
A Large-scale Simulation Dataset: Boost the
Detection Accuracy for Special Weather Conditions

Dongfang Liu1∗, Yiming Cui2∗, Zhiwen Cao1, and Yingjie Chen1
1Department of Computer Graphics Technology, Purdue University, West Lafayette, 47907, USA

Email: {liu2538, cao270, victorchen}@purdue.edu
2Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, 32611, USA

Email: cuiyiming@ufl.edu
* authors contribute equally on this work.

Abstract—Object detection is a fundamental task for au-
tonomous driving systems. One bottleneck hindering detection
accuracy is a shortage of well-annotated image data. Virtual
reality has provided a feasible low-cost way to facilitate computer
vision related developments. In autonomous driving area, existing
public datasets from real world generally have data biases and
cannot represent a wide range of weather conditions, such as
rainy or snowy roads. To address this challenge, we introduce
a new large-scale simulation dataset which is generated by an
automated pipeline from a high realism video game. Our dataset
focuses on weather conditions, which can be adopted to train
networks to effectively detect objects under such conditions. We
use extensive experiments to evaluate our dataset by comparing it
with public datasets. The experiment results show that networks
trained with our dataset outperform the networks trained by
other public datasets. Our work demonstrates the effectiveness
of using simulation data to address real-world challenges in the
practice of object detection.

Index Terms—Large-scale dataset for autonomous driving,
simulation data, automated data generation, special weather
autonomous driving, object detection accuracy

I. INTRODUCTION

Computer vision-based object detection is considered one
of the fundamental challenges in autonomous driving, which
deals with the problem of locating cars and pedestrians in
the region of interest [1] [2]. The progress of deep learning
networks has drastically improved the detection accuracy for
autonomous driving system in recent years. However, for any
object detection network to gain a high detection accuracy,
well-annotated datasets are essential—especially within cur-
rent network structures [3] [4].

Without changing the architecture of a network, researchers
can leverage improved datasets for better detection results. The
recent progress in dataset research has brought us larger and
better annotated public datasets. In the domain of autonomous
driving, KITTI [3] is the widely recognized dataset. However,
KITTI has notable drawbacks: 1) it contains relatively small
amounts of data; 2) the data were collected in specific regions
and nations which lack diversity with respect to car types
and road conditions; and 3) the datasets lack representation
of different weather for driving, such as snowy or rainy days.
Due to the datasets’ limitations, networks trained by this type
of dataset may encounter difficulties in generalization [5].

However, collecting data on such weather conditions in

order to train an object detection network can be arduous
and dangerous. Also, such data collection will take a much
longer time since we would have to wait for each different
level of rain or snow intensity. To our best knowledge, no
currently available public datasets specifically focus on this
challenge. Berkeley Deep Driving (BDD) includes special
weather conditions such as rain and snow but is not sufficient
as the size of the weather data is limited [6]. Virtual reality
has provided a feasible low cost way to facilitate computer
vision related developments [7]. With the help of virtual reality
and computer graphics, simulation data can be applied to
augment existing dataset. However, most of the existing works
[8], which uses games like Grant Theft Auto V (GTA V)
to augment dataset, only take limited weather conditions into
account. In contrast, we care more about autonomous driving
in different special weather conditions since it is challenging
and all-consuming to get real data. Inspired by [9] [10] who
used simulations to address the problem of data hunger, we
present a large dataset for autonomous driving research that
simulates special weather conditions in this paper.

The major contributions of our work are as follows: 1. We
create a new large-scale simulation dataset for autonomous
driving which focuses on special weather conditions. The re-
sults from our work indicate that the object detection networks
trained by our simulation dataset outperform their counterparts
in terms of detection accuracy under both rainy and snowy
weather conditions; 2. We implement an automated pipeline
for data collection and annotation from a high realism video
game. Our data approach reduces the cost of data collection
and annotation; 3. We help similar research in our field better
understand the simulation data generation and investigate its
contribution to object detection for autonomous driving.

II. RELEVANT RESEARCH

Object detection has developed rapidly from an obscure
target to a key emphasis in the most up-to-date studies
on computer vision [11] [12]. Notwithstanding significant
progress, object detection is still subpar, especially when
compared to human performance. The development of deep-
learning approaches has profoundly influenced most advanced,
contemporary techniques in the field of computer vision [13].
Currently, many fruitful methods in various practices have

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

been set up using deep neural networks [14] [15] [16] [17].
One of the primary reasons for their achievements is due to
their easy access to extensive datasets like ImageNet [18],
PASCAL VOC [19], PASCAL-Context [20], and Microsoft
COCO [21] that encourage deep neutral networks to play their
due roles.

