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Abstract—Deep-learning-as-a-service is a novel and promising
computing paradigm aiming at providing machine/deep learning
solutions and mechanisms through Cloud-based computing in-
frastructures. Thanks to its ability to remotely execute and train
deep learning models (that typically require high computational
loads and memory occupation), such an approach guarantees
high performance, scalability, and availability. Unfortunately,
such an approach requires to send information to be processed
(e.g., signals, images, positions, sounds, videos) to the Cloud,
hence having potentially catastrophic-impacts on the privacy of
users. This paper introduces a novel distributed architecture
for deep-learning-as-a-service that is able to preserve the user
sensitive data while providing Cloud-based machine and deep
learning services. The proposed architecture, which relies on
Homomorphic Encryption that is able to perform operations on
encrypted data, has been tailored for Convolutional Neural Net-
works (CNNs) in the domain of image analysis and implemented
through a client-server REST-based approach. Experimental
results show the effectiveness of the proposed architecture.

I. INTRODUCTION

In recent years, the technological evolution of Cloud-
based computing infrastructures intercepted the ever-growing
demand of machine and deep-learning solutions leading to
the novel paradigms of machine and deep-learning-as-a-
service [1]. The core of such computing paradigms is that
Cloud providers provide ready-to-use remotely-executable ma-
chine/deep learning services in addition to virtual computing
environments (as in infrastructure-as-a-service) or platform-
based solutions (as in platforms-as-a-service). Examples of
such services are the identification of faces in images or videos
or the conversion of text-to-speech or speech-to-text [2]. From
the perspective of the user, being ready-to-use, these services
do not require the training of the models (that are pre-trained
by the Cloud provider) nor the local recall of such models (that
are executed on the Cloud). Moreover, the Cloud-based com-
puting infrastructure providing such machine/deep learning
solutions as-a-service allows to support scalability, availability,
maintainability, and pay-per-use billing mechanisms [3].

Unfortunately, to be effective, such an approach involves
the processing of data that might be sensitive, e.g., personal
pictures or videos, medical diagnoses, as well as data that
might reveal ethnic origin, political opinions, but also genetic,
biometric and health data [4].

The aim of this paper is to introduce a novel distributed
architecture meant to preserve the privacy of user data in
the deep-learning-as-a-service computing scenario. To achieve

this goal, the proposed architecture relies on Homomorphic
Encryption (HE) that is an encryption scheme allowing the
process of encrypted data [5]. In the proposed architecture,
by exploiting the properties of HE, users can locally encrypt
their data through a public key, send them to a suitably-
encoded Cloud-based deep-learning service (provided through
the deep-learning-as-a-service approach), and receive back the
encrypted results of the computation that are locally decrypted
through the private key. More specifically, such architecture al-
lows to decouple the encryption/decryption phases, which are
carried out on the device of the user (e.g., a personal computer
or a mobile device), from the deep-learning processing, which
is carried out on the Cloud-based computing infrastructure.
Such a HE-based distributed architecture allows to preserve
the privacy of data (plain data are never sent to the Cloud
provider) while guaranteeing scalability, availability, and high
performance provided by Cloud-based solution.

The ability to process encrypted data of HE comes at two
main drawbacks. First, the computational load and the memory
demand of HE-encoded operations is much higher than regular
ones, hence making the HE-encoded deep-learning processing
highly demanding in terms of computation and memory.
This is the reason why we focused on a deep-learning-as-
a-service approach where the computation is carried out on
high performing units on the Cloud. Second, HE supports
only a limited set of operations (typically sums and multi-
plications). For this reason, prior to the encoding provided
by the HE scheme, the deep-learning models have to be
redesigned and retrained taking into account the constraints
on the set of available operations. In addition, HE schemes
have to be configured through some parameters that trade-off
the accuracy in the computation with the computational loads
and memory occupation. Such a configuration, that depends on
the processing chain and the data to be processed, is managed
at the Cloud-level by providing different settings of parameters
that can be explored by the user.

The proposed architecture is intended to work with any
machine and/or deep learning solution. However, in this work,
it has been tailored to image analysis solutions leveraging
Convolutional Neural Networks (CNNs) [6], and implemented
through a client (locally executed on the user device) de-
veloped as a Python library and a server developed as a
deep-learning-as-a-service container implemented on Amazon
AWS. The developed architecture relies on a Representational
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state transfer (REST) paradigm for exchanging encrypted data
and results between client and server, while messages rely on
JSON format.

