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Abstract—State-of-the-art deep neural networks (DNNs) are
highly effective in solving many complex real-world problems.
However, these models are vulnerable to adversarial perturbation
attacks, and despite the plethora of research in this domain,
to this day, adversaries still have the upper hand in the cat
and mouse game of adversarial example generation methods vs.
detection and prevention methods. In this research, we present a
novel detection method that uses Shapley Additive Explanations
(SHAP) values computed for the internal layers of a DNN
classifier to discriminate between normal and adversarial inputs.
We evaluate our method by building an extensive dataset of
adversarial examples over the popular CIFAR-10 and MNIST
datasets, and training a neural network-based detector to distin-
guish between normal and adversarial inputs. We evaluate our
detector against adversarial examples generated by diverse state-
of-the-art attacks and demonstrate its high detection accuracy
and strong generalization ability to adversarial inputs generated
with different attack methods.

Index Terms—Adversarial Learning, Explainable AI, SHAP,
Deep Learning.

I. INTRODUCTION

In recent years, deep neural network (DNN) learning algo-
rithms have been widely used to solve a variety of complex
problems. Their greatest impact has been seen in fields such
as image classification, object recognition, natural language
processing, and malware detection.

Despite their outstanding performance - often outperforming
human experts - DNNs have been shown to be vulnerable
to adversarial perturbations. First discovered by Szegedy et
al. [1], adversarial perturbations are slight modifications of
DNN input that cause misclassification. For example, in the
domain of image classification - such modifications could be
small adjustments in pixel colors that are imperceptible to
humans, yet cause state-of-the-art classifiers to produce output
arbitrarily chosen by an attacker.

Since then, extensive research has been conducted on ad-
versarial examples focusing on four major directions: ad-
versarial example generation methods [2]–[6], defenses for
increasing the robustness of DNN models against adversarial
examples [7]–[9], adversarial example detection [10]–[16],
and understanding the nature and root causes of adversarial
examples [6], [17]–[19].

Currently, attackers are still ahead in their arms race with
the defenders, with state-of-the-art defenses falling short in

the face of advanced adaptive attacks [20]. Thus, the ability
to effectively detect adversarial examples remains an open
problem.

Another, seemingly unrelated, yet notable shortcoming of
DNN models, is the difficulty in explaining the rationale,
or even providing supporting evidence to justify their de-
cisions. This poses a significant obstacle to their adoption
in production-grade contexts [21]. For this reason, extensive
research efforts are being invested in the field of explainable
artificial intelligence (XAI) to improve the ability of humans
to interpret the decisions made by DNN and other machine
learning models [22]–[25].

We hypothesize that a deep connection exists between
model explainability and adversarial examples. Intuitively, a
well explained model should be fairly robust to adversarial
perturbations, since adversarial input would result in the emer-
gence of anomalous explanations for the model’s decision. Our
goal in this paper - is to uncover and utilize this connection to
advance the state of the art in adversarial example detection.
We present and evaluate a novel adversarial example detection
method that applies the SHAP explainability technique [25]
on the penultimate layer of a DNN to create “XAI signatures”
which are fed into our detector.

We evaluated our proposed method using the CIFAR-
10 [26] and MNIST [27] datasets, generally following the
strict adversarial defense evaluation guidelines set forth by
Carlini et al. [28]. The evaluation results show that our
method is highly effective in detecting adversarial examples
(AUC ˜97%) and generalizes well across different adversarial
example generation algorithms. The excellent generalization
results support our hypothesis that our method captures an
intrinsic property of adversarial examples. In contrast to prior
detectors, we evaluate ours against a wider range of adversarial
attacks (both white-box and black-box), including the strongest
known attacks, and achieve very high detection ROC-AUC
scores in both scenarios: adversarial examples generated by
attack methods the detector was trained on, and adversarial
examples generated by attack methods that the detector was
not trained on.

