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Abstract—Item Response Theory (IRT) is a tool developed
in psychometrics to measure latent abilities of human respon-
dents based on their responses to items with different levels of
difficulty. Recently, IRT has been applied to evaluation in AI,
by treating the algorithms as respondents and the AI tasks as
items. Particularly in machine learning, IRT has been applied
for evaluation of classifiers based on their predictions to each
test instance. Based on a matrix of responses (classifiers vs
instances), the IRT model estimates the latent difficulty and
discrimination of each instance, as well as the ability of each
classifier, in such a way that a classifier receives high ability
value when it tends to correctly classify the most difficult
instances. The IRT models previously adopted for evaluation in
classification are not directly applied for regression, since they
rely on dichotomous responses (i.e., a response has to be either
correct or incorrect). In this paper we propose a new IRT model,
particularly designed for dealing with nonnegative unbounded
responses, which is adequate for modelling the absolute errors
of regression algorithms. In the proposed model, responses follow
a gamma distribution, parameterised according to respondents’
abilities and items’ difficulty and discrimination parameters. The
proposed parameterisation results in item characteristic curves
with more flexible shapes compared to the logistic curves widely
adopted in IRT. The proposed model was evaluated with diverse
regression algorithms and two benchmark datasets, one synthetic
and one real. Useful insights were derived by inspecting regions
in these datasets that present different levels of difficulty and
discrimination.

Index Terms—Regression, Item Response Theory, Machine
Learning, Evaluation

I. INTRODUCTION

Psychometrics is a research field focused on the objective
measurement of cognitive traits, including personality, attitude
and intelligence. Item Response Theory (IRT) comprises a set
of psychometric models aiming to estimate the latent ability
of humans based on their responses to test items with different
levels of difficulty [1]. The concept of item depends on the
application, and can represent, for instance, test questions,
judgements or choices in exams. IRT has been commonly
applied to assess the performance of students in exams and
in health applications.

In practice, an IRT model produces for each item an Item
Characteristic Curve (ICC), which is a function returning

the probability of a correct response for the item based on
the respondent ability. The ICC is usually a logistic curve
determined by two item parameters: difficulty, which is the
location parameter of the logistic function; and discrimination,
which affects the slope of the ICC. Both latent item traits and
the latent abilities of respondents are jointly estimated based
on observed responses in a test. Respondents who correctly
answer the most difficult items will be assigned high ability
values if they also correctly answer easier items, otherwise
the model will implicitly assume that said respondents were
guessing.

More recently, IRT has been applied for evaluation in AI,
where items are tasks and respondents are AI models, although
this field is still in an early stage. IRT was adopted in Machine
Learning (ML) classification tasks [2, 3], in which items
correspond to instances in a dataset, respondents are classifiers,
and the binary responses are right or wrong classification out-
comes collected in a cross-validation experiment. In another
application of IRT for ML classification, [4] proposed the β3-
IRT to model continuous responses in the [0, 1] range, which
was then applied to fit class probabilities returned by ML
models. IRT has also been used to evaluate AI techniques
in other contexts, such as AI games [5] and NLP [6].

Despite useful insights, previous works are limited to the
application of IRT for binary and bounded responses. These
are not directly applicable, for instance, to evaluate regression
models, in which outcomes are continuous unbounded errors.
This is also true in many other contexts, in which success
is measured in a continuous unbounded scale. In order to
overcome this limitation, we propose the Γ-IRT model, which
models nonnegative continuous responses by adopting the
Gamma distribution. The model offers a wide range of ICCs
by defining the Gamma parameters as a proper combination
of item difficulty and discrimination and respondent ability.

We apply the proposed model to fit normalised errors
produced in regression tasks. In the experiments, noise was
gradually injected into the regression datasets, thus inducing
changes in the item parameters and model abilities. We demon-
strate the use of Γ-IRT to identify regions of high difficulty
within the dataset and we propose ability as a complementary
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measure to evaluate regression models. Our contributions can
be summarised as follows:

1) We propose Γ-IRT, a new IRT model which focuses on
nonnegative unbounded responses, which have not been
adequately treated in the IRT literature;

2) We use Γ-IRT to perform regression evaluation, which
is a novel application in literature.

The paper is organised as follows. Initially, we present
related work on IRT, followed by the description of the Γ-
IRT model. Then we use Γ-IRT to analyse regression models
and datasets. Finally, we present our final remarks and discuss
future works.

