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Abstract—Recent Metal Artifacts Reduction (MAR) methods
for Computed Tomography are often based on image-to-image
convolutional neural networks for adjustment of corrupted sino-
grams or images themselves. In this paper, we are exploring
the capabilities of a multidomain method, which consists of
both sinogram correction (projection domain step) and restored
image correction (image-domain step). We formulate the first
step problem directly as sinogram inpainting, which allows us to
use methods of this specific field, such as partial convolutions.
Moreover, we propose a synthetic data generation pipeline to
avoid problems with overfitting to metal shapes set and an
artifacts formation technique. The proposed method achieves
state-of-the-art (−75% MSE) improvement in comparison with
a classic benchmark - Li-MAR.

Index Terms—Convolutional Networks, Computed Tomogra-
phy (CT) images, Metal Artifacts Reduction, Sinogram Inpaint-
ing, Partial Convolutions

I. INTRODUCTION

A. General

Computed Tomography (CT) is a commonly used imaging
method in disease diagnosis and treatment planning. In partic-
ular, dose distributions in radiation therapy are calculated as
the solution of a forward problem; CT images determine the
electron density of the irradiated tissues and patient-specific
anatomy. High-density objects (e.g., containing metal) may
occur in the area of interest and strongly affect the attenuation
of X-Rays that may lead to distortion of the final image
reconstructed from an inconsistent sinogram [1]. These image
artifacts could have a significant impact on the dose calculation
accuracy and reduce the visibility of organs and structures
close to the metal objects [2], [3].

The results have been obtained under the support of the Russian Foundation
for Basic Research grant 18-29-26030. The authors thank Skoltech Zhores
team for the provided computational resources.

B. CT artifacts in Brain Radiosurgery

Though CT artifacts may affect the quality of radiation
therapy in various clinical scenarios, we focus on cerebral
arteriovenous malformations (AVMs), which are the focal
conglomerations of the pathological vessels in the brain. The
primary goal of the AVM management is to prevent the risk of
intracranial hemorrhage [4]. AVMs treatment options include
microsurgery, radiosurgery, embolization or combination of
these modalities [5]. Within our study, we analyzed CT scans
of the patients with AVMs who underwent prior embolization
to block blood circulation within pathological vessels before
radiosurgery.

Embolic agents injected during the first stage of this treat-
ment can be divided into solids (for example, metal coils)
and liquids. Metal components of the embolic agents, as well
as coils’ metal body, cause severe artifacts on CT scans,
producing both bright regions of high absorption and dark
regions of low absorption. Several studies have proposed
that the presence of these high-density objects induces beam
hardening artifacts on CT scans and might distort the dose
calculation accuracy of the radiosurgery planning [6]. Figure
1 shows CT scans of two patient with AVMs after embolization
(see more technical details on types of embolization in Section
III-A).

The artifacts need to be identified during treatment planning
and somehow fixed to avoid possible dose calculations errors
[7]. In current clinical practice, this procedure is usually
manual: doctors segment primary tissues like brain or skull
and then replace electron densities of corrupted areas by
the electron densities appropriate to the tissue. This time-
consuming and a rather rough operation must be repeated for
each affected slice of the CT image (usually 50-100 2D images
for one patient).
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Fig. 1. Liquid (left) and solid (right) embolization of the AVMs with notable
artifacts on the CT images due to the metal components of the embolic
materials.

C. Problem

Thus we formulate a Metal Artifacts Reduction problem
as the following: given an input 3D tensor that represents a
CT scan corrupted by the presence of high-density objects,
generate a corresponding CT image with suppressed artifacts.
Due to the high importance of the MAR, a variety of different
methods has been developed during the last 40 years; see an
overview [8]. It’s important to note that in addition to usual
image space, each CT slice can be naturally represented as a
sinogram, which mathematically is the direct Radon transform
of the same slice in the image space. Indeed, the majority of
the proposed solutions can be divided into two large groups
based on the domain of the input data:

1) Algorithms consisting of removal of the high-density
area from sinogram with further reconstruction based
on the uncorrupted parts, also known as projection-
based, e.g., classical Li-MAR which consists of linear
interpolation for missing data within the metal trace. [9].
Nowadays, this problem may be solved using image-to-
image deep convolutional networks (e.g., [10]).

2) Image-based solutions that use image-to-image networks
and reduce artifacts directly on the pixel data(e.g., [11]).

D. Contribution

First, we propose a deep learning-based method that com-
bines both approaches described above: it consists of two
models that process the image representation in two domains.
The first inpainting model is responsible for the removal of the
distorted metal trace from the sinogram. The second refining
model corrects the residual artifacts after image restoration.
In this work, we have successfully verified the following
statements:

1) Refining model improves the quality of the result since
even minor inconsistencies in the sinogram may lead to
significant artifacts on the restored image.