For autonomous driving, the autonomous-driving agent has
special and high requirements for system performance and
dependability. As a result, much attention has been given
to studies on the latest object detection technologies for
architecture design for deep-learning networks [22]. On the
other hand, research progress towards image recognition for
autonomous driving systems has direct association with the
existence of datasets such as the KITTI [23], CamVid [24],
Leuven [25], Cityscapes [26] and Daimler Urban Segmen-
tation [27] datasets. However, the above-mentioned scene
datasets collected in cities are usually much too small to
handle all possible driving circumstances in more general
surroundings. Up to now, this deficiency has restricted the
further development of image recognition of road conditions.
To achieve the goal of human-level recognition, deep learning
networks should be trained with datasets that include good
annotations, a large capacity, and extensive contents. In future
efforts, attention should be given to working out an auto-
mated annotator to replace human labors in data labeling and
classification [10]. It will get researchers nowhere to set up
high-quality and large-capacity datasets without the means to
implement automated annotation of that data [10]. Despite
part of current achievements probing into the possibilities of
automated annotation, dealing with such large datasets still
requires the engagement of manpower for managing specific
labeling procedures and qualifying annotation outcomes. To
address this challenge, our work endeavors to reach a fully
automated annotation process and accurately label image data.

Based on the discussion above, it is insufficient for the
current, relatively limited (only a few thousand of images in
contemporary datasets), manually-labeled datasets to enable
an autonomous car to operate safely in the real world. The
collection of real-world data requires significant amounts of
time, money and manpower [10]. Current prestigious datasets
with emphasis on real-world data have required the support of
substantial monetary appropriations [26] [23] [28]. As a reply
to this issue, simulation data is put forward as an alternative to
limited, manually-labeled datasets. In the past three decades,
computer graphics have become more sophisticated and there
has been an increasing market for virtual reality entertainment,
stimulating great innovation in the production of high realism
imagery at high speeds. If it is possible for networks trained
with this kind of simulation data to work as well as those
trained with real-world data to handle practical missions, then
we can start to increase the amount of training data provided
from simulations and validate whether larger datasets are
adequate for understanding generic models.

Up to now, several attempts have been made to produce
simulation data to better the performance of deep-learning net-
works. [29] applied 3D renderings of objects to enrich existing

training data for the assignment of pedestrian recognition. [30]
introduced synthetic modeling of pedestrian movement from
different detectors. [29] applied 3D rendering to generate a
synthetic image, which is conducive to the setting of training
data for a convolutional neural network (CNN) based method
in viewpoint estimation. [10] employed high-realism video
games to produce training data for vehicle detection. [10]
collected and annotated data from video games using a semi-
automated labeling program. [10] demonstrated that the upper
limit of training examples that can be applied without changing
the architecture of a deep-learning network has not yet been
reached [10].

Our work is inspired by [10]. We also collect simulation
data for training object detection network. Unlike [10] whose
data generation process is semi-automated, we implement a
fully automated pipeline for data collection and annotation
to create a new large-scale simulation dataset. We use our
simulation dataset to train a network that achieved state-of-
the-art performance to a network trained on real-world data.

III. METHOD AND EXPERIMENTS

In this section, we first present the data collection process
which relies on a self-driving agent in the video game.
Once we collect the raw data, we implement an automated
annotation tool to label our data. At the end, we evaluate
the collected dataset using several modern object detection
networks.

A. Autonomous Data Collection

1) Self-Driving Agent: To collect data, we implement a
self-driving agent based on [5] [31] in the computer game
Grant Theft Auto V (GTA V). GTA V creates highly photo-
realistic image data to simulate city and scenery roads under
a variety of terrain and weather conditions.

Although it is possible to simply have a human play the
game and capture scenes, acquiring a large enough dataset
in this way will cost too much in terms of human resources.
Therefore, we first hire several players to play the game and
capture their driving behavior, and then develop a self-driving
agent based on the collected human driving data. The driving
commands for the self-driving agent are generated by a CNN
model which takes the driving images as inputs and predicts
a proper steering decision (as shown in Fig. 1).

