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Università della Svizzera italiana

Lugano, Switzerland
andrea.cini@usi.ch

Slobodan Lukovic
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Abstract—Highly accurate power demand forecasting repre-
sents one of key challenges of Smart Grid applications. In this
setting, a large number of Smart Meters produces huge amounts
of data that need to be processed to predict the load requested by
the grid. Due to the high dimensionality of the problem, this often
results in the adoption of simple aggregation strategies for the
power that fail in capturing the relational information existing
among the different types of user. A possible alternative, known
as Cluster-based Aggregate Forecasting, consists in clustering
the load profiles and, on top of that, building predictors of
the aggregate at the cluster-level. In this work we explore the
technique in the context of predictors based on deep recurrent
neural networks and address the scalability issues presenting
neural architectures adequate to process cluster-level aggregates.
The proposed methods are finally evaluated both on a publicly
available benchmark and a heterogenous dataset of Smart Meter
data from an entire, medium-sized, Swiss town.

Index Terms—short-term load forecasting, smart grid, deep
learning, time-series forecasting, time-series clustering

I. INTRODUCTION

The diffusion of smart metering infrastructures and the
wide adoption of the Smart Grid paradigm ([1], [2]) are
making available a large amount of data in the form of load
profiles, i.e., time-series describing the energy consumption
of a specific customer as measured by a smart meter (SM).
Accurate Short-term Load Forecasting (STLF) is an important
ingredient for the development of smart power grids. In
fact, an accurate estimate of the energy demand facilitates
effective planning of grid operations, maintenance of the
grid assets and efficient energy distribution [3]. Furthermore,
improved forecasting techniques may significantly contribute
to the development of effective Demand Side Management
strategies [4]. We focus on the day-head prediction task, i.e.,
we aim at predicting the load on the grid for each time-step
of the next 24 hours.

Despite the granularity of the available data, predicting
the load at the level of a single SM is impractical both
for privacy, scalability and accuracy constraints. In fact, a
typical power load consumption signal is erratic at single
household and characterized by high frequency components.

This project is carried out within the frame of the Swiss Centre for
Competence in Energy Research on the Future Swiss Electrical Infrastruc-
ture (SCCER-FURIES) - Digitalisation programme with the financial support
of the Swiss Innovation Agency (Innosuisse SCCER program).

The common practice is to simply aggregate the load profiles
and consider predictors only of the total load; this preserves
privacy as well as reduces fluctuations associated with un-
predictable behaviors. While this is effective and can lead
to good results [5], the standard approach does not take
into account the topological and, more importantly, functional
affinities that exist among households, commercial buildings
and industrial facilities and that could be exploited to forecast
the short-term load on the grid. Improvements can come by
considering Cluster-based Aggregate Forecasting (CBAF) [6].
CBAF methods rely on clustering algorithms to partition the
customer-base in homogeneous subgroups of users and exploit
the similarities among customers to learn a predictor for each
cluster aggregate, hence helping the design of the inference
engine.

While CBAF methods empirically improve prediction ac-
curacy, they cannot capture inter-cluster dependencies that, in
some cases, could be relevant to achieve accurate forecasting.
For instance, the energy consumption of industrial costumers is
most likely important to predict the short term load requested
by residential households. Standard CBAF requires to train a
model from scratch for each cluster, limiting the scalability
of the approach when considering expensive models such as
deep neural networks. In fact, the availability of these large,
heterogenous datasets makes deep learning (DL) models a
suitable and appealing approach to address the problem of
energy demand forecast [7].

In this work we study CBAF in the context of deep learning;
in particular, we present a novel CBAF architecture suitable
for deep learning models and introduce a neural network im-
plementing it. Taking inspiration from the Multitask Learning
literature (MTL) [8], we consider the cluster level aggregates
as a single, multivariate, sequence and feed it into a single
deep recurrent model with multiple output modules predicting
the cluster level energy demand. We also present a practical
method to cluster long time-series for CBAF. Finally, we
evaluate our approach on a publicly available benchmark
dataset, showing the benefits of the proposed approach and
test our method in a new challenging dataset from the Swiss
town of Arbon, providing empirical evidence that CBAF is a
viable technique to improve prediction accuracy in STLF.

The paper is organized as follows. In Section II we for-
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malize the problem of STLF and cluster-based forecasting
and, in Section III, we give a brief overview of the related
works. In Section IV we present our approach and discuss
advantages and drawbacks of various architectures for CBAF
predictors. Finally, in Section V, we perform an extensive
empirical evaluation of the proposed methods.

