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Abstract—Specials medications are personalized formulations 

manufactured on demand for patients with unique prescription 
requirements and constitute an essential component of patient 
treatment. Specials are becoming increasingly in demand due to 
the need for personalized and precision medicine. The timely 
provision of optimal personalized medicine, however, is 
challenging, subject to strict regulatory processes, and is expert 
intensive.  In this paper, we propose a new medical formulation 
engine (MFE) that performs semantic search across multiple 
disparate formulations archives to enable data driven formulation 
intelligence. We develop a new platform for medical formulations 
recognition (MFR) that curates a new dataset comprising 
formulations and non-formulations (clinical) text and uses a novel 
pipeline encompassing deep feature extraction and one-class 
support vector machine learning. The proposed MFR framework 
demonstrates promising performance and can be used as a 
benchmark for future research in formulations recognition. 

Keywords—Text Recognition, NLP, Deep Learning, One-Class 
Learning, Support Vector Machine 

I. INTRODUCTION 
The majority of medicines prescribed to adults are licensed 

products with clearly defined usage and will have undergone 
rigorous regulatory procedures to evidence drug efficacy, 
safety, administration, indications and shelf-life.  However, the 
use of unlicensed, off-label, and personalized medication is also 
common, especially within certain patient demographics such 
as neonates and the elderly [1]. It has been stated that 93% of 
neonates in intensive care will receive at least one unlicensed 
or off-label medicine [2]. Specials medications are formulations 
which are bespoke manufactured for patients with unique 

prescription requirements, specifically for individuals who 
clinically require something that is different from the standard 
licensed format [1]. This may be because: they are a baby/small 
child or elderly and require a different strength or format; they 
are allergic to ingredients, have swallowing difficulties [3], or 
other complexities; the drug is new and / or there is not enough 
demand; or because there are supply issues with a licensed 
product [4].  According to the Association of Pharmaceutical 
Specials Manufacturers, unlicensed and off-label medication 
represents 1% of total prescriptions and constitutes more than 
75 000 formulations per annum. In 2017 the NHS drug spend 
was £9.17 billion, and £77.5 million constituted specials [1]. 

The individualized nature of specials production, coupled 
with requirements for strict quality control, constitutes a 
substantial burden for healthcare professionals. Such practice is 
a necessary part of product development and should be 
informed using the best available evidence. Furthermore, it is 
necessary to provide efficient and timely drug provision in 
order to avoid practical problems such as delays in treatment 
[4]. Access to existing bodies of clinical knowledge is an 
important factor and is reflected in the sheer volume of 
formulation studies which have been published since the 1960s 
[5,6].  Such studies are typically long-term, analyze drug 
content and drug degradation, and consider a variety of 
environmental factors (such as temperature, light and pH). 

Despite the availability of vast digital archives of clinical 
publications including formulation studies, archive search and 
pharmaceutical formulation retrieval is non-trivial. 
Formulation development and validation is an inherently 
manual process which involves expert input.   There exists a 
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Fig. 1. Medical Formulation Engine Architecture 

 

high similarity between formulations text and other medical 
studies, such as clinical trials, and information is typically 
stored across multiple, disparate archives of data (both 
proprietary and non-proprietary). These factors result in time 
inefficiencies and are costly for the industry.  

There are clear opportunities to exploit current trends in 
natural language processing (NLP) and machine learning, such 
as deep learning, to assist with specials production. In this paper 
we propose the development of a Medical Formulation Engine 
(MFE), which enables user-defined search of multiple data 
archives and utilizes state-of-the-art machine learning methods 
including natural language processing (deep feature extraction 
coupled with one-class learning) for automatic recognition, 
retrieval, and creation of pharmaceutical formulations (Fig. 1.).  

Our overriding objective is to enhance existing operating 
procedures and facilitate data – driven knowledge creation 
within the specials manufacturing market. Such activity can 
enhance personalized medicine, enable intelligent formulation 
search and facilitate further work on predictive analytics. 
Specifically, this work addresses the following challenges: 

• There is no single public dataset available which 
represents medicine formulation studies.   

