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Abstract—Here we suggest a novel computational approach
based on artificial neural network technologies to be able to
evaluate evolutionary fitness in both theoretical models of pop-
ulation dynamics and empirical biological systems from data.
Our approach uses long-time population time series (obtained
either from a model or from data) and establishes the ranking
order of inherited strategies reflecting their selective advantages.
We approximate the fitness surface in the space of a few key
parameters based on Taylor expansion. To do this, we create
learning and testing samples and then apply artificial neural
networks to build a fitness surface separating the domains of
interior and superior ranking in the space of parameters. Using
the obtained approximation of the fitness function we can find
the evolutionarily stable (optimal) strategy by maximising evo-
lutionary fitness. We demonstrate the efficiency of our approach
by applying it to some classical population models where the
exact fitness function can be derived analytically as well as to
empirical systems. In the considered study cases, both the fitness
function and the optimal strategy obtained via our computational
method are close to the ones provided by analytical solutions or
observed in natural systems. We apply our method to predict the
evolutionary stable diel vertical migrations (DVM) of zooplankton
in the ocean and lakes, the phenomenon, which is considered as
the most significant synchronous biomass movement on Earth.

Index Terms—zooplankton, diel vertical migration, evolu-
tionarily stable strategy, fitness, recognition, neural network,
machine-learned ranking, validation.

I. INTRODUCTION

Currently, artificial intelligence systems are widely im-
plemented in various research areas (see [1] for a short
review) in particular, in life sciences. For example, methods
of patterns recognition and neural networks are applied in
computational biology for ranking candidate 3-D structures
of protein complexes [2]. Another important application is
predicting outcomes of biological evolution and selection [3].

In evolutionary biology, the key issue is understanding and
predicting which inherited behavioural strategy or a life history
trait would be eventually selected as a result of interspecies
and intraspecific competition under given environmental con-
ditions. The naturally selected strategy is called the evolution-
arily stable strategy [4]. Modern approaches to mathematical
modelling of biological evolution are often based on the max-
imization of some prescribed criterion – evolutionary fitness

[4]–[6], that reflects selective advantages of inherited elements
(genotype, life trait, behavior, etc.). This approach was firstly
developed in the works of Haldane, Fisher and Wright [7]
and was the implementation of Darwin’s fundamental idea –
”survival of the fittest”.

However, to practically implement Darwin’s seminal idea,
we need to choose some key characteristics of hereditary
strategies that determine their impact on evolutionary success.
Each hereditary strategy will determine a set of life traits under
given environmental conditions. Then it becomes necessary to
be able to compare selective advantages of different hereditary
strategies with each other, i.e. to introduce a certain ranking
order based on available information on long-term population
success. Finally, we should determine a fitness function that
quantitatively expresses the ranking order and relates it to the
key characteristics of organisms. Predicting the evolutionarily
stable strategy consists of finding the optimal argument of
fitness function (e.g. via calculus of variations or other meth-
ods). Thus, by maximizing evolutionary fitness one can predict
the evolutionary outcomes in biological systems [8], [9]. The
central point of evolutionary modelling based on the above
paradigm is the ability to rank inherited strategies. Therefore, it
would be logical to apply the existing machine-learned ranking
techniques to tackle this problem [10], [11]. Currently, there
exist various algorithms of learning to rank such as pointwise,
pairwise, and listwise algorithms [12].

In this study, we apply the pairwise method of machine-
learned ranking to construct a fitness function based on
empirical observations and theoretical models. We create an
artificial neural network to rank inherited strategies and derive
the fitness function of diel vertical migrations (DVM) of
zooplankton in the water column.

The problem of reconstructing fitness using machine learn-
ing has several important features (caveats) that makes it
complicated. Firstly, we require a sample of the time series to
be sufficiently long [9]. Secondly, we assume that the set of
evolving strategies is not finite but is a certain continuum (e.g.
function space) [6]. Thirdly, the main task is not to establish
ranking order by itself, but by using it to derive fitness function
following this order with the final goal being to predicting the
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evolutionary stable strategy [9]. Finally, it is often practically
hard to validate the appropriate software.