II. PROBLEM DESCRIPTION

In this Section, we define at first the general problem of
STLF using data from SMs, then we discuss how clustering
can be applied in the same settings to reduce the prediction
error. Finally we introduce the performance metrics that will
be used to asses proposed solutions.

A. Short-term load forecasting using Smart Meters data

We assume to have a dataset D = {x1, . . . ,xN} of N
univariate time-series where each xi ∈ RT corresponds to a
load profile associated with the i-th SM and xi[t] is a scalar
measure of the energy drawn from the grid between discrete
time t−1 and t, recorded at time t. We assume that all the time-
series are synchronized, that is, a time step t corresponds to the
same point in time across all the sequences. The objective is to
build a predictor of the aggregated energy consumption, i.e.,
a predictor of the stochastic process generating the sequence
s = (s[0], s[1], . . . , s[T ]) where:

s[t] =

N∑
i=1

xi[t] (1)

Given a prediction horizon H (i.e., the number of steps ahead
to predict) and a prediction window W (i.e., the number of
previous steps used to make the prediction), this translates into
minimizing a loss function, e.g., the prediction mean squared
error (MSE):

MSE =
1

T −H −W

T−H∑
t=W

1

H

H∑
h=1

(s[t+ h]− ŷh (st,ut;θ))
2

(2)
where st = (s[t−W ], . . . , s[t]), ut is a vector of exogenous
variables, θ represents the model’s parameter vector and ŷh is
the h-step-ahead prediction.

In this paper, we focus on a day-ahead prediction hori-
zon and on nonlinear autoregressive models, with optional
exogenous variables, in particular deep recurrent neural net-
works ([9], [10]).

B. Clustering-based load forecasting

The idea behind cluster-based forecasting is to use relational
information and similarities among data points to improve
prediction accuracy [11]. In the aggregate load forecasting
settings, this information is exploited by considering cluster-
level aggregates that are expected to display more regular
patterns, have higher auto-correlation and, thus, be more
predictable signals than that accounting for the total energy
consumption.

In practice, using CBAF, the dataset D is divided into K
clusters Ck, and, by aggregation of the load profiles of each

cluster, we obtain a second dataset D′ = {X1, . . . ,XK} such
that:

Xk[t] =
∑

xi∈Ck

xi[t] (3)

where xi is a load profile belonging to cluster Ck.
At this point, a possible forecasting technique is to learn a

model for each cluster-level aggregate and use the resulting
ensemble of predictors to forecast the total load [6]. This
approach, that we refer to as CBAF Ensemble (CBAF-E),
is not well suited for deep learning analytics, due to the
computational requirements of deep networks, in particular
recurrent ones. This is a critical drawback considering that,
due to the massive amount of data being generated, these
models are expected to be often retrained. Furthermore, the
combination of the clustering algorithm and the forecasting
model already increases the number of hyperparameters to
tune. On the other hand, the achievable accuracy gains make
for a compelling argument in favor of the adoption of this
technique when computational power is not an issue.

C. Metrics

To asses the performance of the designed predictors we use -
as with STLF literature - the Mean Absolute Error (MAE) and
the Root Means Square Error (RMSE) defined as (for clarity
sake we omit the dependence on the prediction horizon and
window):

RMSE =

√√√√ 1

T

T∑
t=1

(y[t]− ŷ[t])
2 (4)

MAE =
1

T

T∑
t=1

|y[t]− ŷ[t]| (5)

Due to the MAE and RMSE being dependent on the scale
of the observed values, we also report the normalized versions:

NRMSE = 100
RMSE

ymax − ymin
(6)

NMAE = 100
MAE

ymax − ymin
(7)

that is, we normalize the errors by the delta between the
maximum and minimum observed values.

III. RELATED WORKS

Load forecasting for power systems is an important research
topic with clear and practical applications [12]. A recent
survey [7] provides an empirical evaluation of deep learning
models for STLF using modern best practices and showing
convincing performance on multiple benchmark datasets. A
particularly interesting line of research concerns the study of
techniques to improve the performance of predictive models
exploiting clustering algorithms [11].

