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Abstract—We introduce a bottleneck method for learning data
representations based on information deficiency, rather than the
more traditional information sufficiency. A variational upper
bound allows us to implement this method efficiently. The bound
itself is bounded above by the variational information bottleneck
objective, and the two methods coincide in the regime of single-
shot Monte Carlo approximations. The notion of deficiency
provides a principled way of approximating complicated channels
by relatively simpler ones. We show that the deficiency of one
channel with respect to another has an operational interpretation
in terms of the optimal risk gap of decision problems, capturing
classification as a special case. Experiments demonstrate that the
deficiency bottleneck can provide advantages in terms of minimal
sufficiency as measured by information bottleneck curves, while
retaining robust test performance in classification tasks.

Index Terms—Blackwell sufficiency, deficiency, information
bottleneck, synergy, robustness

I. INTRODUCTION

The information bottleneck (IB) is an approach to learning

data representations based on a notion of minimal sufficiency.

The general idea is to map an input source to an intermediate

representation that retains as little information as possible

about the input (minimality), but preserves as much informa-

tion as possible in relation to a target variable of interest

(sufficiency). See Fig. 1. For example, in a classification

problem, the target variable could be the class label of the

input data. In a reconstruction problem, the target variable

could be a denoised reconstruction of the input. Intuitively, a

representation which is minimal in relation to a given task,

will discard nuisances in the inputs that are irrelevant to

the task, and hence distill more meaningful information and

allow for a better generalization. The IB methods [1]–[4]

have found numerous applications in representation learning,

clustering, classification, generative modeling, model selection

and analysis in deep neural networks, among others (see, e.g.,

[5]–[10]).

In the traditional IB paradigm, minimality and sufficiency

are measured in terms of the mutual information. Computing

the mutual information can be challenging in practice. Recent

works have formulated more tractable functions by way of vari-

ational bounds on the mutual information [11]–[14]. Instead

of maximizing the sufficiency term of the IB, we formulate a

new bottleneck method that minimizes deficiency. Deficiencies

provide a principled way of approximating complex channels
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Fig. 1: The bottleneck paradigm: The general idea of a

bottleneck method is to first map an input X ∈ X to an

intermediate representation Z ∈ Z , and then map Z to an

output Y ∈ Y . We call the mappings, resp., an encoder (e)

and a decoder (d). In general, the true channel κ is unknown,

and only accessible through a set of training examples. We

would like to obtain an approximation of κ.

by relatively simpler ones and have a rich heritage in the theory

of comparison of statistical experiments [15]–[17]. From this

angle, the formalism of deficiencies has been used to obtain

bounds on optimal risk gaps of statistical decision problems.

As we show, the deficiency bottleneck minimizes a regularized

risk gap. Moreover, the proposed method has an immedi-

ate variational formulation that can be easily implemented

as a modification of the variational information bottleneck

(VIB) [13]. In fact, both methods coincide in the limit of

single-shot Monte Carlo approximations. We call our method

the variational deficiency bottleneck (VDB).

Experiments on basic data sets show that the VDB is able

to obtain more compressed representations than the VIB while

retaining the same level of sufficiency. Training with the VDB

also improves out-of-distribution robustness over the VIB as

we demonstrate on two benchmark datasets, the MNIST-C

[18] and the CIFAR-10-C [19].

We describe the details of our method in Section II. We

elaborate on the theory of deficiencies in Section III. Experi-

mental results with the VDB are presented in Section IV. We

use notation that is standard in information theory [20].

II. THE VARIATIONAL DEFICIENCY BOTTLENECK

Let X denote an observation or input variable and Y an

output variable of interest and let X , Y denote, resp., the space

of possible inputs and outputs. Let p(x, y) = π(x)κ(y|x) be

the true joint distribution, where the conditional distribution or

channel κ(y|x) describes how the output depends on the input.

We consider the situation where the true channel is unknown,

but we are given a set of N independent and identically

distributed (i.i.d.) samples (x(i), y(i))Ni=1 from p. Our goal
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is to use this data to learn a more structured version of the

channel κ, by first “compressing” the input X to an inter-

mediate representation variable Z and subsequently mapping

the representation back to the output Y . The presence of an

intermediate representation can be regarded as a bottleneck, a

model selection problem, or as a regularization strategy.

We define an encoder and a decoder model using two

parameterized families of channels e(z|x) and d(y|z), respec-

tively. The encoder-decoder pair induces a model κ̂(y|x) =∫
d(y|z)e(z|x) dz. Equivalently, we write κ̂ = d ◦ e. Given a

representation, we want the decoder to be as powerful as the

original channel κ in terms of ability to recover the output.