In this study, we are particularly focused on problems of
software validation when we reveal evolutionary fitness by
machine learning techniques. We use two different conceptual
approaches. For some models, we can analytically derive
the corresponding fitness function that reflects the selective
advantages of strategies. In this case, we can directly compare
the obtained fitness via our numerical methods and the exact
analytical solution. The second approach includes the compar-
ison of the numerically found evolutionary stable strategy and
the one obtained using the exact analytical solution for the
relevant model. Here we apply the methods to reveal optimal
patterns of diel vertical migration of zooplankton in the ocean
and lakes.

II. METHODOLOGY

Evolutionary fitness has been always a controversial issue
in the literature since different authors have proposed distinct
definitions of fitness [13]–[19], etc. The approach of adaptive
dynamics to this problem uses local stability of an equilibrium
state in the space of inherited elements [4], [17], [20]. How-
ever, the problem of how to define evolutionary fitness is still
far from its final solution. Currently, the choice of fitness is
generally subjective and depends on the personal preference
of the modeller. As a result, different approaches to fitness
may produce conflicting predictions of evolutionary outcomes
[17], [21].

Recently, a new mathematically rigorous framework has
been proposed to deal with the problem of fitness [22], [23].
The main idea is to consider the long-term dynamics of
inherited elements in function spaces which is mathematically
described as dynamics of measure of sets. The corresponding
dynamical models of self-replicating systems are given by
differential equations or differential equations with delay [6],
[22]. In this case, the fitness function is expressed as a long-
term per capita rate of a subpopulation corresponding to a
particular inherited element. On the other hand, we often do
not know the underlying differential equations but only have
empirical time series of population dynamics of competing
species and subpopulations. Thus, we only know a posteriori
result of long-term selection in the system.

It was recently demonstrated that evolutionary fitness can
be estimated directly from empirical data by following long-
term population dynamics [9], [23]–[25]. The main idea is
to assume that an inherited strategy A is better (fitter) than
a strategy B if the ratio between the number of individuals
applying B and that of individuals using A tends to zero over
time [25]. In the case of limited environmental capacity, this
signifies that the group of individuals using A will eventually
be displaced by those using B. As such, from population time
series, we can easily rank all strategies on the base of the
partial ordering of their per capita growth rates. This allows
us to introduce ranking using the data-defined partial order.
Finally, we need to build a function preserving ranking order

of strategies, such a function becomes the evolutionary fitness
[9], [24].

According to the computational method presented in this
study, the evolutionary fitness function J can be directly con-
structed by studying the selection among competing strategies
taking place in the system. The population dynamics time
series required to establish the ranking order can be either
taken from empirical data or by simulating theoretical models.
Here we apply the pairwise method of machine-learning to
restore the ranking order for all inherited strategies. We have
developed an algorithm to reconstruct the evolutionary fitness
as a function of the key parameters which are determined by a
strategy. The fitness function in this approach is approximated
using Taylor expansion. Below we provide a brief description
of the computational framework of the method (for more
details see [9], [25]).

Consider v to be a hereditary strategy from some space V of
hereditary strategies of the population; ρ(v, t) is the number of
individuals realizing strategy v; this can be also understood as
the density distribution of the population over V . We formally
define the strategy v to be better (or fitter) than w if the ratio
ρ(w, t)/ρ(v, t) tends to zero, i.e.

lim
t→∞

ρ(w, t)/ρ(v, t) = 0.

If the above ranking order does not depend on the initial
condition and there exists a functional J(v) such that it
preserves the ranking order of the elements, i.e. J(v) >
J(w) ⇔ v � w, then this functional is referred to as the
evolutionary fitness. Functional J will play the role of the
ranking function. Note that in many models, ranking order can
depend on the initial conditions. Such complicated situations
are partially discussed in [9], [24] and we do not consider
them in this note.

Temporal dynamics of ρ(v, t) are usually determined
by few key characteristics (’macroparameters’) M =
(M1(v), ...Mn(v)) such as foraging rates, mortalities, matu-
ration times, etc, which are function(al)s of the strategy v.
Thus, fitness J will be a multivariable function of M , i.e.
J(v) = J(M(v)). We assume that we can approximate J
using Taylor expansion around a certain point M0:

J(M) = J(M0) + dJ|M0
+ ...+ dkJ|M0

+ o(‖M −M0‖k).

Thus, to find evolutionary fitness we need to estimate the
coefficients in the above Taylor expansion. We can also always
remove the constant J(M0) since we are not interested in
finding the absolute value of J .