Clustering of time-series is a challenging research prob-
lem [13], with a wide range of applications from customer
segmentation [14] and stock-market analysis [15] to biol-
ogy [16]. Cluster-based aggregate forecasting has been studied
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Fig. 1. Forecasting architectures (a) Standard forecasting architecture, based on complete aggregation of the load profiles. (b) CBAF-E: CBAF based
architecture with a predictor for each cluster level aggregate. (c) CBAF-CP: CBAF architecture with a single model that jointly learns to predict each cluster
level aggregate. (d) CBAF-AP: CBAF model that takes as an input the cluster-level aggregates and learns to directly predict the total aggregated load.

in depth in [6], where the authors provide an empirical analysis
of different clustering algorithms and regression models on
the Commission for Energy Regulation in Ireland (CER)
dataset [17], a collection of SM data from residential and
industrial customers. However, there, authors focus only on
residential customers, using only shallow regression models,
and report that the proposed methods do not show convincing
performance gains over random cluster assignments. In [18],
instead, CBAF is performed on a reduced version of the CER
dataset with only industrial customers. Alzate and Sinn in [19],
on the other hand, focus on the clustering algorithm and use
an ensemble of simple Poisson autoregressive predictors. To
the best of our knowledge, no prior work addresses CBAF
as a MTL problem. The only example of CBAF with deep
models that we are aware of is [20], where Fahiman et al. rely
on rather simple networks and use engineered features rather
than the raw time-series. Furthermore, they do not address the
scalability issues of the approach and, consequently, limit their
analysis to a maximum of 8 clusters in a reduced version of
the CER dataset.

IV. CLUSTER-BASED AGGREGATE LOAD FORECASTING
WITH DEEP RECURRENT NEURAL NETWORKS

In this Section we first present our approach for CBAF,
describing the general architecture of the proposed cluster-

based predictors, then introduce a neural network model that
implements those architectures. Finally, we discuss a practical
procedure to cluster highly dimensional load profiles.

A. Cluster-based forecasting as a Multitask Learning problem

The standard STLF predictors, shown in Figure 1(a), do not
exploit relational information to predict the load on the grid,
while the standard CBAF-E approach, shown in Figure 1(b),
scales poorly with the number of clusters and model complex-
ity. To solve these problems, we propose CBAF in multi-task
learning setting, studying predictors that require to train only
a single model to forecast all the cluster-level loads at once.
We focus on models that take as an input all the cluster-level
aggregates as a single multivariate time-series. This choice is
motivated by 1) improving scalability, 2) aiming at exploiting
causality among the aggregates or, in other words, the fact that
the load profile of one cluster might be useful to forecast, also,
the behavior of the others and 3) establishing a framework and
baseline for future research on cluster-based forecasting with
deep neural networks.

We investigate two main forecasting architectures:

• CBAF Cluster-level Predictors (CBAF-CP), Fig-
ure 1(c), learn to predict the short term energy demand
of each cluster using a shared representation;
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Fig. 2. Deep recurrent neural network with multiple regression heads. Each head shares the same representation of the input data and can be trained to predict
the cluster-level aggregate load. The RNN block can be any recurrent multi-layer neural networks, while the FCNNs blocks are stacks of fully connected
layers.

• CBAF Aggregate Predictors (CBAF-AP), Figure 1(d),
take the cluster-level aggregates as an input, but learn to
directly predict the total consumption.

As already mentioned, the CBAF-CP architecture is inspired
by the Multitask Learning literature [8], where the objective
is to achieve better generalization sharing the representation
of the input data across tasks. Following this approach, the
features learned from the model to solve a specific task can
be exploited as inductive biases to solve others. We include in
our study the CBAF-AP architecture to asses if it would be
possible to improve the prediction accuracy using clustering
for feature extraction only. The empirical results supports
the argument for a shared representation across cluster-level
predictors.

B. Neural network architecture

We introduce a specific neural network architecture, shown
in Figure 2, for CBAF with deep models (it follows that the
predictor box of Figure 1 is that of Figure 2). We use a shared
recurrent backbone, that can be implemented using any recur-
rent (multilayer) neural network, such as Long Short-Term
Memory networks (LSTMs [9]). This module takes as input
a multivariate time-series of length W representing the load
profiles aggregated at a cluster level, the last hidden state - here
acting as a feature vector - is then fed into K feedforward
fully-connected network heads (FCNNs). Each head, one per
cluster, can include multiple hidden layers and is trained to
predict the aggregated energy consumption at each time-step
of the prediction horizon H . In particular, we use the Multi
input - Multi output (MIMO) prediction strategy [21], which
consists in predicting the values to be forecasted for each time-
lag all at once. Exogenous variables (i.e., date and/or weather
features) can easily be included, as shown in the Figure 2,
using a separated fully connected block, whose output can
then be concatenated to the features extracted by the recurrent

block. For simplicity, we consider only exogenous variables
that are cluster independent, but it is straightforward to adapt
the model to handle different cases.