II. RELATED WORK

In Psychometrics, nonnegative continuous responses have
been previously analysed in the context of student reading
speed [7, 8, 9], where responses correspond to the total time
tij a respondent i takes to finish reading an item j, which
is a text consisting of m words. The first of these works [7]
modelled tij with a gamma density given by:

p(tij |θi, δj) ≡
(θi/δj)

m

Γ(m)
t
(m−1)
ij e−θitij/δj , (1)

where, similarly to standard IRT, θi is the ability of the i-
th student, δj is the difficulty of the j-th item and Γ(m) ≡
(m − 1)! is the gamma function. In this gamma density, the
intensity parameter is λij ≡ θi/δj , thus the expected number
of words to be read in a given time unit is assumed to be a
function of the student’s speed and the item’s difficulty.

Another model for continuous nonnegative responses was
proposed by [10] where the goal was to estimate the probabil-
ity that respondent i would give response zij ∈ (0, 1) to item
j. This model was later generalised to work with multiple
latent respondent traits [11] and its relation to linear Factor
Analysis was shown by [12].

Although these models are designed for nonnegative re-
sponses, we focus on a different context, therefore their
assumptions do not apply here. Our task is not to estimate the
probability of a particular response value, given respondent
and item latent traits, but to estimate the actual value. In
this context, previous works that tackled the problem of IRT
models for continuous responses mainly focused on responses
with bounded support. Noel and Dauvier [13] proposed an
IRT model for responses in the [0, 1] range, adopting the Beta
distribution as follows:

mij = exp

(
θi − δj

2

)
,

nij = exp

[
−
(
θi − δj

2

)]
=

1

mij
,

pij ∼ B(mij , nij). (2)

In this model, pij is the continuous response given by
respondent i to item j. The model gives a logistic ICC
mapping ability to expected response for item j of the form:

E[pij |θi, δj ] =
mij

mij + nij
=

1

1 + exp (−(θi − δj))
. (3)

This is very similar to the ICC for dichotomous responses,
with a key difference: its output is the expected value of a
continuous variable in the [0, 1] range. This model does not
have a discrimination parameter, being similar to a standard
1PL IRT model, and it always produces logistic ICCs. To solve
these limitations Chen et al. [4] introduced the β3-IRT model,
which can generate a rich family of ICCs for responses in the
[0, 1] range. Equation (4) below gives the model definition,
where pij is the observed response of respondent i to item j,
which is drawn from a Beta distribution.

pij ∼ B(αij , βij),

αij = Fα(θi, δj ,aj) =

(
θi
δj

)aj

,

βij = Fβ(θi, δj ,aj) =

(
1− θi
1− δj

)aj

,

θi ∼ B(1, 1), δj ∼ B(1, 1), aj ∼ N (1, σ2
0) (4)

The Beta parameters αij , βij are computed from θi (the
ability of participant i), δj (the difficulty of item j), and aj
(the discrimination of item j). Both θi and δj are drawn from
Beta distributions, i.e. they are measured on a [0, 1] scale,
which means that their values are arguably easier to interpret
than in other IRT models, in which abilities and difficulties are
unbounded. The new parameterisation is able to model non-
logistic ICCs defined by the expectation of B(αij , βij) and
assuming the form given by Equation (5).

E[pij |θi, δj ,aj ] =
αij

αij + βij
=

1

1 +
(

δj

1−δj

)aj
(

θi

1−θi

)−aj

(5)

As in standard IRT, the difficulty δj is a location parameter.
The response is 0.5 when θi = δj and the curve has slope
aj/(4δj(1 − δj)) at that point. The ICCs can have different
shapes depending on aj , such as sigmoid shapes similar to
standard IRT, anti-sigmoidal behaviours and parabolic curves.

Another contribution in Chen et al.’s work was a machine
learning application of β3-IRT, inspired by previous work by
Martı́nez-Plumed et al. [2], where classifiers were evaluated
using their ability values, which show interesting properties
as a performance measure. Additionally, item discrimination
values were used to detect noisy instances.

Aside from IRT, modelling responses in Psychometrics has
long been done using Factor Analysis (FA) [14, 15, 16],
which assumes that responses are continuous and unbounded.
One difference between FA and IRT, which is particularly
important if these models are applied in machine learning,
is the interpretation of its factors, which are not as clearly
defined as IRT’s respondent and item parameters.

III. THE Γ-IRT MODEL

We now propose Γ-IRT to model unbounded nonnegative
responses, such as students’ errors to open-ended questions or
the absolute values of errors coming out of regression models.