The deficiency of a decoder d w.r.t. κ quantifies the extent to

which any pre-processing at the input (by way of randomized

encodings) fails to approximate κ. Let M(X ;Y) denote the

space of all channels from X to Y . We define the deficiency

of d w.r.t. κ as follows:

Definition 1 (Deficiency). Given a channel κ ∈ M(X ;Y)
from X to Y , and a decoder d ∈ M(Z;Y) from some Z
to Y , the deficiency of d w.r.t. κ is defined as

δπ(d, κ) = min
e∈M(X ;Z)

DKL(κ‖d ◦ e|π). (1)

Here DKL(·‖ · |·) is the conditional KL divergence [20], and

π is an input distribution over X . The definition is similar in

spirit to Lucien Le Cam’s notion of weighted deficiencies of

one channel w.r.t. another [16], [17, Section 6.2] and its recent

generalizations [21].

We propose to train the model by minimizing the defi-

ciency of d w.r.t. κ subject to a regularization that limits

the rate I(Z;X), i.e., the mutual information between the

representation and the raw inputs. We call our method the

deficiency bottleneck (DB). The DB minimizes the following

objective over all tuples (e ∈ M(X ;Z), d ∈ M(Z;Y)):

Lβ
DB(e, d) := δπ(d, κ) + βI(Z;X). (2)

The parameter β ≥ 0 allows us to adjust the level of

regularization.

For any distribution r(z), the rate term admits a simple

variational upper bound [20]:

I(Z;X) ≤

∫
p(x, z) log e(z|x)

r(z) dx dz . (3)

Let p̂data be the empirical distribution of the data (input-

output pairs). By noting that δπ(d, κ) ≤ DKL(κ‖d ◦ e|π) for

any e ∈ M(X ;Z), and ignoring data-dependent constants, we

obtain the following optimization objective which we call the

variational deficiency bottleneck (VDB) objective:

Lβ
V DB(e, d) := E(x,y)∼p̂data

[
− log

∫
d(y|z)e(z|x)dz

+ βDKL(e(Z|x)‖r(Z))

]
. (4)

The computation is simplified by defining r(z) to be a

standard multivariate Gaussian distribution N (0, I), and using

an encoder of the form e(z|x) = N (z|fφ(x)), where fφ is

a neural network that outputs the parameters of a Gaussian

distribution. Using the reparameterization trick [22], [23], we

then write e(z|x)dz = p(ǫ)dǫ, where z = f(x, ε) is a function

of x and the realization ǫ of a standard normal distribution.

This allows us to do stochastic backpropagation through a

single sample z. The KL term in (4) admits an analytic

expression when r(z) and the encoder are Gaussian. We train

the model by minimizing the following empirical objective

over all tuples (e ∈ M(X ;Z), d ∈ M(Z;Y)):

1

N

N∑

i=1


 − log(

1

M

M∑

j=1

[d(y(i)|f(x(i), ǫ(j)))])

+ βDKL(e(Z|x(i))‖r(Z))


 . (5)

For training, we choose a mini-batch size of N = 100. For es-

timating the expectation inside the log, we use M = 1, 3, 6, 12
Monte Carlo samples from the encoding distribution.

We note that the Variational Information Bottleneck

(VIB) [13] leads to a similar-looking objective function, with

the only difference that the sum over j in (5) is outside of

the logarithm. By Jensen’s inequality, the VIB loss is an

upper bound to our loss. If one uses a single sample from

the encoding distribution (i.e., M = 1), the VDB and the

VIB empirical objective functions coincide. For a large enough

mini-batch size, e.g., N = 100, taking M = 1 is sufficient to

estimate the VIB objective [13]. This is the standard setting

as presented in [13] that we want to compare with. In the case

of the VDB, on the other hand, the mini-batch size N and M
are not exchangeable, since the expectation is inside the log

function.

To better understand the behavior of the VDB optimization

(5), we adopt two training strategies:

• a oneshot strategy where the encoder and decoder net-

works are updated simultaneously, and

• a sequential strategy where the encoder network is up-

dated for k steps before alternating to one decoder update.

We choose k = 5, 10, 20.

The idea of using the sequential strategy is to better approx-

imate the deficiency which involves an optimization over the

encoder (see Definition 1).

III. TWO PERSPECTIVES ON THE DEFICIENCY

BOTTLENECK

In this section, we present two different perspectives on the

deficiency bottleneck, namely, a decision-theoretic perspective

and an information decomposition perspective.

In Section III-A, we review the notions of information

sufficiency and deficiency through the lens of Blackwell-Le

Cam decision theory [15]–[17]. We formulate the learning task

as a decision problem and give an operational characterization

of the deficiency δπ(d, κ) as the gap in the expected losses of

optimal decision rules when using the channel d rather than κ.