Multi-head neural networks, often with a CNN back-
bone [22], are generally used to solve multiple regression or
classification tasks that might benefit from the same repre-
sentation of the input data. The use of shared layers greatly
reduces complexity, both in time and space, and acts as a form
of regularization, pushing the network to learn features that are
useful across different problems, rather than overfitting to a
single one. Furthermore, the MTL formulation of the problem
allows us to conduct a more thorough empirical analysis of
the advantages of using clustering techniques in the context
of deep predictors.

This model represents an implementation fo the CBAF-CP
architecture in Figure 1(c) and is jointly trained to predict each
cluster-level aggregate. Empirically we found useful to scale
the gradient flowing backward from each network head by a
weight wk such that:

wk =
Xk∑K
i=1 Xi

(8)

where Xk is the average load of cluster k. Note that this is
different from optimizing the weighted sum of the prediction
errors at the cluster level, since only the gradient of the shared
parameters is scaled. This method allows the network heads
to freely update their weights to minimize the task-specific
error. At the same, the scaling avoids disruptive updates of
the shared parameters due to bad predictions on smaller (in
terms of load) clusters, which are typically characterized by
harder to predict dynamics.

For K = 1, the model is reduced to a more standard deep
STLF predictor that will be used in the following as a baseline.
The CBAF-AP predictor is implemented, instead, simply by
using a single-headed network with a K-dimensional input



sequence and trained to predict directly the total load. This
last approach is conservative since clustering is used only for
feature extraction and differences from the baseline predictor
are minimal.

C. Clustering algorithm

The algorithm used for clustering needs to be tailored to
reduce the prediction error across the cluster-level aggregates.
The fundamental problem of clustering load profiles arises
from the high dimensionality of the problem, both in terms
of the length of the sequences, T , and the number of SMs, N ,
and the resulting necessity of building compact, but powerful,
representations of the data points and their relationships.

In this work we do not analyze in depth the problem, but
rather present a practical and efficient way to cluster long time-
series based on their correlation, while we leave the extensive
study of clustering algorithms for CBAF to future work. We
obtain the cluster-level aggregates through the following steps.

1) We reduce the dimensionality of the problem consid-
ering, for each time-series, contiguous segments with
a length corresponding to data collected over a week.
Then, for each month of the year, we take for each time
step the average across the aforementioned segments. At
this point the signal is transformed in 12 subsequences
of length 7 · samples per day.

2) For each pair of load profiles we compute a similarity
measure as the average Person correlation coefficient
between the subsequences obtained at the previous step1.

3) We use the similarity matrix obtained at the previous
step to build a K-Nearest neighbor graph of the dataset.

4) We perform spectral clustering [23] using the graph
representation obtained at the previous step.

Building the similarity matrix can be computationally ex-
pensive if the number of load profiles is large, but the process
can be efficiently parallelized and it needs to be executed
only once since the hyperparameters (i.e., the number of
neighbors and clusters) can be tuned independently afterwards.
In practice, using the K-neighbors graph greatly simplifies the
clustering problem.

V. EXPERIMENTS

A. Experimental setup

In this section we carry out an extensive empirical eval-
uation of the discussed methods on two relevant real-world
datasets. We compare the prediction accuracy of the baseline
predictor of the aggregated energy demand against the CBAF-
CP and CBAF-AP. For all experiments we use the neural
network architecture described in Section IV. In particular,
the RNN block is always implemented as a two layer LSTM,
while each FCNN block is implemented with a single fully
connected hidden-layer with relu activations. We use the
clustering algorithm presented in Section IV for the CBAF
methods and we also include in the empirical analysis, a

1In practice, we found concatenating adjacent subsequences two by two,
before computing the average correlation, to work better if the data are noisy.