2) Sinogram adjustment via the inpainting model may sim-
plify the problem for the direct image-to-image refining
model.

And while the idea of the dual-domain method already ap-
peared in some works (e.g. [12]), we formulate the problem of

restoration of the corrupted area of sinogram directly as image
inpainting. It allows us to use state-of-the-art approaches for
this step, i.e., partial convolution-based neural network proven
to outperform classic fully-convolutional end-to-end approach
(method was introduced in [13] for inpainting of irregular
holes).

Second, we propose a new pipeline for random generation
of high-density objects that allows us to train the networks in a
self-supervised setting due to the absence of (artifact-free CT,
CT with artifacts) pairs. Our method doesn’t rely on simple
artifacts generation in the image domain. This is an important
part of the proposed method since it allows us to avoid two
major problems of the common approaches of the synthetic
datasets for artifacts reduction: (1) mismatch between simple
generation algorithms and the diversity of the shapes on real
CT scans of AVMs patients and (2) possible overfitting to the
structure of the simulated artifacts (see more details in Section
II-B).

We compared the performance of the proposed model with
FCN-MAR [14], Deep-MAR [15] and CNN-MAR [16] as one
of the most popular and recent deep learning based methods of
metal artifact reduction. The results show the superior quality
of our method.

Fig. 2. Example of real shapes of high density objects (above) and shapes
generated via proposed pipeline (below).

II. PROPOSED SOLUTION

The main idea of the proposed solution is to combine
both image-based and projection-based approaches. The first
step is the removal of the metal trace from the sinogram
with the restoration of deleted areas (projection domain step).
The second step is the elimination of residual artifacts from



Fig. 3. Overall training pipeline. Step 1: random generation of high-density objects. Step 2: sinogram calculation for (a) input CT image an (b) generated
objects. Step 3: removing parts of sinogram (a) using sinogram (b) as a binary mask. Step 4: the output of the inpainting model (the blue arrow highlights
training input-output pairs). Step 5: inverse Radon transform of (4). Step 6: suppression of the residual artifacts by the image-to-image network (the orange
arrow represents training data).

the restored image (image domain step). A more accurate
formulation of the pipeline is further in Section II-A.

A. Overall structure

Firstly, it is important to mention that we implemented
slice by slice pipeline due to avoidance of spatial data in-
consistencies, e.g., different spacing between slices, which is
common for medical imaging. Thus, we propose the following
algorithm structure for each of the corrupted slices:

1) Cut a mask of the high-density object using threshold
(since CT voxel intensities represent its density). It’s a
common method to detect such objects (e.g [15]).

2) Use Radon transform to obtain sinograms (a) for the
corrupted image itself and (b) for the mask of the found
high-density objects.

3) Remove these parts of sinogram (a), which corresponds
to the sinogram (b), i.e., affected by the high-density
objects.

4) Restore cropped sinogram area using an inpainting net-
work (see details below). Ideally, it has to match the
sinogram of the image with the absence of both high-
density objects and artifacts caused by it.

5) Calculate the image from the modified sinogram using
the inverse Radon transform.

6) Adjust the image to remove residual artifacts using the
second, refining networks (see details below).

7) Add the high-density object to the final image using the
mask from step 1.

At steps 4 and 6 we use convolutional neural networks
as described in Section II-C. To measure the effectiveness
of the proposed algorithm in comparison with only sinogram
inpainting and direct image to image model, we also trained
the same pipeline without step 4 and step 6, respectively. More
details on the pipeline and training loops can be found in
Figure 3.

B. Synthetic data

Due to the absence of the paired images, we decided to
create an algorithm to generate realistic high-density objects
and train networks in self-supervised settings. We used CT
scans of the patients with no such high-density objects and
related artifacts to create a synthetic dataset. We built a
random 3D-shape generator such that generated objects had
a similar structure as real high-density objects on head CT
scans. Indeed, as we mentioned in the introduction, we aimed
to solve two common issues with algorithms for the generation
of the synthetic datasets for artifacts reduction:

1) Shapes diversity on a real scan data. Common method
of high-density shapes generation is creating a dataset
of objects from the real scans (e.g. [12], [14]), which
is not so applicable to the field of radiosurgery due to
wide range of the shapes of AVMs after endovascular
embolization. That is why for this specific case of metal
objects appearing in radiosurgery practice, we suggest
using a generator of a structurally close to the real,
but still random and diverse shapes, which leads to the
increased robustness of the model.



2) Artifacts characteristics overfitting. MAR algorithms
that operate in the image domain are indirectly relying
on the structure of the artifacts (e.g., [16]). However, as
those artifacts are simulated, it may introduce a system-
atic bias and a subsequent drop in models’ performance
on real artifacts. Thus, we suggest using only the binary
mask of high-density objects with no utilization of an
image with primary artifacts.