• Public sources of formulations data are typically 
heterogeneous and disparate. In light of this, the validity 
and reputability of public data sources must be 
evaluated. 

• Practitioners will access multiple sources manually 
when building specials formulations and will utilize 
both internal and external data. 

• There exists a high semantic similarity between 
formulations data and other clinical sources- expert 
search and automated recognition are non-trivial. 

The remainder of this document is structured as follows. 
Our methodology for medical formulations recognition is 
presented in Section II.  An experimental overview is offered in 
Section III. Results and discussion are offered in Section IV, 
and Section V describes conclusions and future work. 

II. METHOD 

A. System Overview 
This study seeks to evaluate the accuracy with which 

pharmaceutical formulations text may be recognized from other 
similar clinical manuscripts. Our framework for Medical 
Formulation Recognition (MFR) is presented in Fig. 2. After 
acquisition, data is transformed into deep feature vectors using 
Universal Sentence Encoding (USE) [7], and resultant feature-
space representations are reduced via Principal Component 
Analysis (PCA) [8]. Due to problems associated with learning 
imbalanced data (e.g. the existence of a skewed class 
distribution, and the potential for over-training in favor of the 
majority class), we regard pharmaceutical formulation 
recognition  as  a  one-class  problem,  where  non-formulation  



 

Fig. 2. MFR Methodology. 

(clinical) text is defined as an outlier.  To achieve this, n 
principal components of USE features are used as inputs for 
one-class support vector machine (SVM) learning.  One-class 
SVM learning [9] is an approach that has been successfully 
applied to overcome data imbalance across a variety of 
application areas, including fraud detection [10], pronunciation 
verification [11], and cancer diagnosis [12]. 

 
B. Data Acquisition 

Journal abstracts were digitally collected from the following 
sources:  

• PubMed (life sciences & biomedical) repository using 
the BioPython Web API [13] 

• Trissel’s online archive of compounded formulations 
[14], via (keyword-based) web crawl and abstract 
extraction.  

For PubMed inputs, to retrieve articles corresponding to 
unlicensed medicines formulations, we made API calls using 
queries which were co-produced with a team of experts offering 
domain insight. After search query execution using the 
BioPython Web API, returned abstracts were inspected and 
manually labelled by experts, with each abstract classified as 
corresponding to a formulation or non-formulation study.  
Example queries are illustrated in Fig. 3. For SVM learning, 
only formulation abstracts were retained as inputs.  

Our complete data set comprises 968 abstracts, of which 
882 and 86 constitute formulations and non-formulations, 
respectively. All abstracts are clinical in nature. Abstract 
lengths range between 2 – 20 sentences, with a mean length of 
9.23 and standard deviation of 3.18. Data was stored as 
unstructured raw text and used directly as inputs for feature 
extraction. 308 formulations abstracts were sourced from 
Trissels [8], and the remainder of abstracts were the result of 
PubMed search. 

 

 
 
Fig. 3. Example WebAPI Queries 

 
C. Deep Feature Extraction  

In this research, feature extraction is regarded as a transfer 
learning task and implemented using Universal Sentence 
Encoding (USE).  USE has been trained and optimized for 
greater-than-word-length NLP activities, and can take as input 
sentences, phrases or short paragraphs. The model is trained 
with a Deep Averaging Network (DAN) encoder [15] and does 
not require text pre-processing [7]. It encodes text into fixed-
dimension (512 feature) embedded string representations [7] 
and has been previously applied across a variety of NLP tasks 
including text mining, document classification, clustering, and 
semantic similarity.  USE achieves good performance with 
minimal amounts of training data [7], which makes it 

queryList =                         [‘Stability aqueous solution’,
‘compounded formulation‘,

‘compounded formulation oral suspension’,
‘extemporaneous stability’,
‘oral solution stability’,

‘stability ointment  90 days’,
‘Stability ora plus’]

for q in queryList
    results = search(q)

def search(query):
    handle = Entrez.esearch(db='pubmed', 
                            sort='relevance', 
                            retmax='10000',
                            retmode='xml', 
                            term='query')
    results = Entrez.read(handle)
    return results



appropriate in scenarios where large training sets are not 
available.  

