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Abstract—Neural network deployment to the target envi-
ronment is considered a challenging task especially because
of heavy burden of hardware requirements that DNN models
lay on computation capabilities and power consumption. In
case of low power edge devices, such as GNA - neural co-
processor, quantization becomes the only way to make the
deployment possible. This paper draws attention to the post-
training quantization for low-power devices and proves that this
approach is practically effective. We propose a novel quantization
algorithm capable of reducing DNNs precision to 16-bit or
8-bit integer with negligible drop in accuracy (less than 0.1
percent). The elaborated approach is demonstrated on a set of
speech recognition networks trained in Kaldi framework with
OpenVINO framework as an inference backend that supports
quantization and GNA as a target. Quantization influence on
original topologies was rigorously measured and analyzed.

Index Terms—low-bit inference, quantization techniques, arti-
ficial neural networks

I. INTRODUCTION

Low power consumption creates hardware constraints on

the software that can be executed on edge devices, such as

surveillance cameras, embedded electronics etc., especially

when task is to run inference of a neural network that

requires mullions of floating point operations. In this paper

we are going to demonstrate that the only way to infer

a model on low-power GNA device is to quantize it by

reducing the precision of its weights and activations. GNA

(Gaussian Mixture Model and neural network acceleration) is

a block that was specifically designed to speedup the neural

network inference on systems-on-chip (SoCs) ( [1]). It is a

co-processor on multiple hardware: Amazon Alexa* Premium

Far-Field Developer Kit, Intel® Pentium® Silver processor

J5005, Intel® Celeron® processor J4005, Intel® Core™ i3-

8121U processor. GNA was chosen as a primary target due to

low power consumption and high performance. As a device

it is capable to operate while other elements of SoC are in a

sleep mode which is extremely important for multiple voice

The reported study was funded by RFBR, project number 19-37-90058.

assistants, such as Amazon Alexa, Google Assistant, Apple

Siri etc. One of the biggest challenges for deployment of

neural networks to a GNA device is absence of support of

floating point computations. Taking into consideration that

modern neural networks are often already trained in 32-bit

floating point precision, the only actual way is to quantize the

model.

The structure of this work is as follows: Section 2 gives

overview of the background study on existing quantization

methods, Section 3 contains deep analysis of GNA hardware

limitations. In Section 4 an effective quantization algorithm is

proposed with further evaluation of the method in Section 5.

Conclusions and directions of further research are formulated

in the final part of the paper.

II. RELATED WORK

Neural Network quantization is often used for reduction

of memory consumption and energy needed to compute the

network. It happens due to reduction of bits required to

store a single weight - from 32-bit floating point number to,

for example, 8-bit integer. The biggest challenge is to keep

accuracy level at the appropriate level and minimize its drop

after network quantization.

There are multiple types of quantization ( [2], [3]): bina-

rization (reducing the weight representation to either -1 or 1)

( [4]), fixed point quantization ( [5]), adaptive quantization (

[6], [7]) etc. At the same time, the target precision can be

very different: from 1 bit to 8 bits per a single weight ( [8]).

Another criteria for comparison of quantization approaches

is their relation to the training process: a topology can be

trained already in a target precision ( [9]) or in 32-bit floating

point precision and then quantized to a target one ( [10]). In

addition to that, quantization is closely coupled with inference

on different execution targets ( [2]), for example FPGA ( [8]),

GPU ( [11]) etc. Finally, there are scholars who analyze what

brings the accuracy drop the most and it is stated that the
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Fig. 1: A generic scheme of network initialization in GNA

biggest part of the accuracy drop happens due to weights

quantization ( [12]).

However, to the best of our knowledge there are no attempts

of quantizing the model for inference on the GNA with respect

to its specificity and hardware limitations. Therefore, the aim

of this paper is to focus on the post-training quantization

of neural networks for speech recognition trained in 32-bit

floating point precision and further deployment of such models

to target devices.

III. GNA ARCHITECTURAL LIMITATIONS

Due to multiple hardware limitations there are only 6 soft-

ware primitives that could be executed on a GNA 1.0 device,

they are usually referred to as ’fused’ or GNA primitives:

{Fully Connected Layer, Activation Layer}, {Convolution

Layer, Activation Layer, Pooling Layer}, {Diagonal Affin-

ity Layer, Activation}, {Copy Layer}, {Interleave Layer},
{Deinterleave Layer}, {Recurrent Layer, Activation Layer}.
Last 4 ’fused’ primitives are not used in actual inference

implementation. The very first challenge of any neural network

execution on such a device is to express any operation of the

neural network as a combination of available GNA primitives.

The combination of them is called a GNA Blob (Fig. 1).