To avoid potential collisions, we utilize a customized object
detection [32] and depth estimation network [33] to detect
vehicles and pedestrians. If vehicles or pedestrians are detected
by the object detection network, we calculate the relative dis-
tance (RD) of the detected object from the self-driving agent
by using the depth estimation network. RD is in percentile
scale with a small number being equal to a small distance. We
designate RD>0.5 to be a safe distance for driving. If RD≤0.5,
we continue to check the localization of the object’s centroid
point (CP). If the CP falls in the range of 30 to 70 percent
of the image’s width, it means that the detected object is on
our agent’s trajectory and a brake is continuously generated
until the object moves away. In contrast, no brake is generated

CNN

Input
driving
image

Self-driving
CNN model

Driving
command
inference

Fig. 1: The CNN model for self-driving agent. It takes the
driving image as input and predicts steering commands. For
instance, from the left to the right column, the CNN model
predicts to turn left, move forward, and turn right.

for the self-driving agent. The brake command generation is
demonstrated in Fig. 2.

2) Raw Data Generation: Once the self-driving agent is
trained, we use the trained agent to replace manpower to
collect raw data. When the self-driving agent drives in the
video game, we implement a screen-shot program to prepare
to grab the video frame every two seconds. To collect data
accurately, we leverage our customized object detection mod-
ule to detect if an object of interest appears in the frame.
If objects of interest (vehicular objects) are detected at the 2-
second mark, this frame is grabbed and saved for further stages
of the process; on the contrary, no data is collected at that
moment. In our work, we define special weather conditions
to be either rainy or snowy weather, so we set the game’s
weather status to one of those options when collecting data.
In order to include diverse lighting conditions, the time flow
rate is set as one hour per second in the game. The entire data
collection process is summarized in Algorithm 1.

B. Automated Data Processing and Labeling

When collecting data, we set the game window size as
1600×900. Once we collect the raw data, we first pre-process
the raw image by removing both the headlight of the self-
driving agent and the sky. We only keep the region of interest
which focuses on the road image, as shown in Fig. 3. The
final image size is 1600×600.

After pre-processing, we implement an automated annotator
to produce the accurate ground truth of each object in the
image, as shown in Fig. 4. In order to obtain high quality
annotations, we implement an annotator that follows a strict
protocol to label the raw data. The annotation steps are
elaborated below:

• Based on the saved ground truth of each object from
data collection, our annotator computes the change of the
image’s size from pre-processing and generates a new
rough ground truth for the individual object (as shown
in Fig. 3(a)). However, the rough ground truth is not

accurate enough and includes pixels that do not belong
to the target object.

• Next, the annotator computes the mean depth of the
object of interest (as shown in Fig. 3(b)). With this depth
estimation information, we are able to identify objects
with severe truncation or occlusion.

• Based on the mean depth information and rough ground
truth, our annotator iteratively extracts and cuts out the
individual object of interest. Each object is then masked
with a unique color and its contours are drawn to help
discriminate occlusion or truncation (as shown in Fig.
3(c)).

• Once we have the contours of each object, it is easy
for the annotator to separate each detected object from
the image and produce a more accurate ground truth.
We visualize the bounding boxes of each object which
illuminate that the ground truth for each is improved
effectively (as shown in Fig. 3(d)).

After each labeling process, the annotator automatically
saves the ground truth of the individual objects from the image
data into a corresponding XML file. There are 300,000 images
labeled. Once the annotation process is completed, the entire
dataset is randomly split into training, testing, and validation
datasets in the proportions of 75%, 15%, and 10% respectively.

C. Dataset Evaluation

We employ four state-of-the-art object detection networks,
R-FCN [34], Faster-RCNN [35], SSD [36], and YOLOv3 [37],
to evaluate the performance of our dataset. We employ the
Keras framework for all network training. We train each of
the networks with our dataset, with KITTI, and with BDD
(only snowy and rainy data).

Before training, we modify the annotations of the KITTI
and BDD datasets to align with Pascal VOC format [3]. In our
work, the detected objects are all vehicles, so the annotations
of the two datasets are modified accordingly. In KITTI, the
original ‘car’, ‘truck’, and ‘van’ classes are changed to ‘car’.
In BDD, the original ‘car’, ‘bus’, ‘truck’, and ‘motor’ classes
are changed to ‘car’. If the annotation is not a vehicle, that
object’s class is removed from the two datasets used in our
training.