A wide experimental campaign shows the feasibility and
evaluates the performance of the proposed architecture. The
Python Library for the client and the Amazon AWS Container
are made available to the scientific community1.

The paper is organized as follows. Section II introduces
a background on HE, while Section III describes the related
literature. The proposed architecture is detailed in Section IV,
while the technological implementation is described in Sec-
tion V. Experimental results are described in Section VI and
conclusions are finally drawn in Section VII.

II. BACKGROUND

The homomorphic scheme encryption is a special type of
encryption that allows (a set of) operations to be performed
on encrypted data, i.e., directly on the ciphertexts. More
specifically, as detailed in [7], an encryption function E and
its decryption function D are homomorphic w.r.t. a class of
functions F if, for any function f ∈ F , we can construct a
function g such that f(x) = D(g(E(x))) for a set of input x.

The HE scheme considered in this paper is the
Brakerski/Fan-Vercauteren (BFV) scheme [8] that, similarly
to other works [9], [10], is based on the Ring-Learning With
Errors (RLWE) problem. While a detailed description of such a
problem and its security/implementation aspects can be found
in [11], we here provide a brief introduction to the main
concepts. The BFV scheme relies on the following set of
encryption parameters (from now on denoted with Θ):
• m: Polynomial modulus degree,
• p: Plaintext modulus, and
• q: Ciphertext coefficient modulus.

The parameter m must be a positive power of 2 and represents
the degree of the cyclotomic polynomial Φm(x). The plaintext
modulus p is a positive integer that represents the module of
the coefficients of the polynomial ring Rp = Zp[x]/Φm(x)
(onto which the RLWE problem is based). Finally, the param-
eter q is a large positive integer resulting from the product
of distinct prime numbers and represents the modulo of the
coefficients of the polynomial ring in the ciphertext space. A
crucial concept of a HE scheme is the Noise Budget (NB) that
is an indicator related to the number of operations that can
be done on a ciphertext while guaranteeing the correctness
of the result. This problem (i.e., the maximum number of
operations on the ciphertext) comes from the fact that, during
the encryption phase, noise is added to the ciphertexts to
guarantee that, being p1 = p2 two plain values to be encrypted
with the same public key, the corresponding ciphertexts c1 and
c2 are different (i.e., c1 6= c2). All the operations performed
on the ciphertext consume a certain amount of NB (depending
on the type of operation and the input): operations like
additions and multiplications between ciphertext and plaintext

1Code is available for download as a public repository at
https://github.com/AlexMV12/PyCrCNN.git

consume a small amount of NB, while multiplications between
ciphertexts are particularly demanding in terms of NB. When
the NB decreases to 0, decrypting that ciphertext will produce
an incorrect result.

From a practical point of view, the choice of the encryption
parameters Θ determines several aspects: the initial value
of the NB, its consumption during computations (hence the
number of operations to be performed on a ciphertext), the
level of security against ciphertext attacks, the computational
load and memory occupation of the HE processing and the
accuracy of the results (i.e., measuring the correctness of the
decrypted values). For example, the initial NB increases with
m at the expense of larger memory occupation and computa-
tional loads. The plaintext modulus p is directly related to the
accuracy of the HE processing. Despite being a very difficult
parameter to be tuned, the theory states that larger values of
p will produce more accurate results at the expense of larger
reductions of the NB. Finally, the parameter q influences both
the initial NB and the level of security of the encryption. A
detailed description of the parameters and their effect on the
HE scheme can be found in [12].

We emphasize that choosing the best parameter configu-
ration is a trade-off between accuracy and performance and
depends on the type and complexity of the processing, the
set of feasible operations and the available computational
resources. Practical guidelines to choose Θ will be given in
Section IV-D.

III. RELATED LITERATURE

The idea of using HE to preserve the privacy of data during
the computation has been introduced in [13]. In this work, pri-
vacy homomorphisms are defined as encryption functions that
allow one to operate on encrypted data without preliminarily
decrypting the operands [13]. The first HE schemes allow only
additions [14], [15], [16], or multiplications [17].