In Section III-B, we review the classical IB and our DB

objective through the lens of nonnegative mutual information

decompositions [24]–[26]. This leads us to a new interpretation



of the IB as a Unique Information Bottleneck and also sheds

light on the difference between the IB and DB formulations.

A. A decision-theoretic perspective

1) Blackwell sufficiency and channel deficiency: In a semi-

nal paper [15], David Blackwell asked the following question:

Suppose that a learner has a finite set of possible actions and

she wishes to make an optimal decision to minimize a loss

depending on the value of some random variable Y and her

chosen action. If the learner cannot observe Y directly before

choosing her action and has to pick between two channels with

the common input Y , which one should she prefer? Blackwell

introduced an ordering that compares channels by the minimal

expected loss or risk that a learner incurs when her decisions

are based on the channel outputs. He then showed that such an

ordering can be equivalently characterized in terms of a purely

probabilistic relation between the channels: The learner will

always prefer one channel over another if and only if the latter

is an output-degraded version of the former, in the sense that

she can simulate a single use of the latter by randomizing at

the output of the former.

Very recently, Nasser [27] asked the same question, only

now the learner has to choose between two channels with

a common output alphabet. Nasser introduced the input-

degraded ordering and gave a characterization of input-

degradedness that is similar to Blackwell’s ordering [15].

Definition 2 (Blackwell sufficiency). Given two channels,

κ ∈ M(X ;Y) and d ∈ M(Z;Y), κ is input-degraded from d,

denoted d �Y κ, if κ = d ◦ e for some e ∈ M(X ;Z). We say

that d is input Blackwell sufficient for κ if d �Y κ.

Stated in another way, d is input Blackwell sufficient for

κ if d can be reduced to κ by applying a randomization e
at its input so that d ◦ e = κ. Blackwell sufficiency induces

only a preorder on the set of all channels with a common

output alphabet. In practice, most channels are uncomparable,

i.e., one cannot be reduced to another by a randomization.

When such is the case, the deficiency quantifies how far the

true channel κ is from being a randomization (by way of any

input encoding e) of the decoder d.

2) Deficiency as an optimal risk gap: We formulate a learn-

ing task as a decision problem and show that the deficiency

quantifies the gap in the optimal risks when using the channel

d rather than κ.

Let PY be the set of all distributions on Y . In the following,

we assume that X and Y are finite. For every x ∈ X , define

κx ∈ PY as κx(y) = κ(y|x), ∀y ∈ Y . Consider the follow-

ing decision problem between a learner and Nature: Nature

draws x ∼ π and y ∼ κx. The learner observes x and proposes

a distribution qx ∈ PY that expresses her uncertainty about the

true value y. The quality of a prediction qx in relation to y is

measured by the log-loss function ς(y, qx) := − log qx(y). The

log-loss is an instance of a “strictly proper” loss function that

enjoys nice properties such as the uniqueness of the optimum;

see, e.g., [28].

Ideally, the prediction qx should be as close as possible

to the true conditional distribution κx. This is achieved by

minimizing the expected loss L(κx, qx) := Ey∼κx
ς(y, qx),

for all x ∈ X . Define the Bayes act against κx as the

optimal prediction q∗x := argminqx∈PY
L(κx, qx), and the

Bayes risk for the distribution PXY = π×κ as R(PXY , ς) :=
Ex∼π L(κx, q

∗
x). For the log-loss, the Bayes act is q∗x = κx

and hence, the Bayes risk is

R(PXY , ς) = Ex∼π Ey∼κx

[
− log κx(y)

]
= H(Y |X).

Given a channel d ∈ M(Z;Y), we want a representa-

tion z ∈ Z of x (output by some encoder), so that the

outputs of d match those of the true channel κ. Let C =
conv({dz : z ∈ Z}) ⊂ PY be the convex hull of the

points {dz}z∈Z ∈ PY . The Bayes act against κx is q∗xd
:=

argminqx∈C Ey∼κx

[
− log qx(y)

]
. q∗xd

is the rI-projection

of κx to the convex set C ⊂ PY [29]. Such a projection exists

but is not necessarily unique. If non-unique, we arbitrarily

select one of the minimizers as the Bayes act. The associated

Bayes risk is

Rd(PXY , ς) := Ex∼π Ey∼κx

[
− log q∗xd

(y)
]
.

The next Proposition 3 states that the gap in the Bayes risks,

∆R := Rd(PXY , ς) − R(PXY , ς), when making a decision

based on Z vs. X is just the deficiency.

Proposition 3 (Deficiency quantifies the optimal risk gap for

the log-loss). δπ(d, κ) = ∆R.