To summarize, our main contributions in this study are two-
fold: (1) we introduce a novel adversarial example detection
method with an impressive detection performance and demon-
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strate its high effectiveness against a diverse range of adver-
sarial attacks; and (2) we make a first step towards uncovering
a deep link between adversarial learning and explainable AI.

II. BACKGROUND

A. Adversarial Attacks

Attacks against machine learning classifiers, denoted as
adversarial machine learning, occur in two main phases of the
machine learning process: during model training, also known
as poisoning, and during the classification phase, also known
as evasion attack. A poisoning attack can be performed by
inserting crafted malicious samples to the training set as part
of the baseline training phase of a classifier. In this research we
focus on evasion attacks, and specifically, detecting adversarial
examples. An evasion attack involves modifying the analyzed
sample’s features to evade detection by the model. Such
samples are called adversarial examples [1].

Given a classifier f : Rn → C mapping a floating point
vector of an input sample to a class in the set of possible target
classes, an input sample x ∈ Rn, and a correct class label c,
we call δ ∈ Rn an adversarial perturbation and x′ = x + δ
an adversarial example if:

f(x′) 6= c,

s.t : ||δ|| < ε
(1)

where || · || is a distance metric and ε > 0 is the maximum
allowed perturbation size which is set to a small positive
value to constrain the perturbation s.t. the resulting adversarial
example is indistinguishable from the original sample to the
naked eye. Although the perceived difference between the
original and perturbed samples is difficult to estimate, the
distance metrics used in most adversarial attacks are L0 (the
number of input features changed), L2 (standard euclidean
distance) and L∞ (maximum difference of any single feature),
each one providing a good, albeit different, approximation of
the perceived difference.

The algorithm or method used to generate the adversarial
example is often referred to as an adversarial attack. A
targeted attack generates an adversarial example that gets
classified as a specific, attacker defined, target class, whereas
a non targeted attack merely causes a misclassification to any
incorrect target class. Many adversarial example generation
methods have been invented in recent years. Some of the most
notable, which are among the ones we use for our evaluation
include:
• Fast Gradient Sign Method (FGSM) [19] - a basic tech-

nique that involves taking a single step in the input
space in the direction of the gradient of the model’s
cost function with magnitude equal to the max allowed
perturbation norm (ε).

• Basic Iterative Method (BIM) and its variation Projected
Gradient Descent (PGD) [5], [6] - a natural extension of
FGSM that takes multiple FGSM-like steps with smaller
step sizes adding up to less than the maximum allowed
perturbation size (ε).

• Carlini & Wagner (C&W) [4] - an attack that formulates
the problem of finding an adversarial examples as an
optimization problem with a cleverly chosen loss function
tailored for each metric.

Adversarial attacks can be further divided to white box and
black box. In the white box scenario, an attacker has full access
to the attacked classification model, including its internal
structure and parameters/weights. In black box attacks, the
attacker can only feed the model with inputs and observe the
outputs but doesn’t have access to its internal state.

B. Adversarial Defenses

Previously proposed defense methods against adversarial
attacks can be categorized as methods that aim at improving
the robustness of the trained model to adversarial attacks
and methods that aim at detecting adversarial examples.
Methods for generating robust models include adversarial
training [19], Defensive Distillation [7], Gradient Obfuscation,
Feature Squeezing [13] and more.

In this research we propose a method for detecting adversar-
ial examples. Most previously proposed methods for detecting
adversarial examples attempted to identify irregularities in
the input data, or in the internal behavior (e.g., internal
layer activations) of the model, while others take a more
active approach that involves transforming the inputs [13] or
modifying the training process [16] to improve the detector
performance.

C. Understanding adversarial examples

Ilyas et al. [18] argue that the existence of adversarial
examples is actually an intrinsic property of the dataset itself.
They introduce that notion of robust and non-robust features.
Non-robust features are highly predictive, yet very fragile and
prone to change drastically due to small perturbations of the
input. Robust features, on the other hand, are features that
are both highly predictive and do not change easily by small
change in the input. One can think of robust features as
features that capture some important, high-level, feature of
the target class - such as the presence of wheels and windows
for cars, whereas non-robust features are seemingly random
patterns that aren’t noticeable by human beings, but emerge as
highly predictive during the training process. Ilyas et al. show
that the existence of adversarial examples, as well as their
transferability across different classification models, naturally
arises from the existence of non-robust features since they
allow small perturbations in the input to cause major changes
in value of these highly-predictive features.