The first homomorphic encryption scheme allowing both
multiplication and additions has been proposed in [18]. There,
the idea was to rely on ideal lattice-based cryptography to pro-
vide a scheme supporting additions and multiplications with
theoretically-grounded security guarantees. After that, [19]
extended this work by relaxing the ideal lattice assumption
(and its security), but allowing the usage of integer poly-
nomial rings to define the cyphertexts. [10] introduces the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme that relies on
polynomial rings to define the cyphertexts and on the learning
with error (LWE) and ring learning with errors (RLWE) prob-
lems to provide theoretically-grounded security guarantees.
The RLWE problem is also the basis of the Brakerski/Fan-
Vercauteren (BFV) scheme [8], detailed in Section II, and the
Cheon-Kim-Kim-Song (CKKS) scheme [9], that extends the
polynomial rings to the complex numbers and isometric rings.

The HE schemes mentioned above are theoretical and, to be
applied, have then been implemented to specific processing
chains. As regards deep learning solutions, CryptoNets [20]
relies on the HE BFV scheme to execute CNNs on encrypted



inputs by introducing several possible ways of approximat-
ing the non-linear computation characterizing many layers
of a CNN. Similarly, [21] provides a fast HE scheme for
the (discretized) CNN inference. Recently, the nGraph-HE
framework [22] has been proposed. This framework allows
to train CNNs in plaintext on a given hardware and deploy
trained models to HE cryptosystems operating on encrypted
data. Unfortunately, these works are specific of a given DL
solution (e.g., CNNs in [20]), whereas our architecture is
meant to be general-purpose and able to hide the complexity
of adopting HE solutions, similarly to what proposed in [22],
still maintaining the as-a-service paradigm.

The literature presents also works aiming at offering en-
crypted computation. For example, [23] proposed the Secure
Multi-Party Computation (SMC) approach, where more than
one actor (namely, a party) collaborate in computing a function
and having only partial knowledge of the data they are working
on. These solutions do not encompass HE. [24] applied SMC
with the Pailler HE [16] to CNNs, where a party owns the data
and another owns the CNN. Hence, both the data and CNN
are kept secret during the computation. Other examples can be
found in [25], [26]. Finally, the Gazelle framework [27] relies
on SMC and HE, to provide low-latency inference for CNN.

IV. THE PROPOSED ARCHITECTURE

The proposed privacy-preserving distributed architecture
for deep-learning-as-a-service, called HE-DL, is shown in
Figure 1. More specifically, HE-DL relies on a distributed
approach where the Encryption E (I,Θ, kp) of user data I
and the Decryption D (ŷ,Θ, ks) of processed data ϕΘ(Î) are
carried out on the user device given the HE parameters Θ and
with the public key kp and secret key ks. Both E (·) and D (·)
are based on HE-BFV scheme described in Section II.

Conversely, the deep learning processing ϕΘ(·) is carried
out in the Cloud. This is a crucial step since deep learning
processing is typically highly demanding in terms of com-
putational load and memory occupation. We emphasize that,
as commented in Section II, the considered deep-learning-as-
a-service computation has to be approximated by using only
addition and multiplication in order to process the ciphertext
Î . For this reason, the set of deep-learning models DL models
f (·)s that are made available by the Cloud are approximated
through addition and multiplication, i.e., defining the set of
approximated DL models ϕ (·)s. Once approximated, ϕ (·)s
have to be encoded following the rule of the HE-BFV scheme
to get the encoded deep-learning-as-a-service ϕΘ(·) by rely-
ing on the HE parameters Θ. This encoding phase converts
plain values parameters of DL models in a form which can be
computed by the HE-BFV scheme on encrypted inputs Î .

The DL models considered in this work are the CNNs
aiming at classifying the input images I into a class y ∈ Y . In
such a scenario the proposed HE-DL makes available the deep-
learning-as-a-service computing paradigm into two different
modalities:
• recall: the processing ϕΘ(·) provides the encrypted ver-

sion ŷ of the final classification y of I;

• transfer learning: the processing ϕΘ(·) provides the en-
crypted version of a processing stage of the considered
CNN applied to the input image I . The final classification
y is carried out on the User Device thanks to a suitably-
trained classifier (e.g., a Support Vector Machine or a
neural based classifier).

These two modalities will be detailed in the rest of the section,
together with the description of the encryption/decryption
phases, the approximation and encoding of CNNs, the config-
uration of the encryption parameters and the communication
between user device and Cloud.

A. Encryption and Decryption

Let P be a process generating images I ∈ Rw×h×c of height
h, width w and channels c and let Θ = {m, p, q} be the array
of encryptions parameters, as defined in Section II.

