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Abstract—In this work, we propose an approach that features
deep feature embedding learning and hierarchical classification
with triplet loss function for Acoustic Scene Classification (ASC).
In the one hand, a deep convolutional neural network is firstly
trained to learn a feature embedding from scene audio signals.
Via the trained convolutional neural network, the learned em-
bedding embeds an input into the embedding feature space and
transforms it into a high-level feature vector for representation.
In the other hand, in order to exploit the structure of the scene
categories, the original scene classification problem is structured
into a hierarchy where similar categories are grouped into
meta-categories. Then, hierarchical classification is accomplished
using deep neural network classifiers associated with triplet
loss function. Our experiments show that the proposed system
achieves good performance on both the DCASE 2018 Task 1A
and 1B datasets, resulting in accuracy gains of 15.6% and 16.6%
absolute over the DCASE 2018 baseline on Task 1A and 1B,
respectively.

Index Terms—Acoustic scene classification, spectrogram, log-
Mel, Gammatone filter, constant Q transform.

I. INTRODUCTION

In acoustic scenes, various associated and sporadic event
sounds tend to occur within a typical recording. We refer
to those as foreground sounds, in contrast to background,
which is the more constant sound corresponding to that
scene. Acoustic scene classification (ASC) is complicated by
the presence of foreground sounds and by interfering noise,
and is characterised by encompassing a very wide range of
spectral shapes and temporal sound patterns. To deal with
these challenges, many authors who achieved competitive
classification accuracy [1]–[4] on the DCASE 2018 dataset [5]
proposed ensemble models that explore diverse approaches to
both input features and learning models. In particular, Hossein
Zeinali et al. [1] made use of effective combination of Con-
stant Q Ttransform (CQT) and log-Mel spectrograms. Firstly,
they transferred draw audio into spectrogram, extracting X-
vector from these spectrograms. Then, they fed these features
(both two spectrograms and X-vectors extracted) into one/two-
dimensional CNN models. Eventually, obtained scores were
fused to produce the final classification result. Exploring
nearest neighbour filter (NNF), Truc et al. [2] extracted NNF
spectrogram from log-Mel spectrogram. Next, the authors
fed four spectrograms (coming from from side, average of
audio channels and two log-Mel, NNF spectrograms) into

separated CNN-based models and fuse four obtained scores.
Deeply focusing on audio channels, Octave Mariotti et al. [3]
and Yuma et al. [4] experimented on a wide range of input
features (left, right, side and average of channels with log-Mel
spectrogram and Harmonic Percussive Source Separation).
Regarding ensemble models, while Yuma et al. [4] proposed
a single CNN model similar to VGG configuration, Octave
Mariotti et al. [3] pursuited an intensive ensemble, evaluating
a variety of deep learning models (VGG8, VGG10, VGG12,
Resnet 18, Resnet 34, Resnet 50).

Another approach relies upon ever more powerful learning
models. For example, Yang et al. [6] proposed a complicated
CNN-based architecture called the xception network. This is
inspired by the fact that a deep learning network trained
by a wide range of feature scales and over separated chan-
nels can result in a very powerful model. Indeed, xception
achieves the highest score for the DCASE 2018 Task 1A.
Focusing on attention mechanism, an attention-based pooling
layer proposed by Zhao Ren et al. [7] helps to improve the
quality of pooling layers compared with traditional pooling
layers. Exploring different frequency bands in a spectrogram,
Phaye et al. [8] proposed a SubSpectralNet network which
is useful to extract discriminative information from 30 sub-
spectrograms. More recently, Hong et al. [9] proposed a new
method that exploits distinct features in sound scenes. They
firstly applied a deep learning model to extract a bag of
similar and distinct features, then leverage this to enforce
higher network performance. Generally, although the second
trend shows complicated network architectures, almost top
performances come from ensemble of CNN-based models as
mentioned in the first line of methods [1]–[4], [10].

In this paper, we adopt a different approach based on deep
feature embedding learning and a hierarchical classification
scheme. First, feature embeddings are learned with a deep
CNN in a regular classification setting. Rather than using the
trained deep CNN for direct classification, it is employed
as a feature extractor to embed an audio input into a high-
level feature space via the learned embedding. Afterwards,
the original “flat”ASC task, i.e. classification of all categories
at once, is structured into multiple hierarchical sub-tasks in
a divide-and-conquer manner. In the one hand, the hierarchy
is constructed bottom-up. Starting from the original scene
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Fig. 1. The two-level hierarchy of scene categories constructed based on the
categories of the DCASE 2018 datasets.

categories at the bottom, those categories, that are expected
to be acoustically similar, are grouped into a meta-category
as demonstrated in Figure 1. The meta-categories, therefore,
constitutes the first level of the classification hierarchy. In
the other hand, the classification is performed top-down, i.e.
classification of the meta-categories is carried out first before
classification of categories in a meta-category takes place. The
classifiers in the classification hierarchy are realized by deep
neural networks (DNNs). Triplet loss function, which was
shown to increase Fisher’s criterion, is used to trained the
DNN classifiers.