D. Explainable AI

Explainable AI (XAI) is an emerging researched field in
machine learning with the purpose of allowing users to un-
derstand, trust, and effectively manage the next generation of
AI solutions [21]. Most of the XAI methods developed in
recent years are meant to explain supervised machine learning
models. For example, the LIME [29] method introduced for
explaining the prediction using a local model; the DeepLIFT



method [30], which uses back propagation through all of
the neurons in the network to explain the output; and the
SHAP [25] method, which is a unified approach that aims
to explain the model output using shapely values - a concept
borrowed from game theory where it is used to calculate the
relative contributions of different players in a coalition. In the
context of XAI, they are used for estimating the contribution
of a specific input or neuron to a model’s decision. The need to
explain the output is especially important in anomaly detection
based on deep learning models, because usually in this case
not all of the anomaly types are known (labeled). In this
research we use the SHAP DeepExplainer method, which is a
variation of the SHAP algorithm that is specifically optimized
for explaining DNN models.

III. RELATED WORK

Previous works suggested methods for detecting adversarial
examples. A summary of these works is presented in Table I.
The table presents a succinct summary of the detection concept
and evaluation setup and results of each detector. In addition,
we summarize the most important pros and cons of each
detector. In this research we propose a novel approach for
detecting adversarial sample which was not proposed before.
In addition, we conduct a more comprehensive evaluation by
checking the models ability for cross attack generalization as
well as evaluating on a larger quantity of diverse attack types,
thus providing a higher confidence in our model’s ability to
adapt to real-world challenges.

IV. ROBUSTNESS THROUGH EXPLAINABILITY

Adversarial evasion attacks change the values of non-robust
features, while largely leaving robust features intact [18].
This is because applying an effective modification to robust
features requires significant changes to the input. Conse-
quently, we hypothesize that we should see different patterns
in the importance of robust vs. non-robust features in the
classification of normal and adversarial inputs, with the lat-
ter relying more heavily on non-robust features. We try to
leverage this hypothesized property of adversarial examples by
utilizing explainable AI methods (XAI) for interpreting model
predictions.

Consequently, for each input to be classified as adversarial
or normal, we utilize SHAP [25] to compute the importance
scores of the neurons of the penultimate layer of the clas-
sification model. Then, we use these importance scores as
features for our adversarial example detector. The reason for
interpreting the penultimate layer (instead of the input layer
for instance) is because the neurons of this layer actually form
high-level features of the original classification model [31].

Figure 1 provides an illustration that supports our hypoth-
esis. On the left side of the figure, we can see three normal
examples of the same class “cat”, and on the right side we
can see three normal examples of another class “automobile”.
In the middle of the figure we can see a normal (original)
example from the class “automobile” and a perturbation of
that example after applying a targeted (target class “cat”)