TABLE I
GRID SEARCH CONFIGURATION. TO SAVE COMPUTATIONAL TIME, VALUES

INDICATED WITH A ∗ WERE NOT SAMPLED WHEN TUNING CBAF
METHODS.

hyperparameter sampled values

n. units per recurrent layer [32∗, 64, 128, 256]
n. units per head [128, 256]
dropout in heads [0.0, 0.2∗]

n. clusters [5, 10, 15]
nearest neighbors [10, 20, 40]

comparison against the case in which clusters are generated
randomly partitioning the dataset. Each network is trained until
convergence using early-stopping with a patience of 25 epochs
and the Adam [24] optimizer with learning rate 1e−3. For
each benchmarked method we run a grid-search to optimize
the number of hidden units in each recurrent layer and in
the network heads, the dropout rate, number of clusters and
number of nearest neighbors (when applicable). The sampled
values of the hyperparameters are shown as in Table I. The
number of units in the fully connected block that extracts
features from the exogenous variables is kept at 1

4 of the
neurons per layer in the recurrent block. The input data are
Z-scaled. The best configuration for each method is chosen
based on prediction accuracy on a validation set, while each
reported result represents the average score on a test set across
10 independent runs (of both the clustering algorithm and
the neural network training procedure). The objective of these
experiments is to asses the validity of the proposed architecture
as an alternative to a standard deep STLF predictor.

For both datasets, the load profiles are sampled with a
period of 30 minutes and we keep the same prediction horizon
and window, both of 24 hours (48 time-steps), across all the
experiments. The only exogenous variables that we use are the
one-hot encoding of the day of the week and the month of the
year, to let the model learn the seasonalities in the data. Better
prediction accuracy might be achieved by adding temperature
and weather information, but we prefer to keep the model and
the analysis simple, as the focus here is on the effectiveness
of the clustering approach.

B. CER dataset

The CER dataset [17], is a collection of 6k load profiles of
residential and industrial customers from an Irish city, recorded
over a time-span of approximately one year and a half between
2009 and 2010. The objective of the experiment was to observe
the impact of time-of-use tariffs, introduced to reduce peak
load, among different customers. Data were acquired with a
sampling rate of 30 minutes and have been preprocessed before
being open-sourced. We impute the (few) missing values for
each time-series as the average consumption of the specific
customer at each time of the day across the same weekday
and month. We use as training set all the data except the
last 4 months, 1 of which is used for validation and 3 for
testing. Figure 3 shows a sample of the aggregated energy
consumption, while Figure 4 shows cluster-level aggregates



in the same week. From a qualitative analysis with only 4
clusters it is already possible to see how the different groups
exhibit different behaviors across different periods of the day
and different days of the week, in particular at weekends.
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Fig. 3. Sample of CER total energy demand across one week, in November
2009.
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Fig. 4. Sample of CER cluster level aggregates. The number of clusters used
here has been selected for the purposes of illustration and is different from
the one used in final models. Best viewed in color.

C. Arbon dataset
We evaluate the proposed methods on a dataset of SM

data from the town of Arbon in northeastern Switzerland. The
anonymized data have been acquired, in the context of the
SCCER-FURIES project framework [25], from SMs installed
in the city and cover the time-span between September 2017
and September 2019. The dataset consists in around 10k load
profiles from the different SMs installed in the grid at different
sites. For the purpose of this study we filter out almost 25% of
the available load profiles, due to outliers and a high number
of missing or null readings. The other 75% of the data are
preprocessed, filling missing values using seasonal averages,
and resampled from the original 15 minutes rate to a 30
minutes period. We refer to [26] for more details about the
data acquisition process. Differently from the CER dataset
here the load profiles report the average active power for each
time-step. We use 2 months for validation and 4 for testing.

A sample of the total aggregated energy demand and cluster-
level aggregates are show in Figure 5 and 6 respectively. The

difference between the two datasets here is clear: the Arbon
dataset is characterized by higher frequency components and
more heterogeneous signals. It is also more apparent how
predicting cluster-level aggregates may result in an easier
learning task since they appear to be smoother and more
autocorrelated. Another interesting aspects is that the clus-
tering approach highlights the presence of load profiles with
extremely regular consumption patterns that are probably due
to automated processes.
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Fig. 5. Sample of the Arbon total energy demand across one week, in
November 2017.
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Fig. 6. Sample of Arbon cluster level aggregates. The number of clusters
used here has been selected for the purposes of illustration and is different
from the one used in final models. Best viewed in color.

D. Results

Results of the empirical evaluation are shown in Table II for
the CER dataset and in Table III for the Arbon dataset. For
both datasets, using CBAF with spectral clustering results in
a substantial improvement in prediction accuracy over a naı̈ve
aggregation strategy. CBAF, as we could expect, appears to
be more beneficial for the more complex and noisier dataset,
where the SM data are more heterogeneous. In particular
CBAF-CP achieves a 23% improvement in MAE over the
standard STLF predictor on the Arbon dataset. However the
improvement in prediction accuracy is remarkable also in the
CER - simpler - dataset case, confirming the results of the
analyses conducted in previous works.