D. Dataset Dimensionality Reduction  
We perform data dimensionality reduction using Principal 

Components Analysis (PCA).  PCA, alternatively known as the 
Hotelling Transform, is an unsupervised linear transform 
performed by calculating the eigenvectors of a dataset’s 
covariance matrix and projecting resultant data onto a new 
coordinate system where the data is mapped in decreasing order 
of variance [8]. By retaining only those components with higher 
variance, we reduce USE vectors into a smaller set of variables, 
aim to decrease model complexity and associated training 
times, and avoid overfitting.  

E. One Class Support Vector Machine (OCSVM) 
OCSVM is an unsupervised learning technique for outlier 

detection which was first introduced by Schölkopf et al [9]. 
OCSVM modelling is distinct from multi-class supervised 
SVM learning, given that inputs belong to a single class of data 
and can therefore technically be regarded as unlabeled [16].  
Within the literature, [17] utilize OCSVM for gathering rich 
data from medical subject headings (MeSH). [18] utilize one 
class SVM for document classification, and similar approaches 
have been applied on image processing applications such as 
detecting Chinese calligraphy style differences [19].  However, 
the application of OCSVM learning for formulations 
recognition has been previously unexplored. 

The one-class SVM learning problem is framed as: Given a 
dataset with feature space probability distribution P, find a 
“simple” subset S of the feature space such that the probability 
that a test point from P lies outside S is bounded by some a-
priori specified value [9]. To generate the boundary and 
separate the dataset from the origin [9], we solve: 

 min
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Where 𝑥,  is the training data points, ℓ   the number of 
observations, 𝛷 is feature map, and 𝜐  represents the upper 
bound on the fraction of outliers and lower bound on the 
fraction of support vectors,  𝑤  and p are decision variables 
which define the classifiers,  𝜀, is a non-zero slack variable [17] 
and  𝜀, − 𝜌 represents the degree of misclassification [20][9]. 

Equation (2) will be used instead of (1) as its “common to 
solve the Lagrange dual”:  

 min
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where 𝛼, and 𝛼. are non-zero patterns [9], and k represents 

the kernel function. For OCSVM there are many types of the 
kernel functions which may be adopted, including linear 

classifier, polynomial, radial basis function (RBF) and sigmoid. 
In this work we will use the RBF kernel:  

 𝑘	(𝑥, 𝑦) = exp A−	‖123‖
"

)4"
B				 (3) 

 
Where ‖𝑥 − 𝑦‖)  is the Euclidean distance between two 

data points, and 𝜎 is a free parameter of the kernel function.  

III. EXPERIMENTAL OVERVIEW 
After data acquisition using the approach defined in Section 

II, we partition abstracts into training and test samples. It has 
been previously reported that OCSVM operates better when 
there are no or less anomalies in the training data [10, 21].  For 
this reason, we exclude non-formulation abstracts (negative 
samples) from model training and partition our formulations 
data into 90% training and 10% test sets.  The formulations test 
set (89 samples) is subsequently combined with non-
formulation data (86 samples) for final system evaluation. Our 
full data partitioning protocol is illustrated in Table 1.  

An example of formulations text is illustrated in Fig. 4. USE 
takes as input lowercase strings. Due to unique characteristics 
of our data, we do not perform any additional pre-processing, 
and encode data at the paragraph level.  Formulation abstracts 
are typically short and contain domain specific numerical data 
and special characters. We wish to maintain domain specific 
content and investigate the accuracy achievable using simple 
models which are trained at the paragraph level. After USE, we 
reduce each document’s 1*512 feature vector to a 1*n vector of 
principal components, with n = 30 selected after empirical 
investigation of component variance (Fig. 5.). Specifically, we 
retain only those components required to maintain 80% of total 
dataset variance. Our OCSVM is trained using an RBF kernel. 
Given that optimization is a significant issue for OCSVM [22], 
we evaluate performance across two varying parameters, 
specifically outlier fraction (v) and gamma, where gamma 
characterizes the range of the support vector decision boundary 
and a low gamma value indicates that decision boundary 
calculation relies only on the closest points.  