The encryption function E (I,Θ, kp) transforms (based on
the HE-BFV scheme) a plain image I into an encrypted image
Î given the HE encryption parameters Θ with the support of
a public key kp. The decryption function D(ŷ,Θ, ks) operates
on the encrypted output ŷ of the computation ϕΘ(Î), being Î
the encrypted image. More specifically, D(ŷ,Θ, ks) computes
the plain output y given the same set of parameters Θ and
the secret key ks (corresponding to kp). The semantic of y
depends on the considered working modality of HE-DL:
• y is the classification label of the input image I in the

recall modality;
• y is an array of extracted features representing the values

of the activation function of a given layer of the CNN in
the transfer learning modality.

B. Approximated and encoded DL processing

We emphasize that the proposed architecture HE-DL is
general enough to employ a wide range of machine/deep
learning models. In this paper, we decided to focus on CNNs
for two main reasons. First, CNNs are widely-used and very-
effective solutions for image classifications. Second, for most
of their processing, CNNs are composed of addition and
multiplication operations making them suitable candidates to
be considered within a HE scheme.

Let f (I) be a CNN composed of L layers η
(l)
θl

with
parameters θl and l = 1, . . . , L, aimed at extracting features
and providing the classification output y of an input image I.
The general architecture of f (I) is shown in Figure 2a.

As mentioned above, in order to be used with HE, CNNs
have to be approximated by considering only computing layers
and activation functions that are suitable for the considered
HE-BFV scheme. Given that only addition and multiplication
are permitted, only polynomials functions can be computed
directly, while non-polynomials operations must be either
approximated with a polynomial form or replaced with other
(and permitted) types of operations. For instance, the ReLU
activation function is a non-polynomial operation, hence it
cannot be considered in the HE scenario. Similarly to what
done in [20], in the proposed HE-DL architecture, we define
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Fig. 1. The proposed privacy-preserving architecture for deep-learning-as-a-
service.

the approximated CNN model ϕ (·) of the original CNN f (·)
by considering the following rules:

• the ReLU activation function is replaced with a Square
activation function that simply squares the input value;

• the max-Pooling operator is replaced with the average
one, with the division converted to a multiplication by 1

fs
,

where fs is the pooling size (fixed and a-priori known).
• Approximate the other non-polynomial layers as in [20].

The result of this approximation is a CNN ϕ (·) whose
processing layers φ

(l)

θ̂l
can be encoded with the considered

HE-BFV scheme. To simplify the notation, the parameters of
each layer θl or θ̂l are omitted from now on. It is important
to note that, after performing the replacement of the non-
polynomial layers, the model has to be trained again. This
is necessary because the weights of the plain model are not
valid anymore if the activation functions or other layers have
been replaced by different ones. Hence, to provide a deep-
learning-as-a-service, ϕ (·) must be retrained with the same
settings in which the plain one was trained (e.g., same dataset,
same learning algorithm, etc..). Obviously, if the original
model f (·) already contains HE-compatible processing layers,
this procedure is not necessary. Moreover, it’s noteworthy
that this approximation process can introduce a variation in
the accuracy between f (·) and ϕ (·). This aspect will be
explored in the experimental section described in Section VI.
We emphasize that we considered (and made available to the
scientific community) two already approximated and trained
models, i.e., a 5-layers CNN and a 6-layers CNN trained on
the FashionMNIST data-set [28]; these models will be used
in the experimental section.

To work with the encrypted images Îs, the suitably ap-
proximated CNN ϕ must be encoded with the parameters Θ
as defined by the HE-BFV scheme leading to the encoded

CNN ϕΘ(·). As shown in Figure 2b, the HE-based encrypted
processing can be formalized as follows:

y = D (ŷ,Θ, ks) = D (ϕΘ (E (I,Θ, kp)) ,Θ, ks) , (1)

where ŷ represents the image I’s encrypted classification.

C. DL models: recall and transfer learning
As mentioned above, the deep-learning-as-a-service com-

puting paradigm is made available in two different modalities,
recall and transfer learning. The difference between the two
modalities lies in how Eq. (1) is implemented. The former
operates on the decrypted output y of the CNN ϕ last layer L
(typically a softmax on top of a classification layer), whereas
the latter one works on the features I l̃ extracted at a given
CNN level l̃, with 1 ≤ l̃ < L (typically a convolutional or
pooling one). The two modalities are detailed in what follows.