Assume that we have long-term data on the joint dynamics
of ρ(v1, t), ..., ρ(vm, t) for certain finite subset of hereditary
elements with known v1, ..., vm. This should allow us to
approximate the limit of the ratio ρ(vj , t)/ρ(vi, t) for all pairs
(vi, vj) from this set. Comparing the magnitude of this ratio,
we can obtain ranking order for the subset of elements (and
their corresponding parameters M ). In the case vi � vj , the
inequality J(M(vi)) > J(M(vj)) should hold. The based on
the Taylor approximation, we obtain the inequality for Taylor
coefficients for J .



We can solve the corresponding system of linear inequalities
using methods of linear programming [9]. However, here we
suppose a new approach for finding the coefficients via modern
methods of pattern recognition.

The crux of the method is the following. Let us assign
the pair (v, w) to the point (M(v),M(w)), the pair (w, v)
to the point (M(w),M(v)) in the 2n-dimensional space
of parameters. In the considered 2n-dimensional space, we
explore samples of pairs of hereditary elements, with known
comparison results in terms of ranking order. We can separate
the two sets using a surface which will be related to fitness.
Consider a separating surface given by the following parame-
terization

Y (v, w) ≡
n∑

i=1

λi(Mi(v)−Mi(w))+

+

n∑
j=1

n∑
i=1

λij(Mi(v)Mj(v)−Mi(w)Mj(w))+

+

n∑
i1=1

n∑
i2=1

...

n∑
ik=1

λi1i2...ik(

k∏
j=1

(Mij (v)−
k∏

j=1

Mij (w)) = 0.

The above problem of separation of sets is a typical pattern
recognition problem (known as classification) that can be
solved with the help of learning neural networks [26]–[28].
Such a comparison boils down to determining whether the
ordered pairs of elements ”first, second” belong to one of two
classes: ”the first is better than the second” or ”the first is
worse than the second”. The coefficients of the separating
surface will be those of Taylor approximation of fitness
function.

Note that separation of two finite sets of points from the
learning sample with the surface Y (u, v) is generally non-
unique. The concrete realisation of the separation procedure
(and the corresponding approximation of fitness) depends
on the method of constructing the separating surface. For
example, in the simplest case where k = 1, the function
Y is linear and the separating surface is a hyperplane. The
location of this hyperplane can be slightly different depending
on the methods used in neural networks. In the case where one
implements a simple single-layer neural network, constructing
a separating hyperplane will be equivalent to the gradient
descent for a certain function depending on the coefficients
of the hyperplane. There also exists the concept of an optimal
hyperplane which can be constructed using, for example via
the Gauss-Seidel method. The problem of fitness reconstruc-
tion can be also solved using pointwise methods of machine-
learning ranking, for example, OPRF (polynomial regression)
[29].

Note that evolutionary fitness can be analytically derived
for several relevant population models (Verhulst, von Foerster,
Lotka-Volterra, etc., see for details [6], [23], [24], [30]). Thus
we can use the analytical results to validate the efficiency of
the developed software as it is done in the next sections.

Finally, after revealing the evolutionary fitness function it is
possible to derive the evolutionary stable behaviour (strategy)
by methods of calculus of variations or the optimal control
theory. In this case, the fitness function will be the objective
functional of the corresponding optimizing problem [9], [24].
We have developed the program complex to solve this problem
numerically for any known objective functional [3]. We can
compare the numerical results with those empirically observed
in nature (suggesting that the current strategy, life trait or
behavior pattern is the result of long term selection) to validate
the created software. Moreover, we can solve the optimizing
problem analytically for some population dynamics models.
Then we can easily perform a comparison between analytical
and numerical solutions for the validation of our software (see
some examples below).

III. DIEL VERTICAL MIGRATIONS OF ZOOPLANKTON

The phenomenon of diel vertical migration (DVM) of
aquatic organisms was discovered two hundred years ago [14].
It was found that a large number of zooplankton species move
up and down between deep and surface layers on a regular
daily basis. It is recognised that the DVM of zooplankton
plays an important role in the dynamics of the organic matter
of the ocean. This phenomenon is considered to be the greatest
synchronous migration of biomass on Earth [31] and can
potentially influence the climate on the planetary scale [32].
Zooplankton is regarded as a key element in aquatic food
chains, in particular, they present the main food source for
fish. Identifying the causes and mechanisms of DVM of
zooplankton is an important problem in modern ecology and
is crucial for an efficient fishery.