Proof. The proof follows from noting that

∆R =
∑

x∈X

π(x) min
qx∈C⊂PY

DKL(κx‖qx)

= min
e∈M(X ;Z)

∑

x∈X

π(x)DKL(κx‖d ◦ ex)

= min
e∈M(X ;Z)

DKL(κ‖d ◦ e|π) = δπ(d, κ).

�

B. An information decomposition perspective

1) IB as Unique Information Bottleneck: A quantity that is

similar in spirit to the deficiency is the Unique Information

(UI) [24]:

Definition 4 (Unique information). Let (Y,X,Z) ∼ P . The

unique information that X conveys about Y w.r.t. Z is

UI(Y ;X\Z) := min
Q∈∆P

IQ(Y ;X|Z), (6)

where the subscript Q denotes the joint distribution on which

the mutual information is evaluated, and

∆P :=
{
Q ∈ PY×X×Z : QY X(y, x) = PY X(y, x),

QY Z(y, z) = PY Z(y, z)
}

(7)

is the set of joint distributions of (Y,X,Z) that have the same

marginals on (Y,X) and (Y,Z) as P .

While the deficiency quantifies a deviation from the input-

degraded order, the UI quantifies a deviation from the output-

degraded order [25]. Note, however, that the vanishing sets



of δπ(d, κ) and UI(Y ;X\Z) are not equivalent as the next

example shows.

Example 5. Let Y = {0, 1, e}, and X = Z = {0, 1, e}. Let

P = PY × PX|Y × PZ|X where PY ∼ Bernoulli( 12 ) and

PX|Y and PZ|X are symmetric erasure channels with erasure

probabilities 1
6 and 1

5 , resp. Recall that a symmetric erasure

channel from Y to X with erasure probability ǫ ∈ [0, 1]
has transition probabilities: PX|Y (e|0) = PX|Y (e|1) = ǫ,
PX|Y (0|0) = PX|Y (1|1) = 1 − ǫ. For the distribution P , we

have UI(Y ;X\Z) = I(Y ;X|Z) = 1
6 > 0. On the other

hand, the induced “reverse” erasure channels PY |X = κ and

PY |Z = d are identical. Thus, δπ(d, κ) = 0.

In [24], the value UI(Y ;X\Z) is interpreted as the in-

formation about Y that is known to X but unknown to Z.

This interpretation is motivated by Blackwell’s result [15]:

whenever UI(Y ;X\Z) > 0, there exists a decision problem

in which it is better to know X than to know Z. Moreover, this

induces a decomposition of the mutual information between

Y and (X,Z) into four terms:

I(Y ;XZ) = UI(Y ;X\Z) + SI(Y ;X,Z)

+ UI(Y ;Z\X) + CI(Y ;X,Z). (8)

The quantity

SI(Y ;X,Z) := I(Y ;X)− UI(Y ;X\Z) (9)

is interpreted as shared or redundant information, i.e., infor-

mation about Y that is known in common to both X and Z,

and the quantity

CI(Y ;X,Z) := I(Y ;X|Z)− UI(Y ;X\Z) (10)

is interpreted as complementary or synergistic information, i.e.,

the information about Y that materializes only when X and

Z act jointly.

Example 6. If X and Z are independent binary random

variables, and Y = XOR(X,Z), then CI(Y ;X,Z) = 1, while

SI(Y ;X,Z) = UI(Y ;X\Z) = UI(Y ;Z\X) = 0. This is an

instance of a purely synergistic interaction.

If Y , X , Z are uniformly distributed binary random vari-

ables with Y = X = Z, then SI(Y ;X,Z) = 1, while

CI(Y ;X,Z) = UI(Y ;X\Z) = UI(Y ;Z\X) = 0. This is

an instance of a purely redundant interaction.

If X , Z are independent binary random variables, and

Y = (X,Z), then UI(Y ;X\Z) = UI(Y ;Z\X) = 1, while

SI(Y ;X,Z) = CI(Y ;X,Z) = 0. This is an instance of a

purely unique interaction.

For some probability distributions P with special structure,

the decomposition (8) can be computed analytically [24].

Lemma 7. Let Q0 := PY X × eZ|X for some e ∈ M(X ;Z).
Then UIQ0(Y ;X\Z) = IQ0(Y ;X|Z), SIQ0(Y ;X,Z) =
I(Y ;Z) and UIQ0(Y ;Z\X) = CIQ0(Y ;X,Z) = 0.

Proof. The distribution Q0 defines a Markov chain Y −X−Z,

which implies that

IQ0(Y ;Z|X) = 0 ≤ min
Q∈∆P

IQ(Y ;Z|X).