II. THE PROPOSED SYSTEM

A. Learning Feature Embeddings

The processing pipeline for deep feature embedding learn-
ing using a deep CNN is illustrated in Fig. 2. Each acoustic
scene signal is firstly transformed into time-frequency image,
such as Gammatone spectrogram with 128 Gammatone filters
[11]. The time-frequency image is then decomposed into non-
overlapping image patches of size 128 × 128. Let X and
y denote an image patch and its one-hot encoding label,
respectively. Mixup data augmentation [12]–[14] is then
applied on the image patches to generate mixup data:

Xmp1 = αX1 + (1− α)X2, (1)
Xmp2 = (1− α)X1 + αX2, (2)
ymp1 = αy1 + (1− α)y2, (3)
ymp2 = (1− α)y1 + αy2. (4)

In above equations, X1 and X2 are two image patches
randomly selected from the set of original image patches with
their labels y1 and y2, respectively. Xmp1 and Xmp2 are two
mixup image patches resulted by mixing X1 and X2 with a
random mixing coefficient α. α is drawn from both uniform
distribution and beta distribution. Note that the labels ymp1 and
ymp2 of the two mixup patches are no longer one-hot labels.

The resulting mixup data is used to train a network for
feature embedding learning. To this end, we propose a deep
CNN similar to the VGG network [15]. The network architec-
ture and parameters are described in Table I, comprising Batch
Normalization (Bn), Convolutional layers (Cv), Rectified Lin-
ear layers (Relu), Average Pooling layers (Ap), Drop-out (Dr)
and Fully-Connected Layers (Fl).

GAM
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vector

mixup
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channel 1

CNN
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classificationDNN-01

Fig. 2. Illustration of the processing pipeline to train the CNN for deep
feature embedding learning.

TABLE I
THE CNN ARCHITECTURE FOR DEEP FEATURE EMBEDDING LEARNING.

Layer Output
Bn - Cv (9×9) - Relu - Bn - Ap (2×2) - Dr (0.1%) 64×64×32
Bn - Cv (7×7) - Relu - Bn - Ap (2×2) - Dr (0.1%) 32×32×64
Bn - Cv (5×5) - Relu - Bn - Dr (0.2%) 32×32×128
Bn - Cv (5×5) - Relu - Bn - Ap (2×2) - Dr (0.2%) 16×16×128
Bn - Cv (3×3) - Relu - Bn - Dr (0.2%) 16×16×256
Bn - Cv (3×3) - Relu - Bn - Ap (2×2) - Dr (0.2%) 8×8×256
Bn - Cv (8×8) - Relu - Bn - Dr (0.2%) 256
Fl - Dr (0.3%) 512
Fl - Dr (0.3%) 1024
Fl - Dr (0.3%) 10

For clarity, in Fig. 2 and Table I, we intentionally separate
the deep CNN into two parts: the CNN part for feature learning
and the DNN part for classification (denoted as DNN-01 to
distinguish it from those DNNs in Section I). Particularly,
instead of using a Global Average Pooling layer at the end
of the CNN as other authors do [4], [16], [17], we design an
additional convolutional layer with the kernel size of [8×8],
that equals to the time-frequency resolution of the output
of the previous layer, to capture the interaction across the
convolutional channel dimension. Since the labels of the mixup
data input are no longer one-hot, we trained the network with
Kullback-Leibler (KL) divergence loss rather than the standard
cross-entropy loss over all N mixup training image patches:

EKL(Θ) =

N∑
n=1

yn log(
yn

ŷn
) +

λ

2
||Θ||22, (5)

where Θ denotes the trainable network parameters and λ de-
note the `2-norm regularization coefficient. yc and ŷc denote
the ground-truth and the network output, respectively.

Once the network has been trained, the feature-learnaing
CNN part of the network is used as a feature extractor and
its last convolutional layer is considered as the deep feature
embedding. Presented with a new input, the feature extractor
will process the input starting from the first convolutional layer
to the embedding layer and produce a high-level feature vector
of size 256.