PGD L2 attack [6]. Below each image (example) we present
the SHAP XAI signature of the image, such that each pixel
in the signature at coordinates (row = i,col = j) contains
the SHAP value of neuron i for target class j. Red pixels
denote positive contributions of their respective neurons for
steering the model’s decision towards the respective target
class, whereas blue pixels denote a negative contribution,
steering the model away. The intensity of the color denotes
the magnitude of the positive or negative contribution, with
white/transparent pixels denoting no contribution at all. From
a birds eye view of the figure it can be observed that the
XAI signatures of images of the same class (automobiles or
cats) are similar, while different classes have different XAI
signatures. In can be also observed that although the original
and perturbed automobile examples look the same, their XAI
signatures are different. A closer look, however, uncovers
even more intriguing properties: The normal car contains five
relatively distinctive rows in their XAI signatures (two near
the top, two near the bottom and one closer to the middle).
Moreover, the bright red pixels in these rows are located
in columns 1 and 9 which correspond to the target classes
“automobile” and ”truck”. On the left hand side of the figure,
the three normal cat examples share a similarly looking lump
of red pixels in the upper middle part of the XAI signature.
Moving over to the adversarial automobile example, we can
see that it shares two of the five distinctive rows with the
normal cars, and a red lump in the upper middle with the cats.
Thus, a mixture of “automobile” and “cat” features plays an
important role in the decision of the underlying classifier for
this adversarial example. Although this is merely a speculation
and further research is required to draw strong conclusions, but
we hypothesize that this behaviour is perfectly aligned with the
notion of robust and non-robust features: The two distinctive
rows that the adversarial attack failed to alter correspond
to robust features of the “automobile” class, whereas the
remaining three rows that did disappear correspond to non-
robust “automobile” features. Likewise - the part of the red
lump that transferred from the normal cats to the adversarial
one correspond to non-robust “cat” features, while the part
of the lump the didn’t transfer corresponds to robust “cat”
features.

To explore the dataset in more depth, we trained a
UMAP [32] dimensionality reducer on the train set and used
it to project the test set onto the embedding space of the train
set.

In Figure 2 we can clearly see ten distinct clusters of normal
samples, one for each target class, and one cluster containing
adversarial examples. From this separation we deduced that
the computed SHAP values would make good features for
our detector. Figure 3 shows only the adversarial examples,
projected onto the same embedding space as in Figure 2.
The wide spatial dispersion of different types of adversarial
examples all around the clusters of adversarial examples hints
that we could expect our detector to generalize well when
tested on types of adversarial examples it wasn’t trained on.



Ref Concept Datasets Attacks Main Results Pros Cons

[10]
Binary detector fed by
activation of internal

layers

CIFAR-10,
MNIST,

IMAGENET-
10

FGSM, BIM
(L2, L∞),
DeepFool

(L2, L∞)

Accuracy: between 0.79 and
0.97 (average 0.87) when
training and testing on the
same attack; cross attack
scores are much lower

Evaluating transferability
between different attacks
and perturbation budgets

Relatively low detector
accuracy, especially in
generalization scenario;

evaluating on a small set
of attacks

[14]

Cluster activations of
internal layers and classify

adversarial examples
based on movements

between different clusters

CIFAR-10,
MNIST C&W (L2)

CIFAR10 AUC=0.92 (0.95
for correctly classified only)

; MNIST AUC=0.91

Good performance against
the strong C&W attack

Evaluating against the
C&W L2 attack only

(might not perform well
against other attacks)

[11]

Extract features to
construct two

unsupervised detectors and
also an ensemble of them

MNIST,
CIFAR-10,

SVHN

FGSM, BIM,
JSMA, C&W

CIFAR-10: Average AUC of
0.8554

Unsupervised approach (no
need for adv samples for

training)

Low detector performance
(AUC), evaluating on a

weak CIFAR-10 classifier

[12] Statistical tests on raw
inputs

MNIST,
DREBIN ,
MicroRNA

FGSM, JSMA
(on MNIST)

Detection rate: FGSM 99%
JSMA 80%

Generic approach
(applicable to different

domains and model types)

Evaluating on weak
attacks; low performance
on adv samples generated

using JSMA

[15]

Density estimate anomaly
detector; additionally,
change training loss
function of defended

model to RCE to improve
detection rates

MNIST,
CIFAR-10

FGSM, BIM,
ILCM, JSMA,

C&W

AUC: FGSM 99.7, BIM
100.0, ILCM 84.2, JSMA:

85.8, C&W: 95.3; RCE
model: C&W 91.8, ILCM
93.9, JSMA 95.4, C&W

98.2, FGSM 99.7, BIM 100

Good performance on RCE
trained model; unsupervised
approach (no need for adv

samples for training)

Requires customizing the
training of the defended

model

[13]