Particularly in the machine learning domain, to the best of our
knowledge, the task of fitting IRT models to regression errors
is still an open problem.

A. Formulation

The central idea of Γ-IRT is to model continuous errors
as random variables following Gamma distributions, param-
eterised according to item difficulty and discrimination and
respondent ability. Let eij ∈ (0,∞) be the observed error of
respondent i to item j. For regression in our work, eij is the
absolute error of a regression model in a test instance. Thus,
we have:

eij ∼ Γ(αij , βij),

αij = Fα(θi, δj ,aj , cj) = cj

(
δj
θi

)aj

,

βij = Fβ(θi, δj ,aj) =

(
1− δj
1− θi

)aj

,

θi ∼ B(1, 1), δj ∼ B(1, 1), aj ∼ N (1, σ2
0).

(6)

In the model above, δj ∈ (0; 1) is the difficulty parameter
of item j, aj is the discrimination parameter and cj > 0 is the
guessing parameter. For respondents, θi ∈ (0; 1) is the ability
of respondent i. In this model, the ICC is the expectation of
Γ(αij , βij) along ability, which assumes the following form:

E[eij |θi, δj ,aj , cj ] =
αij
βij

= cj

(
δj

1− δj

)aj
(

θi
1− θi

)−aj

(7)

The following properties can be pointed out from the ICCs
for special cases of ability:

• If θi → 0, then E[eij ] → ∞, i.e., very large errors are
expected for respondents with very low ability;

• If θi → 1, then E[eij ]→ 0, i.e., in turn respondents with
very high ability tend to produce very low errors;

• If θi = δj , then E[eij ] = cj .
1) Guessing Parameter: The parameter cj can be set as the

expected error obtained by a random respondent. In the domain
of regression, an item j is a test instance in a regression
dataset. Let yj be target variable associated to the test instance
j. The regression model R is a naive regressor which always
returns the average of the target attribute as its predictions. In
this case, cj = E[eRj ] = |yj − ȳ|, in which ȳ is the average
of the target attribute.

In the ICC, a respondent has random performance when it
faces an item for which difficulty equals her ability (if θi = δj ,
then E[eij ] = cj). In particular, a model with ability θi = 0.5
will perform randomly when facing an item with difficulty
δj = 0.5.

2) Difficulty Parameter: Item difficulty can be analysed
regarding a middle point of ability θi = 0.5:

• If δj < 0.5, then E[eij ] < cj for θi = 0.5.
• If δj > 0.5, then E[eij ] > cj for θi = 0.5.

Fig. 1: Examples of ICCs for different values of difficulty. In
all cases, cj = 2.4 and aj = 1.

Fig. 2: Examples of ICCs for different values of discrimina-
tion. In all cases, cj = 2.4 and δj = 0.5.

In the first case (easy items), even respondents with low
ability will have errors lower than the guessing error. In
the second case (difficult items), only respondents with high
ability will outperform the guessing error.

See Figure 1 for examples of IRT curves for different
difficulties. When δj = 0.2, some respondents with low
ability (e.g., 0.2 < θi < 0.5) are better than random.
Only respondents with θi < 0.2 are worse. On the other
hand, when δj = 0.7, there is a range of good respondents
(0.5 < θi < 0.7) that do worse than random.

3) Discrimination Parameter: aj characterises the slope of
the curve at the difficulty level. Figure 2 presents examples
of IRT curves, fixing difficulties and guessing parameters and
varying discrimination. In all curves, the same expected error
is obtained at the difficulty level θi = δj = 0.5. For aj = 0.5,
the expected errors are close to 2.4 (the guessing error) in a
wide range of abilities, but when aj = 2 we observe very high
errors just before θi = 0.5 and very low errors just after this
ability point. Thus, this item is more discriminative.

B. Normalised Errors

The guessing parameter can be avoided by taking the
normalised errors and then deriving the corresponding ICC:

ēij =
eij
cj
∼ Γ(αij , βijcj)

αij = cj

(
δj
θi

)aj

, βijcj =

(
1− δj
1− θi

)aj (8)

Note that if X ∼ Γ(α, β) then 1
kX ∼ Γ(α, kβ). The

normalised errors are drawn from a Gamma distribution, which
is simply rescaled according to cj . The expected normalised
error is then:



Fig. 3: Examples of β3-IRT for regression. All curves were
produced by setting δ = 0.4.

E[ēij |θi, δj ,aj , cj ] =
αij
βijcj

=

(
δj

1− δj

)aj
(

θi
1− θi

)−aj

(9)

As a special case, for θi = δj then E[ēij ] = 1, which
then serves as a reference for normalised responses better than
random.