Transformation of the input OpenVINO IR to a GNA Blob

is achieved with GNA Graph Compiler. Due to the limited

number of supported primitives, there is a Diagonal Affinity

Layer that plays a service role: all summations and multipli-

cations are expressed as matrix operations (Fig. 2).

Each primitive is described with the header containing

the parameters information. The weights. biases, inputs and

outputs are remembered as pointers to a GNA memory.

Network inputs are inputs of the first layer, which outputs

are inputs for the second layer and so on. Also, there is a

very important aspect that memory on GNA devices is of two

types: read-only and read-write. During the initialization phase

(a) An original graph.

(b) Transformation of graph with Sum as an element-wise operation.

(c) Transformation of graph with Multiply as an element-wise opera-
tion.

Fig. 2: A generic scheme of expressing not supported element-

wise operations with Diagonal Affinity Layer.

weights, biases and activation functions approximations should

be properly distributed in memory. For example, weights of

fully connected and convolution layers, need to be places in

read only memory region, while weights of diagonal layers or

biases usually calculated and need to be placed in read-write

memory region.

The second important limitation, as it was already stated,

is that GNA does not support floating point computations.

Activation which is a piece-wise linear function can not be

executed separately due to absence of appropriate GNA prim-

itive. There are only approximations of activation functions

that are stored in format of PWL structure in the Read-Only

memory. The precision interface of GNA Primitives is shown

for 16-bit (Fig. 3a) and 8-bit (Fig. 3b). Extremely hard this

limitation is for the case of inference in 8-bit integer precision



(a) 16-bit

(b) 8-bit

Fig. 3: Precision interface of GNA Primitive

as only Fully Connected layer is supported.

The third limitation is that any GNA 1.0 primitive can

process vectors and matrices and is unable to process tensors

of higher ranks.

The fourth limitation is mandatory alignment of all mem-

ory addresses of ’fused’ primitive, like input pointer, output

pointer, weights pointer, etc to 64 bits. This requires additional

overhead for supporting concatenation of blobs which size is

not a multiple of 64.

IV. PROPOSED QUANTIZATION ALGORITHM

A. Deployment scheme

Considering all aforementioned hardware limitations, we

propose the overall deployment scheme to GNA to be the

following:

1) convert a model from Kaldi or TensorFlow to Open-

VINO1 DLDT2 IR format

2) transform OpenVINO DLDT IR to in-memory Network

object

3) quantize the Network:

a) calculate inputs scale factors from input samples

b) propagate scale factors through the network

1https://docs.openvinotoolkit.org/
2https://github.com/opencv/dldt

c) apply scale factors to the network

4) transform quantized Network to GNA Blob

5) initialize network in runtime

6) infer a network on GNA

Due to the primary focus of the paper on the quantization

stage of deployment, other steps such as conversion of the

pre-trained model to the OpenVINO IR format are taken out

of scope of current work and only quantization algorithm is

explained in great details in next section.

B. Quantization steps

a) Obtaining input scale factor: Input scale factor is cal-

culated from input source. For speech processing topologies,

those inputs are feature vectors files that contain phonemes,

words, sentences pronounced by a speaker. Preparation of the

input data is out of scope of this paper, input is considered to

be a vector in 32- or 16-bit precision. Scale factor is obtained

from information about the input precision and input data

distribution (1).

sfinput =
max(precision)

2(max−min)
, (1)

where max(precision) is either 232 for 32-bit vectors and

216 for 16-bit vectors, max and min are minimum and

maximum numeric values of given input vectors.

Algorithm 1: Scale factor propagation procedure

Result: A list of nodes with computed scale factors

Network ← OpenVINO IR loaded in memory

inputScaleFactors ← calculated input scale factors

sortedNodes ← sort Network nodes topologically

targetPrecision ← 16-bit or 8-bit integer precision

ForwardPropSF (sortedLayers)

Function ForwardPropSF(curIndex):

inputs = Network.inputs

curNode = Network.nodes[curIndex]

inputIndex = findIndex(inputs, curNode)
isInput = inputIndex != -1

inSF = -1

if isInput then

inSF = inputScaleFactors[inputIndex]
else

inSF = curNode.parents[0].outSF

conflictingParents = find parents with output

scale factor different to the first parent

for parent in conflictingParents do

BackPropSF (parent, inSF, curIndex)
end

end

ApplyInputSF (curIndex, inSF )
ForwardPropSF (curIndex+ 1)



b) Scale factor propagation: During this step input scale

factors are passed through the network layers until outputs are

reached. The overall goal is to calculate output scale factor

for each layer and its weights if there are any. The main

procedure is described in Algorithm 1. In the simplest case

of a DNN without branching and single input, this algorithm

finishes with one traversal through the tree. There are several

important aspects: forward and backward propagation of input

scale factors, resolving the conflicting input scale factors in

case of branching in the topology, differences in calculation

of weights scale factor between 16-bit and 8-bit quantization.