Hence, Q0 solves the optimization problem (6). �

In the setting of the Lemma, CIQ0(Y ;X,Z) = 0 and

therefore Q0 is a zero-synergy distribution.

The information decomposition leads us to a new interpre-

tation of the IB as a Unique Information Bottleneck. To see

this we first make the following definition.

Definition 8 (IB curve). The IB curve is defined as follows

[1], [3], [30]:

B(r) := max{I(Z;Y ) : I(Z;X) ≤ r, r ≥ 0}. (11)

Here the maximization is over all random variables Z satisfy-

ing the Markov condition Y −X −Z with fixed (X,Y ) ∼ P
and it suffices to restrict the size of Z to |X |.

The IB curve is concave and monotonically nondecreas-

ing [1], [30]. We can explore the IB curve by solving the

following optimization problem:

min
e∈M(X ;Z)

[
UIQ0(Y ;X\Z) + βIQ0(Z;X)

]
. (12)

Here Q0 is a zero-synergy distribution and β ∈ [0, 1] is a

Lagrange multiplier. Equation (12) has the flavor of a rate-

distortion problem [3] where the term UIQ0(Y ;X\Z) =
IQ0(Y ;X|Z) is interpreted as the average distortion and

IQ0(Z;X) as the rate. Classically, the IB is formulated as the

maximization of IQ0(Y ;Z)− βIQ0(Z;X) [2]. By Lemma 7,

we have that UIQ0(Y ;X\Z) = IQ0(Y ;X|Z) = IQ0(Y ;X)−
IQ0(Y ;Z). Since IQ0(Y ;X) = IP (X;Y ) is constant, it

follows that the Unique Information Bottleneck defined by (12)

is equivalent to the classical IB. Each point on the IB curve

satisfies the Markov condition Y −X −Z which implies that

the solution is always constrained to have zero synergy about

the output Y .

Like the UI , the deficiency also induces an information

decomposition as we show next.

2) Deficiency induces an information decomposition: We

first propose a general construction that forms the basis of an

information decomposition satisfying (9)-(8) (proved in the

Appendix):

Proposition 9. Let (Y,X,Z) ∼ P and let δX be a nonnegative

function defined on the simplex PY×X×Z that satisfies the

bound:

0 ≤ δX(P ) ≤ min{I(Y ;X), I(Y ;X|Z)}. (13)

Let X ′ = Z , Z ′ = X , and define a function τ : PY×X×Z →
PY×X ′×Z′ such that τ(PY XZ(y, x, z)) = PY X′Z′(y, z, x). Let

δZ(P ) := δX(τ(P )). Then the following functions define a

nonnegative information decomposition satisfying (9)-(8):

ŨI(Y ;X\Z) = max{δX , δZ + I(Y ;X)− I(Y ;Z)},

ŨI(Y ;Z\X) = max{δZ , δX + I(Y ;Z)− I(Y ;X)},

S̃I(Y ;X,Z) = min{I(Y ;X)− δX , I(Y ;Z)− δZ},

C̃I(Y ;X,Z) = min{I(Y ;X|Z)− δX , I(Y ;Z|X)− δZ}.

We now apply the construction in Proposition 9 to derive

an information decomposition based on the deficiency. The



following proposition is proved in the Appendix.

Proposition 10. Let (Y,X,Z) ∼ P , and let κ ∈ M(X ;Y) and

d ∈ M(Z;Y) be two channels representing, resp., the condi-

tional distributions PY |X and PY |Z . Define δX = δπ(d, κ).

Then the functions ŨI , S̃I , and C̃I in Proposition 9 define a

nonnegative information decomposition.

The next proposition shows the relationship between the

decompositions induced by the deficiency (see Proposition 10)

and that induced by the UI (see (6)–(8)).

Proposition 11 ([24]).

ŨI(Y ;X\Z) ≤ UI(Y ;X\Z),

ŨI(Y ;Z\X) ≤ UI(Y ;Z\X),

S̃I(Y ;X,Z) ≥ SI(Y ;X,Z),

C̃I(Y ;X,Z) ≥ CI(Y ;X,Z),

with equality if and only if there exists Q ∈ ∆P such

that C̃IQ(Y ;X,Z) = 0.

IV. EXPERIMENTS

A. Experiments on MNIST

We present experiments on the MNIST dataset. Classifi-

cation on MNIST is a very well-studied problem. The main

objective of these experiments is to evaluate the information-

theoretic properties of the representations learned by the VDB

model and to compare the classification accuracy for different

values of M , the number of encoder output samples used in

the training objective (5) when using the oneshot strategy. As

mentioned in Section II, when M = 1, we recover the VIB

model [13].