C. Relation to β3-IRT

The following transformation produces a β3-IRT curve, as
given by Equation (5):

E[pij |θi, δj ,aj ] =
1

1 + E[ēij |θi, δj ,aj , cj ]
(10)

=
1

1 +
(

δj

1−δj

)aj
(

θi

1−θi

)−aj

This relationship is convenient for estimation since one
can transform the normalised errors and produce the β3-IRT
curves, i.e., estimate the β3-IRT curves from the responses in
the form 1

1+ēij
. Then, the β3-IRT curve can be transformed

back into a Γ-IRT curve using the inverse of this transforma-
tion.

Figure 3 presents examples of β3-IRT curves for regression.
In the extremes, a transformed response close to 1 means an
expected error close to 0. When ēij →∞, the transformed re-
sponse tends to 0. When ability equals difficulty, the expected
error is cj and consequently the transformed normalised error
is 0.5. This level can be used to visually distinguish a success
from a failure. Models with ability θi > 0.4 in this case will
be better than the random regression model.

D. Model inference

The Γ-IRT models were estimated using the transfor-
mation to β3-IRT, as discussed in Section III-C. We
then applied the Bayesian Variational Inference method
(VI), as proposed by [4], using code available at
https://github.com/yc14600/beta3_IRT, which
is based on the Variational Inference package from the Edward
and TensorFlow Python libraries.

IV. EXPERIMENTS WITH REGRESSION MODELS

In this Section, we apply Γ-IRT to machine learning regres-
sion problems. Each respondent is a different regression model
and items are instances from a dataset. The idea is to extract
insights from data and regression models, simultaneously
analysing data instance difficulty and discrimination, as well
as regression model ability.

Different datasets were simulated by injecting target noise
in a benchmark regression task. Finally, we discuss about the
items’ characteristics and compare the ICCs of instances in
specific regions in the dataset in order to seek for specific
ICC patterns.

A. Dataset

We performed experiments using a synthetic regression task
derived from a third-degree polynomial function, as follows:

y = −x+ x3 + ε, ε ∼ N(0, σ2
y) (11)

The predictor feature x is uniformly distributed inside the
interval [−4, 6] and ε is a random target noise.

In order to produce datasets with different levels of dif-
ficulty, distinct levels of Gaussian noise were injected in
the target attribute. In addition, we standardised feature and
target attributes to facilitate the process of noise injection and
subsequent data analysis. The standard deviation of the target
noise σy varied from 0 to 0.5, with increments of 0.025, with
σy = 0 referred to as baseline dataset. Figure 4 (a) and (b)
present two examples of generated datasets.

For each noise-level configuration, 40 datasets were pro-
duced with 300 instances each. In order to train and test the
regression models, we randomly split the data into training
and test sets, with 80% for training. Noise is only injected in
the test set, therefore the training set is preserved from the
original dataset. As mentioned in Ferri et al. [17] it is very
common that the training data is under “idealistic” conditions,
with features that are carefully measured and preprocessed.

(a) Target noise injected (σy =
0.25).

(b) Target noise injected (σy =
0.5).

Fig. 4: Examples of the polynomial test set for each scenario
and specific noise levels. (Darker colour indicates higher
noise.)

B. Regression models

For every scenario described in the previous Subsection, we
trained and tested 10 regression models (linear and nonlinear):
(i) Linear Regression; (ii) Bayesian Ridge; (iii) Support Vector



Regression - linear kernel; (iv) Support Vector Regression
- radial basis function (RBF) kernel and penalty parameter
C = 5.0; (v) k-Nearest Neighbours Regression - K = 5; (vi)
Decision Tree Regression; (vii) Random Forest Regression;
(viii) AdaBoost Regression; (ix) Multilayer Perceptron - one
hidden layer with 100 neurons; (x) Multilayer Perceptron -
two hidden layers with 50 neurons each and logistic activation
function. The regression models were implemented using the
scikit-learn library. Unless the algorithm’s parameters are not
explicitly specified above, all models used scikit-learn’s default
configurations.

In addition to the mentioned regression models, we have
artificially created 3 synthetic models: (i) Optimal - for each
instance, it takes the best response among all regression
models; (ii) Average - always predicts the mean value of the
test set; (iii) Worst - takes the worst response amongst all
regression models. These models are adopted as baselines for
comparison.