Calculation of the output scale factor in case of forward

propagation of scales factors only depends on presence of

weights in a layer (2) which is reflected in Algorithm 2.

sf
output
i =

{

sf
input
i × sf

weights
i if node i has weights

sf
input
i otherwise

(2)

Algorithm 2: Procedure for calculating scale factors

for a single node

Function ApplyInputSF(curIndex, inSF):

currentNode = Network.nodes[curIndex];

if currentNode has weights then
currentNode.weightScaleFactor = according to

(2);

if precision is 8-bit integer then
currentNode.perChannelScaleFactors =

according to (2) in channel-wise manner

(max is taken from each row of a weights

matrix);

end

currentNode.outScaleFactor = inSF *

currentNode.weightScaleFactor;

return;

end

currentNode.outScaleFactor = inSF;

return

In case of backward propagation of scale factors through a

layer with weights, the propagation stops and only the weight

scale factor is recalculated (3) which is reflected in Algorithm

4.

sf
weights
i =

sf
output
i

sf
input
i

(3)

The second important aspect is calculation of weights scale

factors for 16-bit and 8-bit quantization. In both cases, the

overall weight scale factor is elaborated from the weights

tensor analysis (4).

sf
weights
i =

max(precision)

2(max)
, (4)

(a) Conflict demonstration. Sum layer has different input scale factors.

(b) Backward propagation mechanism stopped at first layer with
weights (FullyConnected layer) resulting in changed weights scale
factor.

Fig. 4: Heuristic for scale factor conflict resolution.

where max(precision) is either 232 for 32-bit vectors and

216 for 16-bit vectors, max is maximum numeric value of a

given tensor.

However, for 8-bit quantization, the per channel scale

factors are calculated for a weights tensor as well. This is

performed mostly for saving memory and such scale factors

are stored in biases (Fig. 3b). Per channel quantization is

considered to produce significantly better accuracy than a per

layer one for 4-bit quantization ( [12]). In this paper, the same

idea is used for 8-bit quantization of weights.

The third aspect of quantization is handling a topology

with branches. The main challenge is a potential conflict of

output scale factors of two layers that are inputs for another

node in a network. The hard requirement of the proposed

quantization algorithm is that input scale factors of a layer can

not be different. Therefore, there is a mechanism of backward

propagation of scale factors through the parents of the node

that faced such a conflict. A schematic example is given at

Fig. 4 and a full procedure described in Algorithm 3 and 4.

c) Network quantization: After input scale factors are

calculated for each layer, it is necessary to apply those scale

factors to weights. Due to the fact that scale factors can change

multiple times during the previous step, when they are first



Algorithm 3: Procedure for updating the scale factor

of node by requested value from children

Function BackPropSF(node, outScaleFactor,

curIndex):

ApplyoutSF (node, outScaleFactor);
if node in Network.inputs then

inputScaleFactors[i] = outScaleFactor;

return;

end

childrenToChange = all children except that one

that requested a change;

for child in childrenToChange do
childIndex =

findIndex(Network.nodes, child);
ForwardPropSF (childIndex);

end

for parent in node.parents do
BackPropSF (parent, node.inSF, curIndex);

end

return

Algorithm 4: Procedure for calculating scale factors

by requested output scale factor

Function ApplyoutSF(node, outScaleFactor):

node.outScaleFactor = outScaleFactor;

if node has weights then

node.weightScaleFactor = according to (3);

if targetPrecision is 8-bit integer then
node.perChannelScaleFactors = according

to (3) in a channel-wise manner;

end

return;

end

node.inSF = outScaleFactor;

return

accumulated, application of scale factors is made once with a

forward propagation of scale factors through a network.

V. EVALUATION

The proposed algorithm verification is performed on

three well known Kaldi3 topologies: wsj dnn5b smbr4,

rm cnn4a smbr5, rm lstm4f6. Each of them represents a par-

ticular type of models: Deep Neural Networks (DNN) without

convolutional layers, Convolutional Neural Networks (CNN)

and Long-Short Term Memory Networks (LSTM).

3https://github.com/kaldi-asr/kaldi
4https://download.01.org/openvinotoolkit/2018 R3/models contrib/GNA/

wsj dnn5b smbr/
5https://download.01.org/openvinotoolkit/2018 R3/models contrib/GNA/

rm cnn4a smbr/
6https://download.01.org/openvinotoolkit/2018 R3/models contrib/GNA/

rm lstm4f/

TABLE I: Theoretical complexity of pre-trained speech recog-

nition models

Name Parameters, 106 FLOP, 106

rm lstm4f 3.692 1.829
rm cnn4a smbr 56.513 26.851
wsj dnn5b smbr 57.811 28.903

Name 16-bit IOP
Mixed-bit IOP

16-bit 8-bit

rm lstm4f 3.689 0,018 3.682
rm cnn4a smbr 54.913 1.607 53.35
wsj dnn5b smbr 57.802 0.013 57.806