Settings. For the encoder, we use a fully connected feedfor-

ward network with 784 input units–1024 ReLUs–1024 ReLUs–

512 linear output units. The deterministic output of this

network is interpreted as the vector of means and variances of a

256-dimensional Gaussian distribution. The decoder is simply

a softmax with 10 classes. These are the same settings of the

model used by [13]. At test time, the classifier is evaluated

using L encoder samples (i.e., we use 1
L

∑L

j=1 d(y|z
(j)) where

z(j) ∼ e(z|x)). We implement the algorithm in TensorFlow

and train for 200 epochs using the Adam optimizer.

Test accuracy. The resulting test accuracy for different

values of β and M is reported in Fig. 2(a) and Table I. As

can be seen from Fig. 2(a), the test accuracy is stable with

increasing M . From Table I we see that choosing M larger

than one can in fact slightly improve test accuracy.

Information curve. The IB curve traces the mutual in-

formation I(Z;Y ) of representation and output (sufficiency)

vs. the mutual information I(Z;X) of representation and

input (minimality), for different values of the regularization

parameter β. In our method, “more sufficient” is replaced by

“less deficient”. The term corresponding to sufficiency is

J(Z;Y ) := H(Y )−E(x,y)∼p̂data

[
− log(

∫
d(y|z)e(z|x) dz)

]
.

Here H(Y ) is the entropy of the output, which for MNIST is

log2(10). Fig. 2(b) shows the VDB curve which traces J(Z;Y )
vs. I(Z;X) for different values of β at the end of training.

Note that the curve corresponding to M = 1 is just the VIB

curve which traces I(Z;Y ) vs. I(Z;X) for different values

of β. For orientation, lower values of β have higher values

of I(Z;X) (towards the right of the plot). For small values

of β, when the effect of the regularization is negligible, the

bottleneck allows more information from the input through the

representation. In this case, J(Z;Y ) increases on the training

set, but not necessarily on the test set. This is manifest in

the gap between the train and test curves indicative of a

degradation in generalization. For intermediate values of β,

the gap is smaller for larger values of M (our method).

Fig. 2(c) plots the attained mutual information values I(Z;Y )
vs. I(Z;X) after training with the VDB objective for different

values of β, while Fig. 2(c) plots the minimality term I(Z;X)
vs. β. Evidently, the levels of compression vary depending on

M . For good values of β, higher values of M (our method)

lead to a more compressed representation while retaining the

same level of sufficiency. For example, for β = 10−5, setting

M = 12 requires storing ∼ 50 less bits of information about

the input when compared to the setting M = 1, while retaining

the same mutual information about the output.

Training dynamics. The dynamics of the information

quantities during training are also interesting, and shown in

Fig. 3. At early epochs, training mainly effects fitting of

the input-output relationship and an increase of J(Z;Y ). At

later epochs, training mainly effects a decrease of I(Z;X)
leading to a better generalization. An exception is when the

regularization parameter β is very small, in which case the

representation captures more information about the input, and

longer training decreases J(Z;Y ), which is indicative of

overfitting. Higher values of M (our method) lead to the

representation capturing more information about the output,

while at the same time discarding more information about the

input. M = 1 corresponds to the VIB.

Low dimensional representations. To better understand the

behavior of our method, we also visualize a 2-dimensional

Gaussian representations after training the VDB with the

oneshot strategy for M = 1 (when the VDB and VIB objec-

tives are the same), and the sequential strategy for M = 1,

and different values of the regularization parameter β. We

TABLE I: Test accuracy on MNIST for different

values of β and M , bottleneck size K, and

L = 12.

β K M

1 3 6 12

10
−5 256 0.9869 0.9873 0.9885 0.9878

2 0.9575 0.9678 0.9696 0.9687

10
−3 256 0.9872 0.9879 0.9875 0.9882

2 0.9632 0.9726 0.9790 0.9702



(a) (b) (c) (d)

Fig. 2: Effect of the regularization parameter β: (a) Accuracy on train and test data for the MNIST after training the VDB for

different values of M . Here M is the number of encoder samples used in the training objective, and L = 12 is the number of

encoder samples used for evaluating the classifier. (b) The VDB curve for different values of β. The curves are averages over

5 repetitions of the experiment. Each curve corresponds to one value of M = 1, 3, 6, 12. (c) The attained mutual information

values I(Z;Y ) vs. I(Z;X) for different values of β. (d) I(X;Z) vs. β. For M = 1, the VDB and the VIB models coincide.