The response eij is the absolute error obtained by the
regression model i for instance j in the test set. Hence we
produced an item-response matrix with 13 models and 60 test
items for each simulated dataset. Finally, the average item
parameters and regression model abilities are measured across
the 40 datasets for each noise level.

C. Discussion

Figure 6 presents the difficulties of instances from test
sets with three different noise levels. In the original test
set, high-difficulty items are concentrated inside the interval
x ∈ [0.4, 1.0], while low-difficulty correspond to x < −1.25
and x > 1.25. As noise increases, difficulty increases in the
central region of the curve. The target variable in this region
is approximately constant, therefore injecting noise results
in larger regression errors. However, significant changes in
difficulty are not observed in the extreme regions of the curve
since they do not suffer relevant distortions when noise is
injected. Note that the difficulty histograms gradually shift to
the right, reflecting higher difficulties in the presence of noise.
The figure also presents the discrimination observed for the
same three test sets. The picture is not as clear as in difficulty,
but easier instances tend to show higher discrimination. The
discrimination histograms gradually shift to the left, thus
when noise is applied in the test set, instances tend to lose
their power to discriminate between good and bad regression
models. Figure 7 also shows the effects of noise injection in
the parameters at instance level (items are represented by the
dots). In the last case where maximum noise is applied, the
first item with negative discrimination appears. In all cases,
difficulty and discrimination have negative correlation.

Table I shows the responses given by all regression models,
including the baselines (Average, Optimal and Worst), to
instances (a) and (b). Instance (a) presents very low responses
when compared to instance (b), thus it has higher relative
errors and, consequently, higher difficulty.

Figure 5 illustrates the expected error along respondent
ability of the same two data instances showed previously.

Instance (a) Instance (b)

LR 0.0099 0.6544
Bayes 0.0099 0.6541
SVR(Lin) 0.0180 0.5935
SVR(Rbf) 0.0944 0.9683
KNR 0.1593 0.9666
DT 0.3399 0.9912
RF 0.2931 0.9857
AdaB 0.1523 0.9331
MLP100 0.0952 0.9891
MLP50-50 0.0900 0.9833
Avg 0.5000 0.5000
Opt 0.5143 0.9915
Wrs 0.0099 0.5000

TABLE I: Example of response values for two data instances
(items) and all regression models (respondents).

Fig. 5: Representative Item Characteristic Curves from poly-
nomial dataset. Marks are the regression models’ responses fit
by the ICCs.

The marks indicate the normalised errors and abilities of all
regression models. Each instance belongs to a specific region
within the original test set, although its target value may
vary as random noise is injected. Instance (b) represents an
instance from a low-difficulty region, while instance (a) is an
instance from a high-difficulty region. Notice that the curve
shapes change according to each region. Unlike instance (a),
which presents relatively high difficulty and low discrimi-
nation, instance (b) has a low associated error and appears
to respond better to increased ability (high discrimination).
Instance (a) and (b) have difficulty values of 0.70 and 0.27,
with discrimination values of 52 and 89, respectively.

1) Model ability: Figure 8 shows the performance of all
regression models as target noise is injected. There are 3
main groups of models that present similar behaviour among
themselves: linear, nonlinear and base models.

The group of linear models (formed by Linear Regression,
Bayes and Linear SVR) has the highest normalised errors
among the regression models, although they slightly increase
as data gets noisier. They also present a slight increase in
ability, suggesting that models that are more robust to noise
have their abilities increased when compared to noise-sensitive
models. Initially, the models with the best performance belong
to the group of nonlinear models. Looking at the ability,



Fig. 6: Difficulty and discrimination (Bigger marker indicates higher difficulty and darker colour indicates higher discrimination.)

Fig. 7: Difficulty vs Discrimination (Darker colour indicates higher error.)

Fig. 8: Evolution in the performance of all regression models along noise injection.

Random Forest and RBF SVR stand out as the best regression
models among all. Nonlinear models, however, decline sig-
nificantly as noise is inserted into the target attribute. This is
precisely because nonlinear models have a higher error growth
rate as noise is injected.

The group of baseline models (formed by Average, Optimal
and Worst) present a different behaviour when compared to
the others. The Optimal model tracks the performance of the
best model as expected, and since the responses of the best

models on average tend to decline, its ability declines as well.
Notice that all estimated errors and responses are relative to
the Average model. Hence it presents a constant and unitary
relative error, and since most regression models produce higher
errors as noise is injected, the ability of the Average model
increases. Opposite to the Optimal model, the Worst model
tracks the performance of the worst model, which can often
be the Average model or a linear regression model.