Recall: This is the modality where the user relies on one of
the ready-to-use encoded CNN ϕΘ(·)s to classify the image I .
More precisely, the user wants the image I to be encrypted into
Î and to be forwarded through all the layers of the encoded
CNN ϕΘ, hence obtaining the final result ŷ of the classification
task, without transmitting the image I to the service provider.
The assumption underlying this modality is that the chosen
model ϕΘ(·) is trained to classify images of the same domain
of the input image I (e.g., the model ϕΘ(·) is trained to
recognize the digits and I is an image of a digit).

Transfer Learning: When the application problem of the
user is not matched by the model ϕΘ(·)s (e.g., the user
wants to distinguish between cars and bikes while available
models have been trained to classify digits or faces), the
transfer learning modality comes into play. In fact, following
the transfer learning paradigm [29], [30], the processing of a
pre-trained CNN can be split into two parts: feature extraction
and classification. The feature extraction processing represents
a pre-trained feature extractor able to feed an ad-hoc classifier
trained on the specific image classification problem (that can
be different from the one originally used to train the CNN).
This allows to use part of a pre-trained CNN and train only a
final classifier (hence reducing the complexity for the training
and the number of images required for the training.

In our scenario, the encrypted input images, Îs, will be
forwarded through the encoded model ϕΘ up to a layer l̃. More
specifically, ϕΘ comprises layers from 1 to l̃, with 1 ≤ l̃ ≤ L,
whereas all the (eventually) remaining layers, from l̃+1 to the
final one L remain plain and operate on the decrypted output
of layer l̃, i.e., I l̃ = D

(
ϕl̃Θ (E (I,Θ, kp)) ,Θ, ks

)
, where ϕl̃Θ

represents the encoded CNN up to layer l̃ with parameters
Θ. The output of the model will be, in this case, the features
extracted from every image I . The user may use these features
to train a local classifier (e.g., a Support Vector Machine); an
example will be shown in section VI.

We emphasize that, following such an approach, the user
is able to locally train a classifier on the decrypted vectors
y = D (ŷ,Θ, ks), being ŷ the output of ϕΘ. A set of K
images {I1, . . . , IK} is sent to HE-DL providing the corre-
sponding output {ŷ1, . . . , ŷK} that are locally decrypted into
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Î1

)
. . . φ

(L−1)
Θ

(
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ÎL−1

)
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Î
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Fig. 2. A comparison of the plain and approximated CNN processing with the encrypted one. The layers’ parameters θls are omitted to simplify the notation.

{y1, . . . , yK}. The vector set {y1, . . . , yK} is used together
with the corresponding labels (that are available to the user)
to locally train a classifier. Once trained, the system is ready-
to-use: the user can send an encrypted image Î to the Cloud,
receive the CNN output ŷ, decrypt it to y and apply the
classifier on y.

D. Encryption parameters

As already mentioned, the choice of Θ is critical to get cor-
rect processing of the encrypted image Î . The choice for q is
particularly difficult and influences the security of the scheme.
For this purpose SEAL library [31] provides a specific function
that, given the polynomial modulus degree m and the desired
AES-equivalent security level (sec), returns a suggested value
for q [12]. In this work we considered sec equals to 128
bits which is the default value of SEAL. Hence, we relied
on the SEAL function to automatically set the values of q to
guarantee a 128 bits security level, while we selected m ∈
{1024, 2048, 4096} and p ∈ {32, 712, 37780, 1.3 · 105, 1.5 ·
105, 2.6 · 105, 5.2 · 105, 6.0 · 105, 2.1 · 106, 1.3 · 108, 1.5 · 108},
through an experimental analysis. The effects of the different
choices for Θ are shown in Section VI.

E. Communication between User Device and Cloud

The communication between the User Device and the
Cloud is carried out through a JSON-format message. More
specifically, being an on-demand computation, clients have
to perform a request to the on-line deep-learning-as-service
provider including:
• a set of parameters, including the encryption parameters
m and p, the security level sec, the identifier of the chosen
DL model ϕΘ(·) to use in the computation, and the
specific layers to use (which will determine the modality,
i.e., recall or transfer learning);

• the encrypted image Î on which the computation is
performed, which has to be encrypted using a public key
generated according to the encryption parameters.

Information about the available models will be published
by the provider. Î is transmitted as a vector in which the
ciphertexts are encoded as base64 strings making it possible
to embed them into JSON files. Once the computation has
been carried out, the Cloud responds with a JSON message
containing the encrypted result vector.