The mechanisms and ecological significance of DVM have
been largely both empirically and theoretically [14]–[16],
[18], [21], however many aspects of this phenomenon are
still poorly understood. In particular, this is due to the
wide variety of patterns of DVM observed in nature [14].
Various mathematical models of DVM were considered in
the literature [9], [23], [24], [33]–[36]. In this study, we
reconsider recent data from the long-term observations of
zooplankton DVM and evaluate evolutionary fitness and
optimal DVM using our computation method. The data
considered here is publically accessible, taken from the
literature [14], [21], [36] as well as from the following
websites: http://www.oceannetworks.ca/zap-data-saanich-
inlethttp://www.oceannetworks.ca/zap-data-saanich-inlet and
http://hdl.handle.net/1828/4630http://hdl.handle.net/1828/4630.

Mathematical models and empirical data suggest that the
timing and the amplitude of DVM of herbivorous zooplank-
ton are mainly determined by various environmental factors:
spatial distributions of food E(x) at the depth x of the column,
spatial distribution of predators Sx(x), extra mortality G(x)
due to unfavourable temperature or/and radiation level, the
daily predator activity St(t), in this case, S(x, t) = Sx(x)St(t)
is the predator pressure depending on the depth and time
of day [14], [21]. All of these factors can be considered
as mathematical functions of the vertical coordinate x (e.g.



measured in meters) or time of day t (e.g. measured as a
fraction of the day). We suggest that the environment is stable.

Let x be the vertical coordinate of the position of zooplank-
ton in the column; t is the time of day varying from 0 to 1.
Let zooplankton have N developmental stages characterized
by different life traits and distinct patterns of DVM. Then
mathematically the inherited strategy v of a subpopulation
is the set of N periodic functions X(t) = (x1(t), . . . xN (t))
corresponding to different developmental stages. We assume
that every xi(t) is a continuously differentiable function on the
segment [0, 1], satisfying conditions xi(0) = xi(1). We can
study dynamics of m different competing subpopulations (or
species) using strategies v1, . . . vm. Then mathematically we
have the set of vector functions Xj , j = 1,m, corresponding
these different strategies and the set of the derivatives X ′

j .
We can analyze the long-term dynamics of ρ(vi, t), where

ρ is the sum of individuals of all age stages realizing strategy
vi with the time of observation T being sufficiently long, i.e.
T >> 1. We use data on long-term persisting species to derive
fitness function.

We can derive the fitness function using the separating
surface Y (v, w) in the space of parameters introduced in
Section II. The primary analysis of the data shows that the
impact of some terms in Y is relatively small and they can be
neglected without affecting the quality of the approximation.
Therefore, for the given problem, we can use a reduced form
of Y (v, w).

To separate two sets (domains) of pairs with different rank-
ing order, we can use either the classifier based on the nearest
neighbour method or a two-layer neural network. We found
that using artificial networks technology solves the problem
more efficiently. Moreover, using the classifier makes the
further building of fitness function more complicated. Whereas
the implementation of neural networks would allow us to make
it easier: using the weight coefficients of individual neurons
of the first layer of the network one can easily determine the
coefficients of the separating surface Y corresponding to the
coefficients in the Taylor approximation of fitness.

IV. RESULTS. SINGLE-STAGE MODEL

The above methodology was applied to find fitness of
zooplankton DVM based on one- and two-stages models. We
firstly assume a single developmental stage (N = 1). The
fitness function is given by the following integral

F =

∫ 1

0

(α(t)E(x(t))− γ(t)S(x(t), t)−

−β(t)(x′(t))2 − δ(t)(G(x(t)))dt.

The weighting functions α, γ, β, δ quantify the relative
contribution of the corresponding environmental factors at the
moment t.

Note that in practice we can only observe discrete values of
E,S and G through the day, i.e. we should formally use the

discrete version (approximation) of the above integral given
by

Y (v, w) ≡
L∑

l=1

(αl(E(x(v, tl))− E(x(w, tl)))+

+γl(S(x(v, tl), tl)− S(x(w, tl), tl))+

+βl(x
′(v, tl))− x′(w, tl))+

+δl(G(x(v, tl))−G(x(w, tl))))

We considered eight data time points for the zooplankton
positions during a day (L = 8) following the observation data
[36]. Note that time increment ∆t = tl+1 − tl is constant.