Because models are fitted to non-noisy data, distortions



in the test set caused by noise injection result in greater
errors, thus we checked if ability could be a more robust
performance measure. For this, we calculated the percentage
variation in ability and in Mean Absolute Error (MAE) of
each regression model that occurred in a given noise injection
step relative to the noise-free test set. Figure 9 illustrates the
heat map of the difference between the variation in ability and
in Mean Absolute Error (MAE) of each regression model, in
percentage values, that occurred in a given noise injection step
relative to the initial step (noise free experiment). Negative
values (darker green cells) indicate that the variation of ability
values is smaller than the error variation. The first two linear
models (Linear Regression and Bayesian Ridge), show greater
variation in ability than in error in almost all noise injection
steps. Nonlinear models (except AdaBoost) show on average
negative variation as noise increases (from the 10th step
forward). Results show that ability varies significantly less than
MAE as noise increases, according to a paired t-test (p-value
0.00004). Thus it is a robust performance metric to use in
regression tasks.

Fig. 9: Heat map of differences between the percentage
variation in ability and MAE along noise injection.

V. REAL DATASET ANALYSIS

We now analyse the real case dataset Real Estate, taken
from the UCI public repository [18], in order to check how the
Γ-IRT model behaves with real datasets. It has 414 instances
and seven attributes, with one being the target variable. The
same 13 regression models from Section IV were used as
respondents. We trained the models using 80% of all instances
and all attributes of the dataset, but for visualisation purposes
we use principal component analysis to reduce dimensionality
to just one principal component. The remaining instances were
used for test purposes.

Figure 10 shows the difficulty and discrimination values
of the test set, represented by color intensity and point size,
respectively. The data has a descending nonlinear pattern,

similar to a hyperbolic curve. The region of greatest difficulty
coincides with the region of greatest noise in the data, inside
the interval PC ∈ [−0.8,−0.2]. Similarly, less noisy data that
more clearly follows the curved pattern of the data has less
difficulty.

Fig. 10: Difficulty and discrimination in the Real Estate dataset
(Bigger points indicate higher difficulty and darker colour
indicates higher discrimination.)

In Figure 11, instances (c) and (d) have difficulty values
of 0.49 and 0.76, and discrimination values of −0.27 and
0.51, respectively. Instance (c) has higher normalised errors
than instance (d). Thus, we would expect its difficulty to also
be greater. However, discrimination is crucial here: instance
(c) is negatively discriminated while instance (d) has positive
discrimination, which happened because high-ability regres-
sion models had larger errors than weaker ones. In general,
instances that do not respond well to high-ability models tend
to be difficult with negative discrimination. Such cases were
treated as noisy items in [4].

Fig. 11: Representative Item Characteristic Curves from Real
Estate dataset. Marks are the regression models’ responses fit
by the ICCs.

Figure 12 shows the relation between Ability and Mean
Normalised Errors. These two metrics have “strong” negative
correlation, which is also presented in the figures. This is an
expected result since models with the lowest regression errors
most likely have the highest ability values. However, this is
not a rule, as the results suggest that ability takes into account
whether models produce higher errors for easy or difficult



instances. For example, MLP100 has higher mean normalised
error than DT and Bayes, however its ability is higher than the
two models. This is likely due to MLP100 performing better
in more difficult instances than DT and Bayes.

Fig. 12: Mean Normalised Error vs Ability (Spearman’s cor-
relation coefficient between both variables is showed in the
figure).

VI. CONCLUSION

In this paper we proposed a new IRT model, called Γ-IRT,
developed to fit nonnegative unbounded responses. We applied
Γ-IRT in two regression scenarios to analyse the performance
of regression models, and also the levels of difficulty and
discrimination of data instances located in specific regions
in the datasets, with results indicating regions of high and
low difficulty. Additionally, noisy data seem to present higher
difficulty and lower discrimination when compared to noise-
free data. Furthermore, model ability may be used as a robust
performance metric as it tracks the normalised error values,
but is less affected by noise.

Although initially designed for regression evaluation, the
proposed approach can be easily extended to other AI contexts
in which models produce continuous responses. Thus our work
increases the scope of IRT application to AI evaluation, which
is still in its early stage of investigation. Future works may
include expanding our experiments to include more regression
models and datasets, as well as the analysis of noise injection
in the feature attributes and its effects over the item param-
eters and the ability of regression models. Another possible
application of Γ-IRT is feature selection based on difficulty
and discrimination of each attribute over the machine learning
models.
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