Decrease input resolution
making adv attacks more

difficult and detection
easier

CIFAR-10,
MNIST,

IMAGENET

FGSM, BIM,
C&W (L0,
L2, L∞),
DeepFool,

JSMA

CIFAR-10: TPR of 0.845
(FPR=0.05)

Evaluating on a diverse set
of adversarial attacks; good

detection performance
against the strong C&W

attack

Weak performance against
the BIM, DeepFool,

JSMA, FGSMS attacks
(relatively weak overall
detection performance)

[16]

Based on statistical
differences in the

distribution of logits of
f(x+ε)

CIFAR-10,
IMAGENET

Train on PGD
L∞ and Eval
on PGD L∞,

PGD L2,
C&W L2

PGD L∞: 99.1% TPR /
0.2% FPR, PGDŁ2: 96.1% /

1% C&W L 2: 91.6% /
4.8%

High detection performance;
generalization across

adversarial attacks

Not evaluating on a
diverse set of attacks

TABLE I
SUMMARY OF RELATED WORKS.

adversarial example
(target = cat)

normal examples
(car)

original example
(car)

normal example
(cat)

XAI signature XAI signature XAI signature XAI signature

Fig. 1. Illustrating the XAI signatures of examples from different classes, as well as original and adversarial example.

V. PROPOSED METHOD

The proposed solution consists of three main phases (Fig-
ure 4): creating a repository of normal and adversarial exam-
ples, generating XAI signatures, and detector construction.

A. Notation

• f(·) - a neural network based classifier
• f [i](·) - the output of the ith neural network layer (0 ≤
i ≤ l), where f [0](·) is the input layer and f [l](·) is the
final softmax output.

• x - input vector
• Y (x) - ground truth label of x

B. Creating a repository of normal and adversarial examples

In this phase, a repository of normal and adversarial samples
is generated. The normal examples are randomly sampled from
the dataset used to train f(·). The adversarial examples are
generated by applying a variety of state-of-the-art adversarial
attack algorithms on f(·). When generating adversarial exam-
ples, it is crucial to investigate the attack’s hyperparameters
such as the distance metrics (e.g., L0, L1, L2, L∞), pertur-
bation budget, number of iteration, attack step and etc) [28].
Fuzzing over the various hyperparameters produces different
types of perturbations (i.e., attacks) and consequently increases
the generalization capability of the detection model.

Algorithm 1 outlines the process of generating a represen-



Fig. 2. UMAP visualization of XAI signatures for normal and adversarial
examples (CIFAR-10)

Fig. 3. UMAP visualization of XAI signatures for different adversarial
examples (CIFAR-10)

tative set of adversarial examples. As can be seen, in each
iteration of the algorithm we randomly select: a normal sample
from the dataset used to train the classification model (line
12); a combinations of attack method, distance metrics and
attack preferences (lines 13-15); and a target class, which is
different from the ground truth (line 16). Then, for each tuple
(consisting of: the sample, distance metric, attack preferences,
target class and classification model), we execute the attack to
generate an adversarial example (line 17). If the attack ends
successfully (i.e, the classification of the perturbation using
the targeted classifier equal to the target class) we store it in
our repository.

C. Generating XAI signatures

In this phase, we utilize SHAP to generate an XAI signature
for each sample in the dataset (both normal and adversar-
ial). Specifically, we apply the SHAP DeepExplainer [25]
to interpret the neurons of the penultimate layer f [l−1](·).
The outcome of this application is n SHAP values for each

Fig. 4. Detector training process.