During the training, we employ an Adam optimizer with
10−4 as the learning rate, 10−5 as the decay rate, and 12
as the batch size. For each epoch, the datasets are learned
entirely. Since the image sizes and data size of each dataset
are different, we do not use a fixed number for the training
epoch. When training for each network reaches a plateau
status, namely the loss rate and accuracy stop changing, we
end the training.

To our best knowledge, no dataset is currently available
which exclusively focuses on special weather and road con-
ditions. To test the performance of each trained network in
real-world environments, we leverage Google Search API to
download 4,000 pictures which focus on traffic of rainy and
snowy day. We use the self-prepared testing dataset to evaluate

Fig. 2: Brake command generation. The area within the white dotted lines illuminates the trajectory of the self-driving agent.
The left image includes a vehicular object which is within the driving trajectory of the self-driving agent and at an unsafe
distance, so our model issues a brake command to stop our self-driving agent; the right image shows a vehicular object which
is not at a safe distance but not within the driving trajectory of our self-driving agent, so our model issues no brake at this
moment.

Algorithm 1 Autonomous Data Collection Process.

1: input: frame{It} / Input frames It from GTA V game, t = 1, . . . ,∞
2: dr cmd = CNN(It) / Use the CNN model to predict driving commands
3: (xi, yi, wi, hi) = obj det(It) / Detect if there is any object of interest
4: if (xi, yi, wi, hi) then / If there is any object detected
5: datat = grab(It, (xi, yi, wi, hi)) / Save the frame and ground truth
6: apx dis = depth(It) / Predict an approximate distance of the scene
7: if apx dis ≤ 0.5 then / If the distance of an object is closer than 0.5
8: mid pt = x+ w/2 / Compute the middle point of the object
9: if 0.3 < mid pt < 0.7 then / If the object is on the trajectory of our agent

10: brake =′′S′′ / Enter key ”S” for brake and stop our agent
11: end if
12: end if
13: end if
15: output: Save {datat} / Save raw all the frames from data collection

Fig. 3: Image pre-processing. The sky and headlight of the
scooter are removed.

the performance of each dataset.
All the trained object detection networks are assessed on

our self-prepared testing dataset. We use the object detection
criteria from PASCAL [3] to evaluate the performance of each
trained network. Considering the fact that there is only one
labeled class (cars), we evaluate the detection accuracy based
on average precision (AP). The intersection over union (IoU)
between the ground truth and the predicted bounding box are

calculated for AP. Following the design from [38], we use
70%, 80%, and 90% IoU thresholds to determine the true
positive detection result. Namely, for each detection inference,
the IoU needs to meet the designated threshold to be counted
as a successful inference.

IV. RESULTS ANALYTICS

A. Autonomous Data Collection

The self-driving agent can typically stay within the ap-
propriate driving lane in the game and thus collect data
autonomously. If in danger of running off a curved roadway,
the self-driving agent is capable of recovering and driving back
onto the road. On average, it can drive in the game without
human intervention for 22 minutes. Major exceptions occur
under three circumstances. First, when the self-driving agent
has to make decision at intersections for turning left or right,
it may enter the wrong road or run off the road, which can
cause collisions with other cars and pedestrians. Second, when
the self-driving agent encounters red lights, it cannot read the
signals for stopping or continuing. This also causes collisions.
Finally, if an object suddenly moves close to our self-driving
agent, this can also lead to problems for the self-driving agent.

(a) Rough ground truths

(b) Mean depth calculation

(c) Contour classification

(d) Improved ground truths

Fig. 4: Labeling protocol. In (a), our annotator first produces
rough ground truths of each object. In (b), the mean depth
of each object’s appearance is computed to resolve the issue
of occlusion. In (c), each object of interest is masked with
different colors which help to draw their distinct contours. In
(d), ground truths are improved effectively.

B. Simulation Dataset

We select and label a total of 300,000 rainy and snowy
road images from the simulation. In our dataset, we only
have a single “car” class which includes buses, trucks, vans,
motorcycles, and cars. Since we set the time flow rate in the
game to a fast mode, we are also able to collect data under
different lighting conditions.