Fig. 3: Evolution of the sufficiency and minimality terms (values farther up and to the left are better) over 200 training epochs

(dark to light color) on MNIST with a 256-dimensional representation for different values of β. The curves are averages over

20 repetitions of the experiment. M = 1 corresponds to the VIB model.

use the same settings as before, with the only difference that

the dimension of the output layer of the encoder is 4, with

two coordinates representing the mean, and two a diagonal

covariance matrix. The results are shown in Fig. 4. We see

that for β = 10−4, representations of the different classes

are well separated. We also observe that as the frequency

of the encoder updates is increased relative to the decoder

(our method), individual clusters tend to be more spread out

in latent space. This translates into a better discriminative

performance when compared to the oneshot (VIB) strategy

as we show next with our robustness experiments.

B. Classification robustness under distributional shift

We demonstrate that the VDB generalizes well across dis-

tributional shifts, i.e., when the train and test distributions are

different. We use the MNIST-C [18] and CIFAR-10-C [19]

benchmarks to evaluate the classifier’s robustness to common

corruptions when trained with the VDB objective. These

datasets are constructed by applying 15 common corruptions

(at 5 different severity levels) to the MNIST and CIFAR-10

test sets. The corruptions comprise of four different categories,

namely, noise, blur, weather, and digital.

To evaluate a classifier’s robustness to common corruptions,

we use the metrics proposed in [19]. Given a classifier f
and a baseline classifier b, the corruption error (CE) on a

certain corruption type c is computed as the ratio Ef
c /E

b
c ,

where Ef
c and Eb

c are resp. the errors of f and b on c,
aggregated over five different severity levels. A more nuanced

measure is the relative CE that measures corruption robustness

relative to the Clean error, the usual classification error on the

uncorrupted test set. The relative CE is computed as the ratio

(Ef
c − Ef

clean)/(E
b
c − Eb

clean), where Ef
clean and Eb

clean are

resp. the clean errors of f and b. Averaging the CE and relative

CE across all 15 corruption types yields the mean CE (mCE)

and the Relative mCE values.

Results of computation of the robustness metrics for the

MNIST-C and CIFAR-10-C datasets using different training

strategies for different values of β are shown, resp., in Tables II

and III. The statistics are averages over 4 independent runs.

The keys “oneshot/M1” and “oneshot/M6” refer to a oneshot

training strategy with resp., M = 1 and M = 6 encoder

samples used for evaluating the training objective (5). The

keys “seq:k:10/M1” and “seq:k:10/M6” refer to a sequential

training strategy with resp., M = 1 and M = 6 encoder



β oneshot (VIB) k = 5 (VDB) k = 10 (VDB)

10
−1
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Fig. 4: Posterior Gaussian distributions of 5000 test images

from MNIST in a 2-dimensional latent space after training

with β = 10−1, 10−3, 10−4 and M = 1 with the oneshot

strategy and the sequential strategy with k = 5, 10 encoder

update steps per decoder update. Color corresponds to the class

label. Boxes in each row have the same dimension.

TABLE II: Clean Error, mCE, and Relative mCE values for

the MNIST-C dataset using a MLP of size

784-1024-1024-512 trained using various strategies for

different values of β. Lower values are better.

β Train strategy Clean Error mCE Relative mCE

10
−3 oneshot/M1 1.53±0.10 100.00 100.00

seq/k:10/M1 1.42±0.13 93.88 93.56
oneshot/M6 1.38±0.04 86.84 84.46
seq/k:10/M6 1.39±0.04 85.95 83.39

10
−4 oneshot/M1 1.46±0.11 100.00 100.00

seq/k:10/M1 1.39±0.08 89.64 87.80
oneshot/M6 1.30±0.08 91.13 90.95
seq/k:10/M6 1.32±0.07 88.25 86.85

10
−5 oneshot/M1 1.63±0.44 100.00 100.00

seq/k:10/M1 1.32±0.11 84.64 85.98
oneshot/M6 1.29±0.02 84.51 87.84
seq/k:10/M6 1.30±0.10 84.85 88.28

samples used for evaluating the training objective (5), and with

k = 10 encoder update steps per decoder update. We choose

the baseline classifier as the VIB model (“oneshot/M1”).

For MNIST-C, we used the same encoder with a 256-

dimensional representation as before. We trained the VDB for

200 epochs using the Adam optimizer with a fixed learning

rate of 10−4. For CIFAR-10-C, we used the 20-layer residual

network “ResNet20” from [31] for the encoder with a 20-

dimensional Gaussian representation and a softmax layer for

the decoder.

We see that for M = 1, the sequential training strategy

achieves lower mCE and Relative mCE values than the VIB

across different values of β for both the MNIST-C and

TABLE III: Clean Error, mCE, and Relative mCE values for

the CIFAR-10-C dataset using the ResNet20 network [31]

trained using various strategies for different values of β.

Lower values are better.