To achieve this, we propose the following algorithm:
1) Select a volumetric range to place objects randomly

(uniformly from 0 % up to 10% of the linear size of
the image).

2) Put a random number (uniformly from 1 to 25) of
geometrical structures (ball, octahedron, parallelepiped)
of linear size up to 10 pixels into this volume.

3) Merge these random structures using the morphological
closing operation to obtain a randomly shaped object or
a small set of them.

4) Put into the volume up to 30 geometrical structures of
small size (from 1 to 3 pixels) to obtain an object with
outliers.

5) Select a position of the obtained object randomly (via
uniform 2D distribution) so that the overlap between the
mask and the brain is ≥ 95%.

6) Repeat the process up to 10 times to obtain a scan with
multiple objects

Figure 2 shows examples of real and generated objects. Using
that algorithm for each CT image, we created 30 differently
distributed object masks with an approximate depth of 90
slices per sample on average.

C. Network architectures

For deep learning problems formulated above, we used the
following architectures:

1) UNet [17] - a well known fully-convolutional network
with additional connections between encoder and de-
coder. As it was originally proposed for small medical
datasets, Unet is also performed well in the task of metal
artifacts reduction on sinograms (e.g. [10]) as well as in
the direct image to image artifacts removal process (e.g.
[11]). We use this architecture for step 6 of our algorithm
(reduction of the residual artifacts on the images).

2) UNet with partial convolutions - this architecture dif-
fers from the UNet mentioned above with convolutions
that were replaced by partial convolutions [13] which
are masked and renormalized to be conditioned only
on the pixels that are not masked. In this work, we
formulate the problem of sinogram correction directly
as inpainting, which allows us to integrate this state-of-
the-art method to our pipeline directly.

III. EXPERIMENTAL SETUP

A. Data

Our data consisted of two datasets from Radiosurgery
Department at the Burdenko Neurosurgical institute. To obtain

CT scans without artifacts, we selected 163 CT scans of
the patients treated with radiosurgery for trigeminal neuralgia
(TN). All these patients underwent computed tomography as
a part of the planning process. For the acquisition of the CT
images, GE Optima 580 was used. The scanning parameters
were as follows: 120 kVp, 350 mA, FOV 300 mm, slice
thicknesses 1,5 mm.

Each scan is represented by a 3D tensor of shape 512×512×
N , where N is the number of axial slices varying from 130
to 210. The data was divided into three parts patient wisely:
a training set for the first model, a training set for the second
model (approx. 10000 512×512 images for both training sets),
and an independent testing set (approx 9000 512×512 images).

Also, we selected 47 CT scans of the patients with AVMs
that were treated with both radiosurgery and prior endovas-
cular embolization or surgery between 2014 and 2019. Em-
bolic agents can be divided into solids (for example, metal
coils) and liquids. Two commonly used liquid materials for
cerebral AVM embolization are Onyx (ethylene-vinyl alcohol
copolymer (EVOH))and n-BCA (n butyl cyanoacrylate) [7].
The n - BCA agent is a fast - polymerizing liquid adhesive.
It includes iodine (Z = 53) as a visualization material during
the injection. Onyx contains suspended micronized tantalum
(Z = 73) powder. As we discussed, metal components of the
embolic agents cause severe artifacts on CT scans, producing
both bright regions of high absorption and dark regions of low
absorption. This dataset was used in two ways

1) for the qualitative validation of the proposed solution by
experts;

2) study the shapes and sizes of real metal-containing ob-
jects to design our method for synthetic data generation.

B. Preprocessing

All input images for both sinogram inpainting and restored
CT slice residuals reduction were linearly normalized to fit
into [0, 1] window. Such a simple preprocessing was used to
maintain the physical sense of voxel intensities.

C. Metrics

We used a standard MAE (Mean Absolute Error), MSE
(Mean Squared Error), and SSIM (Structural Similarity) met-
rics to measure the quality of artifact reduction on the CT
scans. In all cases, we compared the original image with the
artificially corrupted and then restored one.

We validated our models in two ways:
1) We compared our multidomain method with image-

domain only and sinogram-domain only networks, as
we described in Sections II-A and II-C.

2) For comparison with other recent convolutional network
based methods, we’ve implemented classic Li-MAR and
measured relative increase of performance in terms of
MSE. Due to the absence of the public MAR datasets
and a large number of possible pitfalls in reimplementing
architectures from other works, we examined the quality
of our approach using the relative difference between
model and Li-MAR performances as a metric. This is a



Fig. 4. Examples of processing real corrupted CT scan with intensities in brain window (40+-80 HU). From left to right: original image, Li-MAR output,
the output of the proposed solution. Each row corresponds to a different patient.

common choice for the field: relative improvement of
Li-MAR performance is often reported across papers
(e.g., [14], [15] and [16]), which allows us to compare
complex methods despite the absence of the public
dataset.