We found that the separation of sets of pairs with different
ranking can be satisfactorily done by reducing the system
complexity and assuming α, β, γ and δ to be constant; this
assumption largely simplifies functioning of the method. In
this case, evolutionary fitness is given by

F (v) = αM1(v) + γM2(v) + βM3(v) + δM4(v),

where

M1 =

∫ 1

0

E(x(t))dt,M2 =

∫ 1

0

St(t)Sx(x(t))dt,

M3 = −
∫ 1

0

(x′(t))2dt,M4 = −
∫ 1

0

G(x(t))dt.

Our training set contains 132 samples, whereas the testing
set is formed of 110 samples using [14]. As a result of training,
the neural network can learn to compare the test sample pairs
without any mistakes.

To give a clear geometric interpretation of the obtained
result let us fix two parameters M3 and M4. Then we may
plot points (M1(v)−M1(w),M2(v)−M2(w)) in the plane of
two remaining parameters M1 and M2 corresponding to the
considered pairs of strategies (v, w) (see fig. 1). These pairs
belong to two different classes corresponding to the different
ranking w � v or w ≺ v. It can be seen from the figure
that a straight line with fitted coefficients (α, γ) unmistakably
separates these classes.

After we find the coefficients α, β, γ and δ (we can always
normalize α = 1) we can find the evolutionary optimal
trajectory of DVM by analytically maximizing the fitness
functional F . This can be done, for example using calculus of
variations. The obtained optimal trajectory can be compared
with the observed DVM.

Good agreement between the predicted and observed
trajectories supports validation of the developed soft-
ware. We found that per the recent data provided
at http://www.oceannetworks.ca/zap-data-saanich-inlet, zoo-
plankton was located at a depth of 10 meters for one-half
day and a depth of 100 meters for the second half of the
day. If we expand the DMV trajectory in a Fourier series
and take into account the first three terms, we get the fol-
lowing approximation x = −55 − 70 cos 2πt + 0.4 cos 6πt.
In accordance with [21], the amount of food E(x) typically



Fig. 1. The set of points (M1(v)−M1(w),M2(v)−M2(w)) corresponding
piers of strategies (v, w) in the plain of key parameters M1(food) and M2

(predator). ◦ denotes the pair where v ≺ w; + denotes the pair where v � w.

varies from 20 in the upper water layers (x = −10m) to 0 in
the lower (x = −100m), the predator pressure Sx(x) varies
from 70 to 0, respectively. We use a linear approximation
of these quantities and a quadratic approximation of negative
factors G(x) = −(x− 50)2 when approaching the boundaries
of comfort zones and St(t) = cos 2πt + 1. Our fitness
estimations give α ≈ 1, δ ≈ 0.001, β ≈ 0.00001, γ ≈ 0.29.
We then analytically find the following optimal solution x ≈
−51.5−72.7 cos 2πt by the methods of variation calculus. This
shows a good agreement between predictions and the data.

Let us now consider a more accurate approximation of
the variation of the predator pressure through time St(t) =
cos 2πt − ε cos 6πt + 1 with ε = 0.013 [14]. In this case
solution of the variation problem (assuming the fitness coef-
ficients α, δ, β, γ to be the same) is given by x ≈ −51.5 −
72.7 cos 2πt−0.41 cos 6πt, which is even in a better agreement
with empirical observation [14], [36].

V. RESULTS. TWO-STAGE MODEL

Now consider a two-stage model. We construct the fitness
function using the following quadratic form

F =

8∑
i=1

λiMi +

8∑
i=1

8∑
j=1

λijMiMj ,

where the parameters Mi are time discrete approximations of
integrals

M1 =

∫ 1

0

E(x1(t))dt,M2 =

∫ 1

0

St(t)Sx(x1(t))dt,

M3 = −
∫ 1

0

(x′1(t))2dt,M4 = −
∫ 1

0

G(x1(t))dt,

M5 =

∫ 1

0

E(x2(t))dt,M6 =

∫ 1

0

St(t)Sx(x2(t))dt,

M7 = −
∫ 1

0

(x′2(t))2dt,M8 = −
∫ 1

0

G(x2(t))dt.