Compared to state-of-the-art human annotated datasets such
as KITTI [3] and BDD (only snowy and rainy data) [6], our
dataset size is tremendously large (as shown in Table I). With
our automated data collection and annotation tools, we can
conveniently enlarge the size of the dataset. Our dataset meets
the need for data reflecting special weather conditions. In
addition, since our simulation data are collected from diverse
road types and at a range of times, our dataset includes more

diversity in terms of road structures and lighting conditions
compared to existing real-world datasets.

To evaluate the object appearance distributions from each
dataset, we calculate the bounding box centroids across our
dataset, KITTI [3], and BDD (only snowy and rainy data)
[6]. We employ heatmaps to visualize the distribution of the
object appearance (as shown in Fig. 5). It can be seen that our
simulation dataset has a much larger spread of distribution in
comparison with the two real-world datasets. In addition, while
most of the instances appear in the center of the images, the
populous density of instances for our dataset is much higher
than Cityscape and KITTI.

TABLE I: The number of images from BDD, KITTI, and our
simulation dataset.

Dataset Weather

Rain Snow Total

Ours 145,039 154,961 300,000
KITTI N/A N/A 5,000
BDD 5,070 5,549 10,619

C. Comparison with State-of-the-art Datasets

1) Quantitative Results: We evaluate the performance of
these datasets by comparing the detection accuracy of each
network trained by each dataset. Since all the networks are
trained in the same experiment settings, the training dataset
is the only contributing factor which would differentiate net-
works’ detection accuracy. The evaluation results are reported
in Table II. Based on the results, networks trained by
our dataset have the best overall performance in detection
accuracy. For testing on both rainy and snowy images, our
dataset assists networks in achieving higher detection accuracy
under different IoU thresholds.

For R-FCN, the network trained by our dataset led the
BDD-trained network by 2%, 0.5%, and 0.1% and the KITTI-
trained network by by 6.5%, 3.9%, and 7.3% under the rainy
condition; the network trained by our dataset led the BDD-
trained network by 4.9%, 0.4%, and 2.1% and the KITTI-
trained network by 8%, 5.5%, and 10.6% under the snowy
condition.

For Faster-RCNN, the network trained by our dataset led
the BDD-trained network by 4.2%, 0.5%, and 0.1% and the
KITTI-trained network by 6.4%, 6.5%, and 2.4% under the
rainy condition; the network trained by our dataset led the
BDD-trained network by 4%, 2.6%, and 2.8% and the KITTI-
trained network by 6.3%, 3.9%, and 0.3% under the snowy
condition.

For YOLOv3, the network trained by our dataset led the
BDD-trained network by 3.4%, 3.5%, and 4.3% and the
KITTI-trained network by 6.8%, 7.5%, and 8.8% under the
rainy condition; the network trained by our dataset led the
BDD-trained network by 4.5%, 3.2%, and 2% and the KITTI-
trained network by 5.2%, 5.3%, and 3.6% under the snowy
condition.

Fig. 5: Heatmaps of the bounding box centroids for BDD, KITTI, and our simluation dataset.

Fig. 6: Demonstration of detection results from networks trained by ours, KITTI and BDD datasett. We use examples from
R-FCN. The top row demonstrates examples from a network trained by our simulation dataset; the middle row demonstrates
examples from a network trained by KITTI; and the last row demonstrates examples from a network trained by BDD.

For SSD, the network trained by our dataset led the BDD-
trained network by 4.4%, 6%, and 5.1% and the KITTI-
trained network by 4.8%, 7.6%, and 5.4% under the rainy
condition; the network trained by our dataset led the BDD-
trained network by 1.8%, 2.7%, and 0.1% and the KITTI-
trained network by 3.7%, 6.3%, and 0.8% under the snowy
condition. These results demonstrate that the networks trained
by our simulation dataset predict a more accurate ground truth
compared to that predicted by its counterparts.

2) Qualitative Analysis: We visualize the qualitative results
of each trained model for comparisons (as shown in Fig. 6).
We notice that networks trained by our large-scale dataset
are more capable of detecting smaller objects or objects with
severe occlusion or truncation. In contrast, networks trained
by KITTI and BDD struggle to handle objects which have
severe occlusion or truncation or are a large distance away are
normally smaller than 20×20 pixels.