Algorithm 1 Generating Adversarial Examples
1: Inputs:
2: Xnormal ← sampled normal examples
3: L← set of possible labels
4: M ← set of attack methods
5: D ← set of distance metrics
6: P (m)← set of preferences for attack method m ∈
M

7: f(·)← target classifier
8: i← number of samples to generate
9: procedure GENERATEADVERSARIALEXAMPLES(Xnormal

, L, M , D , P (m) ,f(·), i)
10: Xadversarial ← φ
11: while i > 0 do
12: x← RandomSample(Xnormal)
13: m← RandomSample(M)
14: d← RandomSample(D)
15: p← RandomSample(P (m))
16: target← RandomSample(L ∩ Y (x))
17: x∗ ← m(x, d, p, target, f(·))
18: if f(x∗) == target then
19: Xadversarial ← Xadversarial ∪ x∗
20: end if
21: i← i− 1
22: end while
23: return Xadversarial

24: end procedure

output in f [l−1](·), where n represent the number of target
classes (i.e., SHAP produces a single value for each output
and class). The XAI signature of a given sample is defined as
the concatenation of all SHAP values into a flat floating-point
vector (i.e., the size of each signature is to n ∗ |f [l−1](·)|).
Normal signatures are used as a baseline for modeling the
behavior of the normal decision-making procedure within the
activation space. Attack signatures are used for modeling
the effect of different perturbations on the decision-making
procedure.

It should be mentioned that in a production implemen-
tation of this approach, the repository should be updated
continuously with attack signatures generated using newly
discovered attacks. Maintaining an updated repository will
improve the performance of the proposed method in detecting
new attack classes. Nevertheless, a good detector must be able
to generalize known attacks in order to detect unknown attacks
(we discuss this topic in Section VI).

D. Training the detector

In this phase, we train a supervised binary detector to
discriminate between normal and adversarial samples, based
on their XAI signatures. We use the SHAP values from
our generated dataset as the samples’ features to train the
classifier. Any standard supervised model can be used to
train the detector based on these features. In this research we
trained a fully connected feed forward neural network detector.



At inference time, given a sample to classify as normal or
adversarial, we compute the sample’s SHAP values (in the
XAI signature phase) and feed the output into our binary
classifier to classify the sample as adversarial or normal.

VI. EVALUATION

In our evaluation we aimed to answer the following two
research questions:
RQ1: What is the baseline performance of the detector when
the train and test sets contain adversarial examples generated
using the same attacks and parameters?
RQ2: Can the detector generalize to adversarial examples
generated by attacks that were unknown during training?

A. Evaluation setup

We evaluated our proposed detection method using the
following two image classification use cases:
[CIFAR,ResNet56] The CIFAR-10 dataset [26] with the
ResNet-56 classification model [33]. The model achieves a
93.39% accuracy on the CIFAR-10 test set.
[MNIST,CNN] The MNIST handwritten digits dataset [27]
with a model architecture taekn from the Keras MNIST exam-
ple (https://keras.io/examples/mnist cnn/). The model achieves
a 99.25% accuracy on the MNIST test set.

Adversarial example generation.: We generated adversarial
examples using both the Foolbox [34] and Adversarial Ro-
bustness Toolbox [35] frameworks.

Table II presents the number or normal and adversarial
samples used for training and testing the detection model (for
both the CIFAR-10 and MNIST datasets).

Dataset Train/Test # Normal # Adversarial

cifar10 train 19463 10134
cifar10 test 9339 7995
mnist train 27239 26500
mnist test 9910 9679

TABLE II
DATASETS DESCRIPTION.

We used a variety of attack methods (see Figure 6) for
generating the adversarial examples.

SHAP values computation.: For the [CIFAR,ResNet]
model, we compute SHAP values on the last (and only) fully
connected layer of the model which has a size of 64 neurons.
This gives a total of 640 features per sample (64 features for
each one of the ten target classes). For the [MNIST,CNN]
model, we compute SHAP values on the last fully connected
layer of the model, which has a size of 128 neurons, and a
total of 1280 features per sample.

Training the adversarial example detector.: In each exper-
iment we generated an experiment-specific train and test sets,
by fetching the relevant SHAP values from our generated
repository. Using the SHAP values as features, we trained
a fully connected feed forward neural network with three
hidden layers (having 256, 128, 16 neurons respectively), all

with ReLU activation units and Sigmoid output. We split the
training set into train and validation subsets using a random
80/20 split and used the AdaBound optimizer [36] with default
parameters. We train for at most 500 epochs with an early stop
condition that monitors the binary cross-entropy validation loss
and decides to stop if it hasn’t improved for the last 20 epochs.