Following previous studies [6], [28], we consider the fol-
lowing two-stage model. We denote ξ(vi) to be the pop-
ulation density of the juvenile (non-reproducible) stages of
zooplankton; η(vi) is the population density of adults which
can reproduce. In both cases, vi denotes the corresponding
strategy of DVM. The model is described by the following
system of ODEs:

ξ′(vi) = r(vi)η(vi)−ξ(vj)(p(vi)+q(vi)+

m∑
j=1

(ξ(vj)+η(vj)))

η′(vi) = p(vi)ξ(vi)− η(vi)(s(vi) +

m∑
j=1

(ξ(vj) + η(vj))),

i = 1,m. In the model, the coefficients r, s, p and q de-
scribe, respectively, the reproduction, mortality of juveniles,
maturation of juveniles and mortality of adults. They are all
functions of the strategy v. In [6], [28] it was shown that the
analytical expression for fitness function for the given model
is the following

J = −s− p− q +
√

4rp+ (p+ q − s)2

Following previous studies we can take

p = θ1M1 + φ1M3 + ψ1M4, q = ζ1M2,

r = θ2M5 + φ2M7 + ψ2M8, s = ζ2M6.

We fix coefficients θ1, φ1, ψ1, ζ1, θ2, φ2, ψ2, ζ2.
For each inherited strategy vi we can calculate the values

of the parameters p, q, r, s. Let us consider such strategies that
(p, q, r, s) is located near some point (p0, q0, r0, s0). Then we
can approximate J according to the Taylor formula up to the
second-order to obtain

J ≈ J0+h1p+h2q+h3r+h4s+h11p
2+h22q

2+h33r
2+h44s

2+

+h12pq + h13pr + h14ps+ h23qr + h24qs+ h34rs.

We can perform computer simulations to integrate model
equations for an arbitrary set of inherited strategies. Using the
obtained long-term dynamics time series we can reconstruct
the fitness function of the following form

F = h1(θ1M1 + φ1M3 + ψ1M4) + h2(ζ1M2)+

+h3(θ2M5 + φ2M7 + ψ2M8) + h4ζ2M6)+

+h11(θ1M1 + φ1M3 + ψ1M4)2 + h22(ζ1M2)2+

+h33(θ2M5 + φ2M7 + ψ2M8)2 + h44(ζ2M6)2+

+h12(θ1M1 + φ1M3 + ψ1M4)(ζ1M2)+

+h34(θ2M5 + φ2M7 + ψ2M8)(ζ2M6)+

+h13(θ2M5 + φ2M7 + ψ2M8)(θ2M5 + φ2M7 + ψ2M8)+

+h14(θ1M1 + φ1M3 + ψ1M4)(ζ2M6)+



+h23(ζ1M2)(θ2M5 + φ2M7 + ψ2M8)+

+h23(ζ1M2)(ζ2M6).

We can next compare the numerically estimated values of
coefficients hi and hij with the known coefficients coming
from the above Taylor expansion for J .

An example of the comparison between the analytical
and our computational method is provided in Table 1. The
coefficients in the Taylor expansion of J were computed in the
vicinity of the point r = 35.11, s = 0.73, q = 0.36, p = 0.03.
The coefficients present in fitness function F were found
based on the mentioned neural networks for fixed coefficient
h3 = 0.023 (that is equal to the corresponding Taylor co-
efficient). Technically, we implemented classification using a
sample consisting of 15 pairs of points.

TABLE I
COMPARISON OF FITNESS FUNCTION COEFFICIENTS

Taylor’s expansion Recognition of pairs
h4 -0.8343 -0.3923
h2 -1.1657 -1.0015
h1 33.848 29.0951
h33 -0.0002 -0.000001
h34 -0.0023 -0.0020
h23 0.0023 0.0086
h13 0.5199 0.0204
h44 0.2449 0.1511
h14 -3.4120 -2.6510
h22 0.2449 0.1318
h12 3.4120 2.2154
h11 -305.6119 -282.7759

From the table, one can see that the applied here method
provides a good approximation of fitness function in the two-
stage model.

We also considered another way of verification of the
computational method and the software. To do it we can
use analytical evaluation of the optimal trajectories of DVM.
We considered the same parameterisations for E(x) and
Sx(x, t), G(x) of the functions as in the single-stage model.
We considered the following weights in the fitness function
θ1 = 14, φ1 = 0.0008, ζ1 = 1 (here we can normalise
ζ1), ψ1 = 0.13, θ2 = 11, φ2 = 0.0008, ζ2 = 18.2, ψ2 = 0.13.
The optimal DVM obtained via maximisation of fitness is
given by x1 ≈ −10 − 10 cos 2πt, x2 ≈ −50 − 50 cos 2πt,
which is in a good agreement with observed patterns in the
ocean [14], [36].