Based on the evaluation results, we argue that simulation
datasets can be a powerful technique to train networks and to
resolve the limitations of real-world datasets. Our dataset out-
performs its two counterparts because its size is much larger
than real-world datasets and our dataset includes more diverse
imagery information. Specifically, although BDD claims that
it includes snowy and rainy days, most of pictures included in
its dataset are not representative of the two weather conditions
(as shown in Fig. 7). In contrast, our approach addresses
the challenge of data diversity and quality effectively. After
comparing our simulation dataset with two prestigious real-
world datasets, we argue that our dataset can compete against
the best existing dataset for object detection in autonomous
driving tasks. However, the proposed rule for breaking actions
may not work for objects moving toward a car agent itself
because a car agent must predict the direction and approaching
speed of other car agents. We will introduce extra information

Fig. 7: Comparison of data between our dataset and BDD. The bottom row shows images from BDD which frequently are
blocked by the wiper. In general, the BDD images have little representation of rainy and snowy conditions. The top shows
images are from our dataset which offer clear objects and high resolution in the two weather conditions.

like optical flow to help predict the direction and approaching
speed to improve the performance which will serve as our
future works to update our dataset. Also, for the evaluation
of our dataset, the cross-validation of three datasets may not
emphasize the attributions of the proposed dataset entirely
and clearly due to the space limitation. We will update the
dataset and add more detailed evaluation experiments about
its intrinsical characteristics in our extended future works.

TABLE II: Detection results for networks trained by KITTI,
BDD, and our simulation dataset. All reports are in % and
best results.

Dataset Network Rainy Images Snowy Images

AP70% AP80% AP90% AP70% AP80% AP90%

KITTI
R-FCN

83.2 73.9 56.1 79.3 68.7 55.6
BDD 87.7 77.3 63.3 82.4 73.8 64.1
Ours 89.7 77.8 63.4 87.3 74.2 66.2

KITTI Faster-
RCNN

81.9 71.6 63.2 80.6 70.8 65.6
BDD 84.1 76.1 62.5 82.9 72.1 63.1
Ours 88.3 78.1 65.6 86.9 74.7 65.9

KITTI
YOLOv3

79.8 69.8 60.1 80.1 69.8 60.2
BDD 83.2 73.8 64.6 80.8 71.9 62.6
Ours 86.6 77.3 68.9 85.3 75.1 64.6

KITTI
SSD

77.8 68.5 60.3 78.2 66.9 59.6
BDD 78.2 70.1 60.6 80.1 70.5 61.3
Ours 82.6 76.1 65.7 81.9 73.2 61.4

D. A Mixed Training with Real-world Dataset

With a larger amount of simulation data, we achieve a supe-
rior performance compared to networks trained with only real-
world images and data. We further evaluate the contribution
of our dataset by training object detection networks with both
our simulation dataset and a real-world dataset. The results
are presented in Table III. Based on the results, we notice that
networks trained by a mixture of our dataset and a real-world
dataset achieve further improvement in detection accuracy. The
mixture training method improves detection accuracy on a

recognizable scale. This result indicates that we can use our
large-scale dataset to pre-train an object detection network and
then use a customized dataset to fine-tune the network and
achieve more robust results in a specific context.

TABLE III: A mixed training. All reports are in % and best
results.

Dataset Network Rainy Images Snowy Images

AP70% AP80% AP90% AP70% AP80% AP90%

Ours+KITTI
R-FCN

90.6 79.4 64.2 88.4 75.8 67.0
Ours+BDD 91.5 80.9 65.1 89.3 78.7 69.6
Ours 89.7 77.8 63.4 87.3 74.2 66.2

Ours+KITTI Faster-
RCNN

89.1 79.3 67.5 87.9 75.3 66.2
Ours+BDD 90.8 80.6 69.2 88.6 76.8 68.6
Ours 88.3 78.1 65.6 86.9 74.7 65.9

Ours+KITTI
YOLOv3

87.2 78.4 69.6 86.8 7.9 65.6
Ours+BDD 89.3 79.7 70.2 90.2 79.2 66.9
Ours 86.6 77.3 68.9 85.3 75.1 64.6

Ours+KITTI
SSD

83.3 77.2 66.6 82.1 74.5 62.3
Ours+BDD 87.8 78.8 68.2 84.3 76.9 69.1
Ours 82.6 76.1 65.7 81.9 73.2 61.4

V. CONCLUSION AND FUTURE RESEARCH

In this work, we explore the power of employing simulation
data to train networks to effectively detect objects under
special weather-related road conditions. We introduce a
innovative way to collect a large-scale simulated dataset with
a focus on facilitating object detection in autonomous driving
under rainy and snowy weather conditions. Considering the
fact that special weather conditions are missing from current
public datasets, our work feeds a need for data about such
road context. We use extensive experiments to validate our
simulation dataset by comparing with KITTI and BDD.
Results indicate that our dataset is competitive with current
state-of-the-art datasets. The experiment results demonstrate
the effectiveness of using simulation data to meet real-world
challenges in practice.