TABLE I.  TRAINING & TEST SET PARADIGM 

Description 
Experimental Setup 

Training Testing Total 

Formulation 793 89 882 

Non-Formulation 0 86 86 

Total 793 175 968 

 
 

 
Fig. 4. Example Formulations Text 

formulation a stayed physicochemical and microbiologically stable at
refrigerated (4°c) conditions during at least 150 days and it only stayed stable
during 14 days at 25°c. formulation b was stayed physicochemical and
microbiologically stable at refrigerated (4°c) conditions at least 90 days, but it is 
not recommended to store at 25°c for more than 1 day.



For any given parameterization, performance is subsequently 
evaluated using: 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 5678	9:;,<,=8;
5678	9:;,<,=8;>#?@;8	9:;,<,=8;

 (4) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	 5678	9:;,<,=8;
5678	9:;,<,=8;>#?@;8	A8B?<,=8;

			 (5) 

 
 

 𝐹1	 = 	2 ∗ 	968C,;,:D	∗	F8C?@@
968C,;,:D>F8C?@@

		 (6) 

 
and 
 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 5678	9:;,<,=8;>5678	A8B?<,=8;
5:<?@	G?HI@8;

	 ∗ 100		 (7) 

 
Our system is implemented in python using Scikit-learn and 

TensorFlow packages [23, 24], and executed within a Windows 
environment (i7 processor, 16 GB RAM).  

 

IV. RESULTS & DISCUSSION 
Mean medical formulation recognition accuracy across the 

full range of outlier fraction (v) and gamma parameterizations 
was 0.752, with precision = 0.83, recall = 0.66, and F1 score = 
0.722. Those individual SVM setups achieving maximum 
performance for each metric are summarized in Table II. Across 
all experiments, maximum classification accuracy of 0.82 was 
attained (F1 score = 0.832).    

 

 
Fig. 5. PC Variances 

 

TABLE II.  SUMMARY OF CLASSIFIER PERFORMANCE 

 
 

 
 

 
 
Fig. 6. Confusion Matrix, gamma = 5.3, v = 0.01 

The confusion matrix for v = 0.01 and gamma = 5.3 is 
provided in Fig. 6. It can be seen from Fig 6. that 89% of 
formulations were correctly recognized, and 26% of non-
formulations were misclassified.  Full inspection of accuracy as 
a function of OCSVM parameterization (Fig. 7) illustrates: 
accuracy > 0.74 where v < 0.25; and accuracy > 0.78 with mid-
range gamma values. Similarly, F1 scores are maximized when 
the system assumes a smaller proportion of outliers within that 
data, specifically when v < 0.2 (Fig. 8).  

It is apparent from Table II that there exists a trade-off 
between classification accuracy and system precision and 
recall.  Where accuracy = 0.82, precision is 0.195 less than the 
maximum achievable (max precision = 0.977). Our 
observations demonstrate the importance of considering a range 
of performance metrics when working with imbalanced 
datasets, and of evaluating classifier sensitivity to 
parameterization. We may increase mean precision and 
minimize false positive recognition (Fig. 9), but this is at the 
expense of true positive prediction.  Analysis of mean medical 
formulation recognition (across all gamma values) as a function 
of v (outlier fraction), as illustrated in Fig. 10, further highlights 
this. Specifically, there exists an inverse relationship between 
precision and our other performance metrics. Increased 
precision is at the expense of recall. Where recall = 1, 43% of 
non-formulation abstracts are incorrectly recognized (Figure 
11). 