SHORT SUMMARY

In this study, we develop a novel computational method
and the appropriate software to be able to reconstruct the
evolutionary fitness function from both data and theoretical
biological models. The method combines a previous powerful
theoretical approach, to define evolutionary fitness in self-
replicating systems, and some recent computational methods
of artificial neural networks as well as machine-learned rank-
ing. As an important study case, we apply our method to
explore evolutionary stable strategies of regular diel vertical

migration (DVM) of zooplankton in the ocean and lakes. Our
straightforward tests of the proposed methodology demon-
strated its great potential in revealing DVM of zooplankton.
As a future extension, we are planning to analyse a large
number of reported empirical cases of DVM and include more
complicated theoretical models of zooplankton population
growth to better train neural networks.

ACKNOWLEDGMENTS

The work was supported by the Ministry of educa-
tion and science of the Russian Federation (Project No.
14.Y26.31.0022).

REFERENCES

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K.V. Dada, N.A. Mohamed,
H. Arshad, ”State-of-the-art in artificial neural network applications: A
survey”, 2018, Heliyon 4:e00938.

[2] K. Duh, ”Learning to Rank with Partially-Labeled Data”, University of
Washington. Washingto, 2009.

[3] O. Kuzenkov, A. Morozov, G. Kuzenkova, ”Recognition of patterns of
optimal diel vertical migration of zoo-plankton using neural networks”,
IJCNN 2019 – International Joint Conference on Neural Networks,
Budapest Hungary, 2019, DOI: 10.1109/IJCNN.2019.8852060

[4] M. Gyllenberg, J. H. Metz, R. Service, ”When do optimisation argu-
ments make evolutionary sense?”, in ”The Math-ematics of Darwin’s”
Legacy, Birkhauser, Basel, 2011, pp. 233—268.

[5] J. Birch, ”Natural selection and the maximization of fitness,” Biol Rev
Camb Philos Soc, 2016, vol. 91(3), pp. 712—727.

[6] O. Kuzenkov, A. Morozov, ”Towards the construction of a mathe-
matically rigorous framework for the modelling of evolutionary fit-
ness”, Bulletin of Mathematical Biology, 2019, vol. 81, pp. 1—22
doi.org/10.1007/s11538-019-00602-3

[7] S. Wright, ”Surfaces of selective value revisited”, Am Nat, 1988, vol.
131, pp. 115—123.

[8] S. Gavrilets, ”Fitness landscapes and the origin of species (MPB-41)”,
Princeton University Press, 2004, vol. 41, p. 476.

[9] S. K. Sandhu, A. Morozov, O. Kuzenkov, ”Revealing Evolutionarily Op-
timal Strategies in Self-Reproducing Systems via a New Computational
Approach”, Bulletin of Mathematical Biology, 2019, vol. 81, issue 11,
pp. 4701–4725. DOI: 10.1007/s11538-019-00663-4.

[10] M. Mohri, A. Rostamizadeh, A. Talwalkar, ”Foundations of Machine
Learning”, The MIT Press, 2012.

[11] N. Tax, S. Bockting, Dj. Hiemstra, ”A cross-benchmark comparison
of learning to rank methods”, Information Processing & Management,
2015, vol. 51 (6), pp. 757—772.

[12] T.-Y. Liu, ”Learning to Rank for Information Retrieval”, Foundations
and Trends in Information Retrieval, 2009, vol. 3, pp. 225—331.

[13] J. Sainmont, K. H. Andersen, U. H. Thygesen, O. Fiksen, A. W. Visser,
”An effective algorithm for approximating adaptive behavior in seasonal
environments”, Ecological Modelling, 2015, vol. 311, pp. 20–30.

[14] C.W. Clark, M. Mangel, ”Dynamic State Variable Models in Ecology:
Methods and Applications”, Oxford Series in Ecology and Evolution,
2000, Oxford University Press, Oxford.

[15] S. H. Liu, S. Sun, B. P.Han, ”Viewing DVM via general behaviors of
zooplankton: a way bridging the success of individual and population”,
J. Theor Biol., 2006, vol. 238, pp. 435–48.