As an example, if the user wants to classify a batch of 20
images from the FashionMNIST using Model1, the JSON will
contain [m = 2048, p = 600201, sec = 128], the details of the
models (”model”=”Model1”, ”layers”= [0, 1, 2, 3, 4, 5, 6]) and
the encrypted image (a vector with dimensions [20, 1, 28, 28]).
The answer JSON message will contain the encrypted classi-
fication, so a vector of dimension [20, 10] of ciphertexts.

V. IMPLEMENTATION

The architecture introduced in the previous section has
been implemented through a Python library, named PyCrCNN,
comprising a client-side and a server application. PyCrCNN
supports the encryption and decryption of batches of integer or
float values and the application of the common layers used in
CNNs like convolutional layers, average pool layers, and fully
connected layers, relying on PyTorch library [32]. For the HE
operations, PyCrCNN relies on the Pyfhel library v2.0.1 [33],
Laurent (SAP) and Onen (EURECOM), licensed under the
GNU GPL v3 license2.

A. Client

The client-side can encrypt the input images Is and decrypt
the resulting answer ŷ in a transparent way with respect to the
user. Once the parameters are set (which include encryption
parameters Θ, name and layers of the chosen model ϕ(·),
server URL and port), the client-side of PyCrCNN exposes
a function which receives I as a NumPy [34] vector and
returns y as a NumPy vector; this makes it compliant with
many machine learning frameworks for Python. Before starting
the computation, a public and secret key pair (kp, ks) is
generated. The input batch is encrypted and encoded in base64
strings that will be included in the JSON payload along with
the parameters Θ (as described in the previous section). To
perform the request, the JSON payload is uploaded to an
Amazon S3 bucket. Then, a POST request containing the
address to the uploaded data is made to the deep-learning-as-
a-service URL and, once the reply ŷ is received, the resulting
batch is downloaded from the bucket and decrypted using the
key ks generated before. Finally, the user receives back the
decrypted value y as a NumPy array.

2Pyfhel is a wrapper on the Microsoft SEAL library.
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(b) The results of the 5-layer CNN.

Fig. 3. The recall accuracy results of both the 6-layer CNN and the 5-layer CNN on the FashionMNIST dataset [28], with the standard deviation over five
experiments. For each considered encryption parameters Θi, three cases are compared: the plain CNN without approximations f (·), the same plain CNN
approximated to have only additions and multiplications ϕ (·), and, finally, the encoded CNN with Θi, i.e., ϕΘi

(·). It is noteworthy to point out that with
encryption parameters Θi smaller (i.e., smaller m and p) than those shown, the accuracy quickly drops to that of a random classifier.

B. Server

The server side of the deep-learning-as-a-service must be
invoked via web API. For this purpose, we relied on a set of
Amazon Web Services (AWS) tools comprising Sagemaker,
Elastic Container Registry (ECR), AWS Lambda, API Gate-
way, and S3. More precisely, we extended the built-in models
offered by Sagemaker with our own custom algorithm, i.e.,
PyCrCNN, by creating a Docker container compliant with
Sagemaker Docker Images specifications, uploading it to ECR
and deploying the model on Sagemaker. The Docker container
uses NginX as a web server, Gunicorn as a WSGI and Flask,
a Python library, as a web framework to expose the APIs
required by Sagemaker. With a mock fit method we load
and store the model to S3; with the actual predict method
the model performs the feature extraction task. Hence, the
proposed deep-learning-as-a-service is made available through
a REST API: the client invokes the endpoint URL with a POST
request whose JSON payload contains the S3 path to the image
Î encrypted by the client and the aforementioned encryption
parameters Θ. In order to obtain a JSON-serializable payload,
we encode the encrypted image Î as a base64 string. The client
receives back the encrypted server response ŷ as a base64
string containing the extracted features.

VI. EXPERIMENTAL RESULTS

The aim of this section is to evaluate the accuracy and
the computation load of the deep-learning-as-service provided
trough PyCrCNN both in recall and transfer learning modality.
Section VI-A describes the CNNs provided by the deep-
learning-as-service, while Section VI-B details the considered
datasets. Accuracy and computational load on both recall and
transfer learning modality are shown in Sections VI-C, VI-D
and VI-E.