B. Two-level Hierarchical Classification

Most of exiting works follow a “flat” classification scheme
in which all the scenes categories at classified at once. Dif-
ferently, we propose to perform the classification hierarchi-
cally. The set of scene categories are grouped to form meta-
categories. Each meta-category consists of scene categories
which are expected to be acoustically similar. In this sense, we
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Fig. 3. Illustration of extracting high-level features from the learned feature
embedding to train the DNN classifiers in the hierarchical classification
scheme.

TABLE II
DNN-02’S ARCHITECTURE.

Layer Output Shape
Input layer 256
Fl - Dr (0.3%) 512
Fl - Dr (0.3%) 1024
Fl - Dr (0.3%) 1024
Fl - Dr (0.3%) 10

construct a two-level hierarchy based on the scene categories
in the experimental DCASE 2018 datasets, as shown in Fig. 3.
Three meta-categories are formed from 10 scene categories of
the DCASE 2018 datasets, including “vehicle”, “indoor”, and
“outdoor”. The hierarchical classification is performed in top-
down fashion. The meta-categories are classified first, followed
by the fine-grained classification of the scene categories in
each individual meta-category. As a result, four classifiers are
learned: one for meta-category classification (namely mete-
category classifier) and three for classification of categories
in three meta-categories (namely “vehicle” classifier, “indoor”
classifier, and “outdoor” classifier, respectively). An unseen
example will be then correctly classified if it is correctly
classified by the classifiers at both levels. For example, a “bus”
scene example is correctly classified if it is both correctly
classified as “vehicle” by the meta-category classifier and as
“bus” by the “vehicle” classifier. A misclassifcation by one of
the classifiers will result in the example is wrongly classified.

The classifiers involving in the hierarchical classification
are realized by DNNs, denoted as DNN-02s. Via the learned
embedding presented in Section II, 256-dimensional high-level
feature vectors are obtained for the mixup image patches
and used to train the DNN-02s. In doing this, we effectively
transfer the CNN part of the trained CNN in Section II,
freeze its parameters, and use it as a feature extractor before
presenting the extracted features to a DNN-02, as illustrated
in Fig. 3. Note that the DNN-02s share a common architecture
but are trained separately depending on the sub-tasks in the
hierarchical classification. Each DNN-02 comprises four fully-
connected layers and parametrized as in Table II.

In addition to the KL-divergence loss, we additionally
employ triplet loss function [18] to train the DNN-02s to
encourage the networks to improve its discrimination power.

Triplet loss function has been shown to be efficient to learn
a metric to minimize same-category distances and maximize
between-category distances simultaneously, and hence, en-
hance the Fisher’s criterion. Supposed that we present two
samples of different categories to a DNN-02, and denote the
ground-truth of the first sample as the anchor a, the prediction
for the first sample as positive p, and the prediction for the
second sample as positive n, the triplet loss is given as

Etriplet = max(d(a,p)− d(a,n) +margin, 0), (6)

where d is squared Euclidean distance and the margin is set
to 0.3.

The final loss function is, therefore, a combination of the
KL-divergence loss and the triplet loss:

E(Θ) = γEKL(Θ) + (1− γ)Etriplet(Θ), (7)

where EKL is the KL-divergence loss given in (5).

C. Ensemble with Multiple Time-Frequency Inputs

Using multiple input types has been a rule of thumb in
ASC [19], [20]. We, therefore, propose to use three different
time-frequency inputs, including log-Mel [21], Gammatone
filter (GAM) [11], and Constant Q Transform (CQT) [21], to
form an ensemble of three systems. The final decision of each
classification task (meta-category classification at the level 1
or fine-grained classifications at the level 2 shown in Figure
1) is obtained by aggregating the individual decisions of the
three classifiers (each with one type of spectrogram) in the
ensemble and the final classification label is determined via
maximum posterior probability:

ŷ = argmax(p̄log-Mel + p̄GAM + p̄CQT), (8)

where p̄ denotes the posterior probability output of a classifi-
cation model and ŷ denotes the final label.

III. EXPERIMENTS

A. DCASE 2018 Datasets

Our experiments were based on the DCASE 2018 Task 1A
and 1B development datasets [5]. The audio signals in Task 1A
was recorded at a sample rate of 44.1 kHz by only one device

TABLE III
THE NUMBER OF SCENE RECORDINGS CORRESPONDING TO EACH SCENE
CATEGORIES IN THE TRAINING SET (TRAIN. SET) AND EVALUATION SET

(EVAL. SET) OF THE DCASE 2018 TASK 1A & 1B DEVELOPMENT
DATASETS [5].