TABLE II
RESULTS ON THE CER DATASET. RANDOM INDICATES CLUSTERING BASED ON RANDOM CLUSTER ASSIGNMENTS, WHILE SPECTRAL THE

CLUSTERING PROCEDURE INDICATED IN SECTION IV

MAE NMAE RMSE NRMSE

NO-CBAF 0.189±0.006 2.551±0.076 0.278±0.011 3.754±0.146
CBAF-AP RANDOM 0.189±0.008 2.551±0.108 0.272±0.012 3.680±0.169

SPECTRAL 0.173±0.003 2.338±0.044 0.246±0.006 3.332±0.082
CBAF-CP RANDOM 0.188±0.007 2.544±0.098 0.274±0.012 3.701±0.160

SPECTRAL 0.167±0.005 2.253±0.068 0.234±0.007 3.160±0.093

TABLE III
RESULTS ON THE ARBON DATASET. RESULTS ON THE CER DATASET. RANDOM INDICATES CLUSTERING BASED ON RANDOM CLUSTER ASSIGNMENTS,

WHILE SPECTRAL THE CLUSTERING PROCEDURE INDICATED IN SECTION IV

MAE NMAE RMSE NRMSE

NO-CBAF 0.304±0.007 5.127±0.121 0.437±0.012 7.372±0.197
CBAF-AP RANDOM 0.295±0.014 4.967±0.242 0.413±0.023 6.960±0.381

SPECTRAL 0.260±0.009 4.378±0.159 0.377±0.016 6.355±0.262
CBAF-CP RANDOM 0.321±0.036 5.412±0.616 0.450±0.059 7.585±0.981

SPECTRAL 0.232±0.008 3.916±0.141 0.344±0.135 5.798±0.227

TABLE IV
RESULTS ON THE ARBON DATASET. ∆T INDICATES THE DIFFERENCE IN

COMPUTATIONAL TIME, ∆M THE DIFFERENCE IN NUMBER OF
PARAMETERS.

n clusters MAE ∆T ∆M

CBAF-CP 15 0.232±0.008 − −
CBAF-E 7 0.242±0.007 ∼ 2.5× ∼ 1.2×

15 0.209±0.003 ∼ 5.3× ∼ 2.7×

The performance gain achievable solely with the simple
CBAF-AP approach, which has almost no impact in time
and space complexity, represents yet another interesting result.
Furthermore, the superiority of the principled approach (based
on spectral clustering) over the random baseline (where load
profiles are randomly assigned to clusters) suggests that the
clustering algorithm actually plays an important role in the
improvement of prediction accuracy.

E. CBAF-E

As already mentioned, training a single model for each
cluster level aggregate is expensive in terms of both memory
and time. In particular, tuning the models hyperparameters
through an extensive grid search is almost unfeasible. For a
fair comparison we compare the CBAF-E approach against
the MTL architecture tuning down the number of clusters
in order to keep the number of parameters similar, while
keeping the other hyperparameters unchanged. Finally, we
evaluate the level of accuracy achievable when trading-off
space and time complexity using an ensemble of predictors
for an high number of clusters. Table IV shows the results of
these comparisons on the Arbon dataset. In this case, fitting a
predictor for each cluster yields better results but, as already
discussed, it is limited in terms of scalability.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we presented a MTL approach for electrical
load forecasting based on a clustering algorithm that groups

load profiles based on their correlation. Furthermore, we
studied CBAF on a heterogeneous dataset of raw load profiles.
The proposed method scales nicely with the number of clusters
and the empirical results strongly advocate for the adoption
of CBAF to tackle the STLF problem. In particular, the
clear performance gains over the random clustering baselines,
differently from previous works, confirm that clustering can
effectively be used to improve prediction accuracy. However,
matching the accuracy achievable using multiple predictors is
still a challenge and requires further effort.

The neural network adopted here is versatile and future work
should focus on more specialized neural architectures to better
exploit the available relational information. In particular, the
backbone of the presented model could easily be replaced to
handle a graph representation of the signals. Another interest-
ing approach could be to study an hybrid architecture between
the ensemble approach and the MTL models, where, for
instance, tasks are grouped and assigned to models using some
similarity measure. Future work should also address the non-
stationarity of the problem, studying inter-cluster dynamics
and proper techniques to handle new SMs data being installed
in the grid.
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