A. Description of the CNNs

The first deep learning model is a 6-layer CNN composed
by the following processing layers: a convolutional layer with

8 3x3 filters, a 2x2 maximum pooling layer with stride 3, a
convolutional layer with 16 3x3 filters and stride 2, a 2x2
maximum pooling layer and two fully-connected layers with
16 and 10 neurons respectively. The second deep learning
model is a 5-layer CNN composed by a convolutional layer
with 16 3x3 filters with stride 3 and a ReLU activation
function, a 3x3 maximum pooling layer with stride 3 and two
fully connected layers with 72 and 10 neurons respectively.

B. Datasets

Two datasets have been considered in the analysis:
• MNIST [35] is a datasets of handwritten digits composed

of 70000 grey-scale 28x28 images, belonging to 10
classes. From the datasets, 5000 images were used for
training and 5000 for validation.

• FashionMNIST [28] is a datasets of fashion products
composed of 70000 grey-scale 28x28 images, belonging
to 10 classes. From the datasets, 60000 images were used
for training and 10000 for validation.

In particular, the FashionMNIST dataset has been considered
in the recall modality, while MNIST has been used in the
transfer learning one.

C. Recall

In this modality a user wants to use a deep-learning-as-a-
service model ϕΘ(·) published by a Cloud service provider,
obtaining the classification y of an input image I . Figure 3a
and 3b show the accuracy of the 6-layers CNN and the 5-layers
CNN on the FashionMNIST dataset, respectively, with respect
to different values of Θ (the parameter q has been omitted
since automatically set). The two CNNs in both the config-
urations, plain and approximated, have been trained on the
FashionMNIST training dataset for 20 epochs, with a learning
rate of 0.001. As expected, the accuracy of the encoded model
ϕΘ(·) increases with m and p. In particular, the configuration
of parameters Θ4 (characterized by the largest values of m
and p) provides the same performance of the approximated



TABLE I
THE THREE DESCRIBED CONFIGURATIONS RESULTS, WITH A COMMON PC
AS A CLIENT AND AN AMAZON EC2 INSTANCE AS A SERVER. THE MAIN

RESULT, t, IS THE TIME REQUIRED TO PROCESS AN IMAGE FOR EACH
SCENARIO. THE THREE COMPONENTS OF t ARE tc , THE TIME REQUIRED
FOR THE LOCAL ENCRYPTION/DECRYPTION, tt , THE TIME FOR THE DATA
TRANSFER AND ts , THE TIME REQUIRED FOR THE PROCESSING ON THE

CLOUD. THE PROPOSED VALUES ARE EXPRESSED IN SECONDS.

tc tt ts t = tc + tt + ts

R
ec

al
l

6-
la

ye
rs

C
N

N Θ1 2.2± 0.2 3.7± 0.0 11.8± 0.1 17.7± 0.3

Θ2 2.2± 0.1 3.7± 0.0 11.9± 0.1 17.8± 0.2

Θ3 2.1± 0.1 3.7± 0.0 11.9± 0.0 17.7± 0.1

Θ4 4.7± 0.3 14.7± 0.0 49.7± 0.5 69.1± 0.8

R
ec

al
l

5-
la

ye
rs

C
N

N Θ1 5.2± 0.0 14.7± 0.0 26.2± 0.3 46.1± 0.3

Θ2 5.2± 0.0 14.7± 0.0 26.1± 0.1 46.0± 0.1

Θ3 5.2± 0.0 14.7± 0.0 25.8± 0.1 45.7± 0.1

Θ4 5.2± 0.0 14.7± 0.0 25.8± 0.1 45.7± 0.1

Tr
an

sf
er

L
ea

rn
in

g

Θ1 1.2± 0.0 2.0± 0.0 5.5± 0.0 8.7± 0.0

Θ2 2.4± 0.1 3.9± 0.0 11.6± 0.1 17.9± 0.2

Θ3 2.4± 0.0 3.9± 0.0 11.5± 0.0 17.8± 0.0

Θ4 2.4± 0.0 3.9± 0.0 11.5± 0.0 17.8± 0.0

model ϕ (·) operating on plain data. It is noteworthy to point
out that the 6-layers CNN (Figure 3a), when used plain, is
indeed better than the 5-layers CNN (Figure 3b): in fact, the
former has higher accuracy than the latter. However, after
the approximation, the 5-layers CNN outperforms the 6-layers
CNN. This suggests that the approximated CNN ϕ (·) could
be designed from scratch.