REFERENCES

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE transactions on pattern analysis and machine intelligence, vol. 32,
no. 9, pp. 1627–1645, 2010.

[2] D. Liu, Y. Wang, K. E. Ho, Z. Chu, and E. T. Matson, “Virtual world
bridges the real challenge: Automated data generation for autonomous
driving,” in 2019 IEEE Intelligent Vehicles Symposium Conference.
IEEE, 2019, pp. 159–164.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3354–3361.

[4] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset,” in CVPR Workshop on the Future of Datasets in Vision, vol. 1,
no. 2, 2015, p. 3.

[5] Y. Wang, D. Liu, H. Jeon, Z. Chu, and E. Matson, “End-to-end learning
approach for autonomous driving: A convolutional neural network
model,” in Proceedings of the 11th International Conference on Agents
and Artificial Intelligence - Volume 2: ICAART,, INSTICC. SciTePress,
2019, pp. 833–839.

[6] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 2174–
2182.

[7] W. Qiu and A. Yuille, “Unrealcv: Connecting computer vision to unreal
engine,” in European Conference on Computer Vision. Springer, 2016,
pp. 909–916.

[8] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European Conference on
Computer Vision. Springer, 2016, pp. 102–118.

[9] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 3234–3243.

[10] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and
R. Vasudevan, “Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks?” in IEEE International
Conference on Robotics and Automation, 2017, pp. 1–8.

[11] D. Hoiem, J. Hays, J. Xiao, and A. Khosla, “Guest editorial: Scene
understanding,” International Journal of Computer Vision, vol. 112,
no. 2, pp. 131–132, 2015.

[12] D. Liu, Y. Wang, and T. Chen, “Application of color filter adjustment
and k-means clustering method in lane detection for self-driving cars,”
in 2019 IEEE International Conference on Robotic Computing (IRC).
IEEE, 2019, pp. 153–158.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[15] Y. Wang, D. Liu, H. Jeon, Z. Chu, and E. T. Matson, “End-to-
end learning approach for autonomous driving: A convolutional neural
network model,” in Proceedings of the 11th International Conference
on Agents and Artificial Intelligence: ICAART, 2019.

[16] M. Zhang, Z. Lin, Y. Cui, F. Shen, and Y. Shen, “Multiclassification
method for hyperspectral data based on chernoff distance and pairwise
decision tree strategy,” in 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), July 2016, pp. 505–508.

[17] M. Zhang, W. Guo, Y. Cui, F. Shen, and Y. Shen, “Manifold learning
based supervised hyperspectral data classification method using class
encoding,” in 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), July 2016, pp. 3160–3163.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[19] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” International journal of computer vision, vol. 111, no. 1,
pp. 98–136, 2015.

[20] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler,
R. Urtasun, and A. Yuille, “The role of context for object detection
and semantic segmentation in the wild,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 891–
898.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[22] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, and
A. M. Lopez, “Vision-based offline-online perception paradigm for
autonomous driving,” in 2015 IEEE Winter Conference on Applications
of Computer Vision. IEEE, 2015, pp. 231–238.

[23] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[24] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognition
Letters, vol. 30, no. 2, pp. 88–97, 2009.

[25] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool, “Dynamic 3d scene
analysis from a moving vehicle,” in 2007 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2007, pp. 1–8.

[26] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[27] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth, “Efficient multi-
cue scene segmentation,” in German Conference on Pattern Recognition.
Springer, 2013, pp. 435–445.

[28] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, 2018.

[29] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 2686–2694.

[30] H. Hattori, V. Naresh Boddeti, K. M. Kitani, and T. Kanade, “Learning
scene-specific pedestrian detectors without real data,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 3819–3827.

[31] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[32] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs
for modern convolutional object detectors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7310–
7311.

[33] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, 2017.

[34] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” 2016.

[35] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[36] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[37] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[38] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks?” arXiv preprint
arXiv:1610.01983, 2016.