B. Results and Discussion

RQ1: baseline performance of the detector.: For each
dataset and model pair (i.e., [CIFAR,ResNet56] and
[MNIST,CNN]) we constructed the train and test set as fol-
lows. For the train set we used all normal and adversarial
train samples of the selected dataset – CIFAR-10 or MNIST.
Similarly, for the test set we used all normal and adversarial
test samples of the selected dataset. Each sample in the
train/test sets was represented using its SHAP values with
the class label set to be “1” for adversarial example and “0”
otherwise. In Figure 5, we present the ROC and precision-
recall curves as well as the area under those curves (AUC-ROC
and AUC-PR). As can be seen, the proposed method yields
high detection performances with AUC-ROC of 0.966/0.967
and AUC-PR of 0.958/0.961 for the CIFAR-10 and MNIST
datasets respectively.

CIFAR-10 Dataset

MNIST Dataset

Fig. 5. ROC and PR curves of the proposed detector evaluated on CIFAR-10
and MNIST datasets.

We also explore the specific detection rates of different
attack methods. In Figure 6, we present the TPR of the detector
for each attack method. The results show a high TPR for most
attacks even for a FPR of 0.05.

RQ2: Generalization across different attack types.: This
evaluation simulates a scenario where a detector trained on
adversarial examples of known attacks is confronted with
adversarial examples generated by an unknown attack.



MNIST Dataset

CIFAR-10 Dataset

Fig. 6. Evaluation results for RQ1 and RQ2 experiments.

Given a target dataset and model, we divided each one of
its train and test sets by an (algorithm, metric) pair to get a
collection of train/test subsets. We performed random under-
sampling of each test subset to balance the number of normal
and adversarial examples in it. Then, we follow a “leave on
out” approach in which for each (algorithm,metric) pair we
train a detector on all train samples generated by all but this
pair and evaluate only on adversarial examples generated by
this pair. Similar to the previous research question, we evaluate
the general performance of our detector (Figure 5), and the
performances for each attack method separately (Figure 5).
As can be seen the overall performance in detecting unknown
attack is very similar to the case of known attacks (with
AUC-ROC of 0.965/0.973 and AUC-PR of 0.961/0.975 for
the CIFAR-10 and MNIST datasets respectively). Similarly,
the proposed method show high performances for most attacks
even for a FPR of 0.05.

VII. CONCLUSIONS AND FUTURE WORK

The results of our experiments validate the ability of our
approach to detect adversarial examples generated by a variety
of state of the art attacks (RQ1). We showed that the detector

generalizes well when confronted with adversarial examples
generated by attacks it wasn’t train on (RQ2).These results
support our hypothesis regarding the connection between
patterns of SHAP values of the penultimate layer of the
classification model, the distribution of the importance of
robust vs. non-robust features for the classification results and
the ability to detect adversarial examples.

Although our detection method is based on a supervised
learning model, which requires generating a big training set
of adversarial examples using various attacks, the good gen-
eralization results imply that it should be possible to devise a
semi-supervised detection approach based on the same features
to streamline the detector training process and improve its
performance further.

Our proposed method can be further extended into a generic
framework, reminiscent of antivirus or IDS systems that con-
tinuously collect and analyze benign and malicious samples,
extract signatures and, based on those signatures, classify
samples as malicious or benign or forward them for manual
analysis. A framework such as this, employing both the SHAP
based signatures discussed in this paper, and signatures used
in other, state of the art detectors, could advance the practical
ability to defend against adversarial examples.

In this paper we made a first step towards understanding the
connection between model explanations and feature robust-
ness. Rigorously studying this connection could be beneficial
both for improving the performance of our detector and for a
better understanding of the nature of adversarial examples.

Additional future work may include: (1) testing of our
method on additional datasets (from other domains) and
classification models; (2) evaluating the transferability of the
detector between underlying classification models ; and (3)
evaluating our method against customized attacks adapted to
take our detector into account.
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