D. Transfer learning

In this modality, the user relies on deep-learning-as-a-
service ϕΘ(·) as a feature extractor to train a local classifier,
as described in Section IV-C. Two types of classifiers have
been used, i.e., an SVM-based classifier and a Fully-Connected
based classifier. Both classifiers have been trained using the
features extracted from images coming from the MNIST [35]
dataset, using the first 4 layers of the pre-trained 6-layers
CNN. In particular, 5000 images were used for the training
of the classifiers and 5000 for the testing. Figure 4 shows
the accuracy of the SVM-based classifier and Fully-Connected
classifier. Different values for Θ show the impact on the
precision of the extracted features, hence the accuracy of
the trained classifiers. Here, two main comments arise. First,
moving from Θ3 to Θ4 (with a relevant increase in the
parameter p) does not induce a significant improvement in
the accuracy. This means that the value p = 37780 well
characterizes the processing chain of ϕΘ(·). Secondly, Θ2 for
the 6-layers CNN in the recall scenario is equal to Θ4 in the
transfer learning scenario. However, in the latter case, this set
of parameters provides enough NB and precision to carry out
the computations correctly, while in the former case it does
not. This can be explained by the fact that in this transfer
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Fig. 4. The transfer learning accuracy results on the features extracted at layer
l = 4 of the 6-layer CNN to the MNIST dataset [35]. For each considered
encryption parameters Θi, four cases are compared: the plain CNN without
approximations f (4) (·) with a SVM-based classifier, the same plain CNN
approximated to have only additions and multiplications ϕ(4) (·) with the
SVM, and, the encoded CNN with Θi, i.e., ϕ(4)

Θi
(·) with either a SVM or a

Fully-Connected classifier.

learning scenario the number of encoded layers is lower than
in the recall one.

E. Timing

In addition to the accuracy, we evaluated the performance
of the proposed PyCrCNN implementation by measuring the
computational times on the client and the server-side and by
estimating the transmission times of exchange information. For
this purpose, we considered a single image taken from the
FashionMNIST dataset for the recall modality and from the
MNIST dataset for the transfer learning modality, in a single-
threaded scenario. The models ϕΘ(·) have been encoded with
the same Θ used for the analysis of the accuracy described
above.

The experimental results about the computational time are
shown in Table I where
• tc is the time spent on the client to generate the

keys couple (kp, ks), to execute the encryption function
E (I,Θ, kp) and the decryption function D(ŷ,Θ, ks). The
machine used for the client is equipped with a 2.30GHz
64-bit dual-core processor and 8192 MB of RAM.

• ts is the time spent by the server to encode the model ϕ(·)
and process the encrypted image, ϕΘ(Î). The machine
used as a server is an Amazon EC2 instance with 72
64-bit cores at 3.6GHz and 144 GIB of RAM.

• tt estimates the transmission times of sending the en-
crypted image Î and receiving back the encrypted re-
sult ŷ. For the transmission part we modeled an high-
bandwidth scenario, where we employ the transmission
technology Wi-Fi 4 (standard IEEE 802.11n) using a
single-antenna with 64-QAM modulation on the 20 MHz
channel with he data-rate ρ = 72.2Mb/s [36].

Two main comments arise. First, as expected, all the three
component of the computational times increase with m. More
specifically, tc and ts increase due to the larger computational
load required to process encrypted data with larger m, while



tt increases due to the increase of the size of the ciphertexts.
In addition, tc is always lower than ts since E (I,Θ, kp) and
D(ŷ,Θ, ks) are less computational demanding than ϕΘ(Î).
Second, an increase in p does not result in a variation of the
computational times ts. All in all, p should be tuned focusing
on the accuracy of the results, while m must be tuned by
trading-off accuracy and computational load.

VII. CONCLUSIONS

The aim of this paper was to introduce a novel
privacy-preserving distributed architecture for deep-learning-
as-service. The proposed architecture, which relies on Ho-
momorphic Encryption, supports the Cloud-based processing
of encrypted data to preserve the privacy of user data. The
proposed architecture has been tailored to Convolutional Neu-
ral Networks and an implementation based on Python and
Amazon AWS is made available. Experimental results show
the effectiveness of what proposed.

Future work will consider the automatic configuration of
the Homomorphic Encryption parameters, the extension of the
deep learning models to deep recurrent neural networks and
optimized client implementation for Internet-of-Things devices
(characterized by constraints on computation and memory).
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