TABLE II: Accuracy measurement of the original network and

quantized versions (Word Error Rate, WER, %)

Name
OpenVINO Kaldi
16-bit integer 8-bit integer 32-bit float

rm lstm4f 2.22% 2.23% 2.23%
rm cnn4a smbr 1.93% 1.95% 1.81%
wsj dnn5b smbr 6.44% 6.5% 6.41%

Analysis of theoretical complexity of networks is presented

in Table I. It is important to highlight that there is a dramatic

increase of operations required to compute the network in

16 bits although they are no longer floating point ones. At

the same time, further reduction of precision to 8-bit clearly

demonstrates that majority of operations are executed in the

target precision, while there is a small amount of operations

still requiring computations in 16 bit, to support both element-

wise and not 64-bit aligned splitting operations. The effect

of weights quantization is shown on Fig. 5 and 6. Due to

a mandatory data alignment requirements of GNA hardware,

weights are padded with zeros in case of an original model

does not satisfy this requirement and histograms for quantized

weigths reflect it.

The notable result of the proposed quantization algorithm is

that the accuracy drop is negligible (maximum registered drop

is 0.12%) compared to the baseline results in the framework

and 32-bit floating point inference (Table II). Finally, both

original and quantized networks were measured in terms of

performance and quantization brings considerable speedup

which is a quite expected effect due to reduction of operations

complexity (Table III). Considering the notation of Table II and

III, benchmarking was made with the following setup: CPU

inference running on Intel Skylake-i7-6700K 3.8 GHz (not

fixed frequency), GPU running on the discrete graphics on

the same machine, NCS2 on Intel Movidius Neural Compute

Stick 2, GNA running on GNA co-processor on Intel NUC

Kit NUC7PJYH. Version of OpenVINO framework is 2019.R1

and Kaldi framework was taken from commit 1f51ef5d.

VI. CONCLUSION

In this paper a simple and effective post-training network

quantization algorithm is proposed. It is shown that this ap-



TABLE III: Performance measurement of the original network

and quantized versions (in ms - per frame of original Kaldi

topology)

Name
OpenVINO
32-bit float 16-bit float 16-bit integer
CPU GPU NCS2 GPU GNA

rm lstm4f 0.4 N/A N/A N/A 2.49
rm cnn4a smbr 5.9 4.83 10.96 2.81 19.0
wsj dnn5b smbr 5.6 4.9 8.74 2.68 10.11

Name
OpenVINO Kaldi
8-bit integer 32-bit float
GNA Kaldi

rm lstm4f 1.78 0.88
rm cnn4a smbr 10.37 2.65
wsj dnn5b smbr 5.39 2.8
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(a) 32-bit floating point precision
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(b) 16-bit integer precision

Fig. 5: Histogram of weights for a layer conv 7 from a

rm cnn4a smbr network
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(a) 32-bit floating point precision
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Fig. 6: Histogram of weights for a layer

affinetransform 12 from a wsj dnn5b smbr network



proach does not introduce significant accuracy drop (less than

0.12%) when quantizing to 16 bit and 8 bit integer precision.

The elaborated deployment scheme allows to infer a neural

network on a target device - GNA and successfully satisfies

all limitations that this hardware introduces. Proposed quanti-

zation solution is generic enough to be applied to any neural

network: speech recognition, classification networks, networks

that perform intellectual tasks without preliminary training

stage [13], [14]. Authors strongly consider that elaboration

of solutions for effective Artificial Neural Networks (ANNs)

inference on low-power platforms is not just the actual and

highly demanded task in the industry that can be immediately

applied to existing tasks. Such methods also play an significant

role in a broader scientific context. Artificial Neural Networks

are the universal means of parallel distributed computation and

robust learning. In this field there is a substantial scientific task

of constructing neural networks that perform intellectual tasks

in massively parallel computation environments like Internet

Of Things (IoT). Each component of such systems plays a

role of a single neuron or a small sub-network [15]. These

computational platforms should be not only distributed and

effective, but also robust to unit failures, self-improving in time

and should avoid central control. Therefore, current research

contributes to this paradigm by providing effective execution

rules on the GNA device. Further research is needed in order

to build distributed ANN systems consisting of low-power

devices, such as GNA, and to analyze performance gains of

execution of neural networks in a distributed manner. From

the authors point of view the following gaps should be closed

in future: considering the case of large and sparse weight

matrices during the quantization phase, introduce automatic

detection of the initial layer precision for more flexible quan-

tization scheme and extending support for convolutional layers

with arbitrary number of channels and kernel size. These

additional features will allow to reduce the computational

complexity and the accuracy drop after network quantization.
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