Category Task 1A Task 1A Task 1B Task 1B
Train. set Eval. set Train. set Eval. set

Airport 599 265 707 301
Bus 622 242 730 278
Metro 603 261 711 297
Metro Stattion 605 259 713 295
Park 622 243 730 278
Public Square 648 216 756 252
Shopping Mall 585 279 693 315
Street Pedestrian 617 247 725 283
Street Traffic 618 246 726 282
Tram 603 261 711 297
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Fig. 4. Category-wise performance comparison between the proposed system with triplet loss and the DCASE 2018 baseline on Task 1A.

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEMS, THE

DCASE 2018 BASELINE, AND THE DEVELOPED BASELINE.

System Task 1A Task 1B
DCASE 2018 baseline [5] 59.7 45.6
The developed baseline 70.9 61.1
The proposed w/o triplet loss 73.3 62.2
The proposed w/ triplet loss 75.3 58.9

(known as device A) with 10-second long for each recording.
For Task 1B, all recordings using the device A from Task
1A are reused. In addition, new recordings with two different
devices (device B & device C), were added (72 recordings
from each device for every category). The goal of Task 1B is
to evaluate the performance on the device B and C when there
are mismatched devices in real-world applications. It should
be noted the imbalance of Task 1B data as there was only 4
hours of data recorded with the devices B & C compared with
24 hours of data recorded with the device A. Adhering to the
setting of DCASE 2018 challenge, we divided the development
dataset into a training and evaluation subsets (Train. set and
Eval. set) as shown in Table III.

B. Baselines

Besides comparison with the DCASE 2018 baseline and
the results reported in previous works, we used the CNN used
for deep feature embedding learning in Section II-A as the
developed baseline to justify the impact of the learned deep
feature embedding and the hierarchical classification scheme.
When being used as a classification baseline, the CNN was
trained to classify 10 categories of the datasets as in typical
setting.

C. Other parameters

The time-frequency image features, i.e. Gammatone, log-
Mel, and CQT spectrogram, were obtained via a short-time
window size of 43 ms and hop size of 6 ms. All of them have
a common number of filter of 128.

The networks were implemented using the Tensorflow
framework. The coefficient λ in (5) was set to 10−4, and γ in
(7) was experimentally set to 0.2. The network training was

accomplished with Adam optimizer [22] with the learning rate
of 10−4, a batch size of 100, and stop after 100 epoches.

D. Experimental Results

Performance obtained by the proposed system, the devel-
oped baseline, and the DCASE 2018 baseline are shown in
Table IV. As can be seen, the propose system outperforms all
the DCASE 2018 baseline with a large margin, 15.6% absolute
(with triplet loss) on Task 1A and 16.6% absolute on Task 1B
(without triplet loss). Improvements on individual categories
can also be seen, as shown in Fig. 4 for a comparison
between the proposed system with triplet loss and the DCASE
2018 baseline on Task 1A, with several categories enjoying a
significant gain of more than 20%, such as “shopping mall”,
“tram”, “metro”, “street-pedestrian”.

Compared to the developed baseline, the proposed system
leads to an accuracy gain of 2.4% and 1.1% on Task 1A and
Task 1B, respectively, when the triplet loss is not used. When
the triplet loss is used, a significant accuracy improvement is
seen on Task 1A: 2.4% absolute compared to that without
triplet loss and 4.4% compared to the developed baseline
thanks to the proposed hierarchical classification scheme.
However, using triplet loss seems to be counter-productive
on Task 1B as the accuracy is reduced by 3.3% absolute
in comparison to the system without triplet loss. This is
presumably due to the device mismatch or the lack of training
data on the target devices (device B & C) or both. However,
average over all the devices, the proposed system with triplet
loss outperforms all other counterparts, as shown in Fig. 5.

We further collate the results reported in previous works
(both the DCASE 2018 challenge submission systems and
the recent works) and provide a comprehensive performance
comparison on Task 1A and Task 1B in Tables V and VI,
respectively. It should be noted that there are inconsistencies
between the accuracies reported in the DCASE 2018 tech-
nical reports and those published in DCASE 2018 challenge
website 1. The results in Tables V and VI are collated from
the technical reports which are the original sources of the
reported accuracies. For clarity, we only cover top 10 DCASE

1http://dcase.community/challenge2018/
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Fig. 5. Accuracy obtained by the systems developed in this work on different
devices of Task 1B.