As we evaluate system performance as a function of 
parameterization, there is an observable variance (Fig. 7, Fig. 
8). This is due to the existence of uncertainty [26], both 
aleatoric (caused by noise and imbalance in our data inputs [27, 
28]) and epistemic (inherent due to the small size of our 
dataset). Similar variances in accuracy have been previously 
reported for imbalanced, complex medical classification 
problems [25], for example Breast Cancer, Hepatitis and 
Diabetes datasets.  

Formulation

64 (74%) 22 (26%)

10 (11%) 79 (89%)

A
ct

ua
l

Predicted

Non-Formulation

Formulation

Non-Formulation

v gamma Accuracy Precision Recall F1 
0.010 5.300 0.820 0.782 0.888 0.832 

0.420 8.900 0.731 0.977 0.483 0.647 

0.010 1.300 0.789 0.706 1.000 0.828 



 
 
Fig. 7. Classification Accuracy as a Function of Parameterization 

 
The application of pre-trained models for deep feature 

extraction (USE) will help reduce problems associated with 
small datasets, but it is  desirable  to further  extend  the  medical  
formulation corpus presented within this research and reduce or 
address uncertainty and data imbalance more fully. 
Additionally, there exists the opportunity to compare our 
OCSVM with alternative machine learning models, including 
supervised multi-class approaches such as k-nearest neighbor, 
decision trees, and neural networks [25]. Fig. 4 demonstrates 
that formulation text contains noisy symbols and numbers. It is 
conceivable that performance may be enhanced through 
application of appropriate pre-processing techniques aimed at 
reducing irrelevant or redundant artefacts. The integration of a 
user-feedback loop, where false positives and false negatives 
are used to enhance machine learning and modelling, 
constitutes an additional avenue for future work.   

 

V. CONCLUSIONS 
Medical formulations recognition (MFR) raises a promising 

and challenging task and offers excellent opportunities for 
further research in this area. This paper presents a new MFR 
dataset and evaluates the performance of the application of deep 
feature extraction and one class support vector machine 
learning for formulation recognition. Initial results demonstrate 
the promising performance of our proposed approach. Mean 
recognition across all SVM parameterizations is 0.752 and 
through OCSVM parameterization we can achieve accuracy of 
0.82, with 0.78 precision and 0.88 recall. We propose that our 
dataset and methodology constitute a new benchmark 
facilitating further research in this area.  

When applied to MFR, the OCSVM demonstrates a clear 
sensitivity to parameterization. Future work could therefore 
focus on enabling robust, generalizable learning.   This can be 
achieved through adoption of more sophisticated feature 
extraction and representation methods, comparison of multiple 
kernels for learning, and further fine-tuning. The USE approach  

 

 

Fig. 8. F1 Score as a Function of Parameterization 

 
utilized constituted full transfer learning, with no fine-tuning, 
implemented at paragraph level. A comparative investigation of 
sentence- versus paragraph- level feature extraction, with fine-
tuning, is therefore desirable. Furthermore, there exists the 
opportunity to integrate additional approaches for feature 
extraction and representation, and machine learning models (for 
example novel approaches to MFR incorporating deep 
convolutional neural networks).  

Our goal is to have an automatic medical formulation 
engine (MFE) that can efficiently retrieve formulations from 
published archives based on user requests and create the 
formulation for the special requests. The output of the MFR will 
be used inside the Medicine Formulation Engine (MFE) to 
enable rapid formulation and production of novel and bespoke 
medications. MFE will assist in finding new formulations, 
where finding these formulations currently takes significant 
manual time and effort. This research and the MFE search 
engine will offer time and cost efficiencies to pharmacists 
searching through published formulation and stability studies, 
with the aim of reducing overall product development times and 
enhancing patient outcomes through timely provision of 
personalized care. 
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Fig. 9. Confusion Matrix, gamma = 8.9, v = 0.42 

Non-Formulation Formulation
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Fig. 10. Mean Performance as a Function of Outlier Fraction (v) 

 

 
 
Fig. 11. Confusion Matrix, gamma = 1.3, v = 0.01 
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