[16] B. P. Han, M. Strakraba, ”Control mechanisms of diel vertical migration:
theoretical assumptions”, J. Theor. Biol., 2001, vol. 210(3), pp. 305–318.

[17] K. Parvinen, U. Dieckmann, M. Heino, ”Function-valued adaptive
dynamics and the calculus of variations”, J. Math. Biol., 2006, vol.52,
pp.1-–26.

[18] A. De Robertis, ”Size-dependent visual predation risk and the timing of
vertical migration: An optimization model”, Limnol. Oceanogr., 2002,
vol. 47, pp. 925–933.

[19] A. Y. Klimenko, ”Entropy and equilibria in competitive systems”,
Entropy, 2014, vol. 16, pp. 1–22.

[20] U. Dieckmann, M. Heino, K. Parvinen, ”The adaptive dynamics of
function-valued traits”, J. Theor. Biol., 2006, vol. 241, pp. 370—389.



[21] O. Fiksen, J. Giske, ”Vertical distribution and population dynamics of
copepods by dynamic optimization”, ICES J. mar. Sci., 1995, vol. 52,
pp. 483–503.

[22] A. N. Gorban, ”Selection Theorem for Systems with Inheritance”,
Math. Model. Nat. Phenom., 2007, vol. 2(4), pp. 1—45. DOI:
https://doi.org/10.1051/mmnp:2008024

[23] O. Kuzenkov, E. Ryabova, “Variational Principle for Self-replicating
Systems”, Math. Model. Nat. Phenom, 2015, vol. 10, N 2, pp. 115—128.

[24] A. Y. Morozov, O. A. Kuzenkov, ”Towards developing a general
framework for modelling vertical migration in zooplankton”, Journal of
Theoretical Biology, 2016, vol. 405, pp. 17—28. DOI: 10.1007/s11538-
019-00602-3

[25] O. A. Kuzenkov, E. A. Ryabova, ”Limit possibilities of solution a
hereditary control system”, Differential Equations, 2015, vol. 51, N 4,
pp. 523—532.

[26] A. K. Jain, R. P. W. Duin, J. Mao, “Statistical pattern recognition: a re-
view”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2000, vol. 22(1), pp. 4—37.

[27] M. Kudo; J. Sklansky, ”Comparison of algorithms that select features for
pattern classifiers”, Pattern Recognition, 2000, vol. 33(1), pp. 25—41.

[28] Ch. M. Bishop, “Pattern Recognition and Machine Learning”, Heidel-
berg, Germany: Springer, 2006.

[29] N. Fuhr, ”Optimum polynomial retrieval functions based on the prob-
ability ranking principle”, ACM Transactions on Information Systems,
1989, vol. 7(3), pp. 183—204.

[30] O. A. Kuzenkov, G. V. Kuzenkova, ”Optimal control of self-reproduction
systems”, Journal of Computer and Systems Sciences International,
2012, V. 51, N 4, pp. 500—511.

[31] G. Hays, ”A review of the adaptive significance and ecosystem conse-
quences of zooplankton diel vertical migrations”, Hydrobiologia, 2003,
vol. 503(1), pp. 163–170.

[32] K. Buesseler, C. Lamborg, P. Boyd, et al., ”Revisiting carbon flux
through the oceans twilight zone”, Science, 2007, vol. 316, pp. 567–
570.

[33] A. Morozov, E. G. Arashkevich, ”Towards a correct description of
zooplankton feeding in models: Taking into account food-mediated
unsynchronized vertical migration”, Journal of Theoretical Biology,
2009, vol. 262(2), pp. 346–360.

[34] A. Morozov, E. Arashkevich , A. Nikishina, K. Solovyev, ”Nutrient-rich
plankton communities stabilized via predator-prey interactions: revisiting
the role of vertical heterogeneity”, Mathematical medicine and biology:
a journal of the IMA, 2011, vol. 28, N 2, pp. 185—215.

[35] W. Gabriel, B. Thomas, ”Vertical migration of zooplankton as an
evolutionarily stable strategy”, Am. Nat., 1988, vol. 132(2), pp. 199–
216.

[36] A. Morozov, O. Kuzenkov, E. Arashkevich, ”Modelling optimal be-
havioural strategies in structured populations using a novel theoreti-
cal framework”, Scientific Reports, 2019, Vol. 9, N 1, 15 p. DOI:
10.1038/s41598-019-51310-w