2018 challenge submissions in the tables. In the one hand, the
proposed system outperforms the recent works (i.e. after the
DCASE 2018 challenge) on Task 1A while retaining as top-
3 performer in the context of the DCASE 2018 submission
systems. In the other hand, our proposed system achieves state-
of-the-art results on Task 1B, achieving an accuracy of 66.9%
and outperforming both the DCASE 2018 submission systems
and the previous works.

E. Discussion

To shed light on the performance of the classifiers in the
proposed hierarchical classification scheme, we shown their
confusion matrices in Fig. 6. Overall, the meta-categories
can be discriminated very well with an average accuracy of
94% achieved by the meta-category classifier. Given the good
performance of the meta-category classifier, the test examples
are expected to be directed to the correct groups in the lower
level. Even though the fine-grained classifiers’ performance are
not as good as that of the meta-category classifier since the
categories in a group tend to be similar acoustically, they are
expected to perform better than the case of “flat” classification
with 10 classes at once. The reason is, in one group, the
classification subtask is able to avoid the confusion between
its categories and those in other groups.

Overall, out of the individual time-frequency inputs (i.e.
Gammatone spectrogram, log-Mel spectrogram, and CQT
spectrogram), Gammatone spectrogram seems to perform best
as shown in Fig. 7 while CQT spectrogram is the worst.
However, aggregation the classification outputs of all three
results in significant improvements over the individual ones.
This is observed over all systems, the proposed system with
triplet loss, the proposed system without triplet loss, and the
developed baseline. It is expected as different time-frequency
representations have been shown to be good for different scene
categories, and their individual strength is leveraged in the
ensemble to bring up performance gain.

IV. CONCLUSION

We have presented an approach that learns deep feature
embedding to extract high-level features for audio scene
signals via a deep CNN and proposed a novel hierarchical

TABLE V
COMPARISON BETWEEN DCASE2018 BASELINE, THE TOP-10 DCASE

2018 CHALLENGE (TOP), RECENT PAPERS (MIDDLE), AND THE PROPOSED
SYSTEM (BOTTOM) ON TASK 1A.

System Method Acc. (%)
DCASE2018 Baseline [23] CNN 59.7
Li [24] DNN-biLSTM 72.9
Jung [25] Ens. of CNN-SVM 73.5
Hao [26] Ens. of biLSTM-CNN 73.6
Christian [27] CNN-Voting 74.7
Zhang [28] CNN-SVM 75.3
Li [29] Ens. of CNN, DNN 76.6
Dang [30] Ens. of CNNs 76.7
Yuma [4] Ens. of CNNs 76.9
Octave [3] Ens. of CNNs 79.3
Yang [6] Xception CNN 79.8
Bai [31] Hybrid-DNN 66.1
Zhao [32] CNN 72.6
Phaye [8] SubSpectralNet CNN 74.1
Zeinali [1] Ens. of CNNs 77.5
The proposed w/ triplet loss Ens. of hier. DNNs 78.0

TABLE VI
COMPARISON BETWEEN THE DCASE 2018 BASELINE, THE TOP-7

DCASE 2018 CHALLENGE (TOP), THE RECENT PAPERS (MIDDLE), AND
THE PROPOSED SYSTEM (BOTTOM) ON TASK 1B (ONLY DEVICES B & C).

System Method Acc. (%)
DCASE2018 Baseline [23] CNN 45.6
Li [33] Ens. of CNN, DNN 51.7
Tchorz [34] LSTM 53.9
Kong [35] CNN 57.5
Wang [36] Self-attention CNN 57.5
Waldekar [37] Ens. of CNNs 57.8
Zhao [38] CNN 58.3
Truc [2] Ens. of CNNs 63.6
Zhao [32] CNN 63.3
Truc [39] CNN, Mix. of Experts 64.7
Yang [40] Xception CNN 65.1
Truc [10] Ens. of CNNs 66.1
The proposed w/o triplet loss Ens. of hier. DNNs 66.9

classification scheme to accomplish the scene classification.
In the classification hierarchy, the similar scene categories are
grouped into meta-categories. Meta-category classification was
carried out first, followed by the fine-grained classification in
the groups. DNNs were trained with triplet loss to play the role
of the classifiers in the classification hierarchy. Experiments on
the DCASE 2018 Task 1A and 1B datasets demonstrated that
the proposed methods significantly outperformed the DCASE
2018 baseline while achieving highly competitive results com-
pared to state-of-the-art systems. In future work, it is worth
further experimenting with deeper-level hierarchical schemes
with large number of categories as well as with data-driven
clustering approaches.
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