D. Training

For our full pipeline and approaches comparison, we end
up with training 3 models: sinogram inpainting (UNet with
partial convolutions), residual artifacts elimination (UNet) and
image-to-image model for the pipeline without inpainting step
(Unet). All of the models mentioned above were trained using
Adam optimizer with the initial learning rate of 5 · 10−3.

Sinogram inpainting UNet with partial convolutions was
trained for 500 epochs with the multiplication of the learning
rate by 0.5 on each of the following epochs: 100, 200, 300
and multiplication by 0.1 on 400, 450, 475 and 490 epochs
respectively. Models with plain UNet architecture were both
trained for 200 epochs with 0.5 learning rate multiplication on
100, 150 and 175 epochs.

All models were trained on Zhores supercomputer [18]
using PyTorch framework and DPipe1 for configurations man-
agement and experiments setup.

IV. RESULTS

As we mentioned above, the classical benchmark for metal
artifacts refuction methods is Li-MAR. Figure 4 shows exam-
ples of our algorithm and Li-MAR work on real CT scans of
the patients with high-density objects that cause artifacts on the
images. It is visible in the brain window that the model restores
distinguishable brain structures well. Also, it is important to
mention that the qualitative expert analysis using CT studies

1https://github.com/neuro-ml/deep pipe

of patients with AVMs demonstrates that the method achieves
impressive results on scans with large metal regions, which
caused significant image distortion. An example is shown in
Figure 5.

TABLE I
COMPARISON BETWEEN ONE STEP METHODS, LI-MAR AND TWO STEP

METHOD IN TERMS OF MAE, MSE AND SSIM BETWEEN THE FINAL
OUTPUT AND TEST SET. WE USED ORIGINAL PIXEL INTENSITIES IN

HOUNSFIELD UNITS TO CALCULATE THESE METRICS.

Algorithm MAE (HU) MSE (HU2) SSIM
Li-MAR 26.6 3282 0.94
Inpainting-only 22.0 10170 0.94
Image-to-image only 14.5 2064 0.97
Proposed algorithm 9.6 831 0.99

All the test metrics of inpainting-only, image-to-image only,
Li-MAR as a classic benchmark, and the proposed method are
represented in Table I. Here we can see a significant ( 56%)
decrease of MAE between the inpainting-only method and the
proposed solution. Thus we can conclude that the image-to-
image network can successfully remove residual artifacts and
increase the quality of the joint model. We obtained quite
large MSE and relatively small MAE for the inpainting model
due to the inhomogeneity of its errors caused by sinogram
inconsistency. On the other hand, we can see a decrease of
MAE of 34% between image-to-image only method and our
two-step approach. This confirms our hypothesis that sinogram
inpainting as preprocessing simplifies the task for the image-
to-image model. Moreover, the proposed solution significantly
outperforms Li-MAR by 64% in terms of MAE.

Table II shows a relative drop of MSE reported in different
papers in comparison with the reported Li-MAR score and
provided us an understanding of the relatively good perfor-



Fig. 5. An example of a CT scan with large metal-containing object causing
significant distortion (left) and the output of the proposed solution (right).

mance of the proposed model. For comparison, we took three
recent deep-learning-based methods operating in one or both
domains:

• FCN-MAR [14] - method based on sinogram completion
via convolutional network trained on fully synthetic data.

• Deep-MAR [15] - conditional generative adversarial net-
work (cGAN [19]) based method for sinogram comple-
tion trained on fully synthetic dataset with launch on real
data via transfer learning.

• CNN-MAR [16] - dual-domain method consisting of
processing scans in image domain with different simple
methods (e.g. Li-MAR) for usage as input for CNN.
The output of the neural network is used to differentiate
tissues, generate a prior image and, therefore, sinogram
to replace metal trace in the projection domain.

TABLE II
RELATIVE DROP COMPARED TO LI-MAR PERFORMANCE.

Algorithm MSE drop
Li-MAR [9] 0.0%

FCN-MAR [14] -52.2%
Deep-MAR [15] -58.5%
CNN-MAR [16] -71.1%

Proposed algorithm -75.5%

V. DISCUSSION

In this paper, we have presented a state-of-the-art mul-
tidomain deep learning procedure that consists of two main
parts. Firstly, it is a metal shape generator that allows to
transfer resulting model directly to the real data without using
finetuning, transfer learning or domain adaptation techniques.
Secondly, the method combines two CNN models: sinogram
completion via state-of-the-art partial convolutions based CNN
and additional adjustment after inverse Radon transform. The
results of our experiments show the effectiveness of the
proposed approach compared to one-step algorithms. More-
over, qualitative and quantitative analysis shows an application
potential of the proposed method and its applicability, even
in difficult cases. Thus, the next step of our research is
going to be a clinical validation of the dose calculations for
radiosurgery planning.
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