β Train strategy Clean Error mCE Relative mCE

10
−3 oneshot/M1 19.23±1.74 100.00 100.00

seq/k:10/M1 19.75±0.51 98.85 98.43
oneshot/M6 20.08±1.04 96.91 95.95
seq/k:10/M6 18.20±1.48 97.46 97.82

10
−4 oneshot/M1 20.69±1.79 100.00 100.00

seq/k:10/M1 20.41±1.39 99.50 99.55
oneshot/M6 19.55±0.44 100.51 101.14
seq/k:10/M6 20.88±0.39 98.48 98.12

10
−5 oneshot/M1 20.42±1.05 100.00 100.00

seq/k:10/M1 18.78±0.52 97.22 97.76
oneshot/M6 19.10±1.02 97.58 98.07
seq/k:10/M6 19.48±1.12 97.68 98.01

CIFAR-10-C datasets. Recall that the objective of using the

sequential strategy is to better approximate the deficiency

which involves an optimization over the encoder. The advan-

tage of sampling the encoder multiple times (M > 1) for

each input sample during training is also evident for both the

oneshot and sequential strategy. The improved robustness in

this case might be explained by way of data augmentation in

latent space.

V. DISCUSSION

We have formulated a bottleneck method based on channel

deficiencies. The deficiency of a decoder w.r.t. a given channel

quantifies how well an input randomization of the decoder (by

a stochastic encoder) can be used to approximate the given

channel. The DB has a natural variational formulation which

recovers the VIB in the limit of a single sample of the encoder

output. Moreover, the resulting variational objective can be

implemented as an easy modification of the VIB objective

with little to no computational overhead. Experiments show

that the VDB can provide advantages in terms of minimality

while retaining the same discriminative capacity as the VIB.

We demonstrated that training with the VDB improves out-

of-distribution robustness over the VIB on two benchmark

datasets, the MNIST-C and the CIFAR-10-C.

An unsupervised version of the VDB objective (5) (for

β = 1) shares some superficial similarities with the Importance

Weighted Autoencoder (IWAE) [32] which also features a sum

inside a logarithm. Note, however, that the IWAE objective

cannot be decomposed for M > 1. This implies that we

cannot trade-off reconstruction fidelity for learning meaningful

representations by incorporating bottleneck constraints. As M
increases, while the posterior approximation gets better, the

magnitude of the gradient w.r.t. the encoder parameters also

decays to zero [33]. This potentially limits the IWAE’s ability

to learn useful representations. It is plausible that a similar

bias-variance trade-off occurs with the VDB objective for high

values of M . This is worth investigating.



APPENDIX

Proof of Proposition 9. Nonnegativity of ŨI , S̃I and C̃I
follows from (13) and the fact that 0 ≤ δZ ≤
min{I(Y ;Z), I(Y ;Z|X)} by assumption.

If I(Y ;Z) − δZ ≤ I(Y ;X) − δX , or equivalently, by the

chain rule of mutual information [20], if I(Y ;Z|X) − δZ ≤
I(Y ;X|Z)− δX , then we have

ŨI(Y ;X\Z) = δZ + I(Y ;X)− I(Y ;Z),

ŨI(Y ;Z\X) = δZ ,

S̃I(Y ;X,Z) = I(Y ;Z)− δZ ,

C̃I(Y ;X,Z) = I(Y ;Z|X)− δZ .

Clearly, the functions ŨI , S̃I and C̃I satisfy (9)-(8), and the

proposition is proved. The proof for the case when I(Y ;Z)−
δZ ≥ I(Y ;X)− δX is similar. �

Proof of Proposition 10. It suffices to show that the δπ(d, κ)
satisfies the bound (13).

Let e∗ ∈ M(X ;Z) achieve the minimum in (1). By

definition, PY |X = κ, PY |Z = d and PX = π. We have

I(Y ;X|Z) =
∑

x

P (x)
∑

z

P (z|x)D(P (y|x, z)||P (y|z))

≥
∑

x

P (x)D

(
∑

z

P (z|x)P (y|x, z)||
∑

z

P (z|x)P (y|z)

)

= D(PY |X‖PY |Z◦PZ|X |PX) ≥ D(κ‖d ◦ e∗|π) = δπ(d, κ),

where the first inequality follows from the convexity of the

KL divergence and the second inequality follows from the

definition of e∗.

δπ(d, κ) ≤ I(Y ;X) since

I(Y ;X)− δπ(d, κ)

= D(PY |X‖PY |PX)−D(PY |X‖PY |Z ◦ e∗Z|X |PX)

≥ D(PY |X‖PY |PX)−D(PY |X‖PY |Z ◦ PZ |PX) = 0.

�
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