generated by Algorithm 1 was misclassified as benign by the
attacked malware classifier.

The average perturbation size is the average number of
features (out of the Ember dataset’s total of 2381) that were
perturbed before the attack was successful. The adversary aims
to minimize it in-order to evade detection by, e.g., anomaly
detection classifiers that recognize anomalous PE structure [6].

We generated end-to-end adversarial examples to all the
malicious samples in the Ember test set which were correctly
detected by the attacked malware classifier (a total of: 97570
samples). The results of the attack are shown in Table II.

We see that the regardless of which explainability algorithm
we use, the attack effectiveness is very similar. While reducing
the attacker knowledge brings to lower attack accuracy and
higher number of modified features, the attack is still effective
for more than third of the malware, even with different training
sets and when only 32% of the features to perturb are known.
Selecting the most important features of a random feature

TABLE II
ADVERSARIAL EXAMPLES SUCCESS RATE AND AVERAGE NUMBER OF

MODIFIED FEATURES

Explainability
Algorithm\Adversary’s

Knowledge

Same training
set and
features

Different
training set,

same features

Different
training set
and feature

subset
Integrated Gradients [9] 37.71% | 3.46 34.63% | 3.83 34.19% | 3.88

DeepLIFT [11] 37.71% | 3.45 34.38% | 3.86 34.01% | 3.91
ε− LRP [10] 37.70% | 3.46 34.42% | 3.86 34.13% | 3.90

SHAP [12] 37.66% | 3.47 35.06% | 3.79 34.42% | 3.87
Random Feature Ranking 36.36% | 4.10 11.54% | 3.63 0.11% | 7.91

https://github.com/marcoancona/DeepExplain
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html#scipy.stats.weightedtau
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html#scipy.stats.weightedtau
https://github.com/scipy/scipy


ranking (which is equal to random feature selection), brings
interesting results. When the attacker has full knowledge
about the attacked classifier, the attack effectiveness is not
much worse than using the substitute model for selecting the
important features to perturb. However, when the attacker has
less knowledge (as usually happens in real-world scenarios),
the random selction attack effectiveness is significantly re-
duced. This shows the power and importance of using the
explainability approach in real-world scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a method to generate end-to-
end multi-feature types adversarial examples for PE malware
classifiers, using explainability algorithms to decide which
features to modify. Our method is the first to tackle the
challenging task of generating end-to-end adversarial examples
of PE structural features, allowing not only feature addition but
also feature modification.

Our evaluation demonstrates that explainability is a dual
edged sword, which can also be leveraged by adversaries.
When considering the call to generate more explainable mod-
els, which decisions can be interpreted by humans [35] , one
should take into account its negative effects, such as making
adversarial examples less challenging in certain situations, as
presented in this paper.

Our future work will include improving the query-efficiency
of our attack (in sense of queries to the attacked malware
classifier), in order to make it useful to attack cloud-based
classifiers, by using gradient-based approaches (e.g., JSMA
[16]) over the substitute model in order to find the optimal
feature modification out of the initial predetermined list. We
would also research the detection and defense methods against
such attacks, for instance, anomaly detection classifiers that
recognize anomalous PE structure.
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