
Visually Impaired Aid using Convolutional Neural
Networks, Transfer Learning, and Particle

Competition and Cooperation
Fabricio Breve

Institute of Geosciences and Exact Sciences
São Paulo State University (UNESP)

Rio Claro-SP, Brazil
fabricio.breve@unesp.br

Carlos N. Fischer
Institute of Geosciences and Exact Sciences

São Paulo State University (UNESP)
Rio Claro-SP, Brazil

carlos.fischer@unesp.br

Abstract—Navigation and mobility are some of the major
problems faced by visually impaired people in their daily lives.
Advances in computer vision led to the proposal of some
navigation systems. However, most of them require expensive
and/or heavy hardware. In this paper we propose the use of
convolutional neural networks (CNN), transfer learning, and
semi-supervised learning (SSL) to build a framework aimed
at the visually impaired aid. It has low computational costs
and, therefore, may be implemented on current smartphones,
without relying on any additional equipment. The smartphone
camera can be used to automatically take pictures of the path
ahead. Then, they will be immediately classified, providing almost
instantaneous feedback to the user. We also propose a dataset to
train the classifiers, including indoor and outdoor situations with
different types of light, floor, and obstacles. Many different CNN
architectures are evaluated as feature extractors and classifiers,
by fine-tuning weights pre-trained on a much larger dataset.
The graph-based SSL method, known as particle competition and
cooperation, is also used for classification, allowing feedback from
the user to be incorporated without retraining the underlying
network. 92% and 80% classification accuracy is achieved in
the proposed dataset in the best supervised and SSL scenarios,
respectively.

Index Terms—Transfer Learning, Particle Competition and
Cooperation, Convolutional Neural Networks, Semi-Supervised
Learning

I. INTRODUCTION

Globally, it is estimated that at least 2.2 billion people have
a vision impairment or blindness [1]. The majority of them
are over 50 years old and live in low and middle-income
regions [2]. Navigation and mobility are among the most
critical problems faced by visually impaired persons. There
were many advances in computer vision and some proposed
navigation systems in the last decade [3]–[8]. However, many
of them require expensive, heavy, and/or not broadly available
equipment [5]–[10] or require a network connection to a
powerful remote server [4], [11]. Therefore, the white cane
is still the most popular, simplest tool for detecting obstacles
due to its low cost and portability [3].

This work is supported by the São Paulo Research Foundation - FAPESP
(grant #2016/05669-4)

In the recent years, the rise of deep learning methods [12]–
[14], especially convolutional neural networks (CNNs), was
responsible for many advances in object recognition and image
classification [15]–[17]. CNNs are a class of deep neural net-
works commonly employed in visual image analysis. However,
learning in CNNs usually requires a very large amount of
annotated image samples in order to estimate millions of
parameters. Annotating images is usually an expensive or
time-consuming task, preventing the application of CNNs in
problems with limited training data available [18].

Oquab et al. [18] showed that image representations learned
with CNNs on large-scale annotated datasets can be efficiently
transferred to other visual recognition tasks with a limited
amount of training data. They reused layers trained on a large
dataset to compute mid-level image representation for images
in another dataset, leading to significantly improved classifi-
cation results. This technique, known as transfer learning, was
successfully applied in different scenarios [19]–[21].

CNNs training phase commonly has very high computa-
tional costs. However, once trained, CNNs are relatively fast
to make inferences. Most current smartphones SoCs (System-
on-a-Chip) are able to make inferences on a single image using
CNN models, like VGG19 [22] and InceptionV3 [23], in the
range of milliseconds [24].

Considering the current scenario, we glimpse a system to
assist visually impaired people that executes on a single smart-
phone, without extra accessories or connection requirements.
It could work added to the white cane, taking pictures of the
path a person is walking through, and providing audio and/or
vibration feedback regarding potential obstacles, even before
they are in the reach of the white cane.

In this paper, we propose a dataset of images taken of the
path using a smartphone camera in a first-person perspective.
Though not large, the dataset covers indoor and outdoor
situations, different types of floor, sidewalks with art on the
floor, dry and wet floor, different amounts of light, daylight
and artificial light, and different types of obstacles.

We also propose a CNN classifier to label these images
in two classes: “clear path” and “non-clear path”. It is based

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

on transfer learning, by using CNN models with weights pre-
trained on the ImageNet dataset [25], which has millions of
images and hundreds of classes. The weights of specific blocks
of layers can then be fine-tuned to the proposed dataset. It
is expected that these networks can learn and extract useful
features in spite of the dataset challenges. We have tested
17 different CNN architectures to find out which ones would
perform better on this task, and Xception [26], VGG16 [22],
VGG19 [22], InceptionV3 [23], and MobileNet [17] achieved
the best results.

Moreover, we glimpse at the possibility of incorporating
knowledge from user feedback, who could point out wrong
inferences and/or confirm the right ones. In this case, since
it is not feasible to re-train or fine-tune the network on the
smartphone, an alternative approach is proposed using the
graph-based semi-supervised learning (SSL) method known
as particle competition and cooperation (PCC) [27]. In this
scenario, VGG16 and VGG19 models [22], without the clas-
sification layer, work as feature extractors. They were chosen
among the others because they are the only architectures
that achieved good results without fine-tuning. These CNN
models were designed to attend a competition of large scale
visual recognition on the ImageNet dataset in 2014. Principal
Component Analysis (PCA) [28] is used to reduce the output
of the last CNN convolutional layer. A few of the principal
components are then used to build a graph, in which each
image is a node and edges connect each of them to their closest
neighbors. The graph is fed to PCC with a few annotated
images and it performs the classification of the remaining.

The remaining of this paper is organized as follows: Section
II shows some related work on visually impaired aid, transfer
learning, and the PCC model. Section III presents the proposed
dataset. Section IV introduces the baseline CNN, a first attempt
to classify the proposed dataset, used for comparison with
other proposed approaches. Section V presents our proposed
architecture using transfer learning, with computer simulations
and their corresponding results. Section VI presents our ex-
periments with SSL, using CNNs as feature extractors and
PCC for classification. Finally, in Section VII we draw some
conclusions.

II. RELATED WORK

In this section, we briefly describe some related work,
focused on visually impaired aid, transfer learning, and the
particle competition and cooperation model.

A. Visually Impaired Aid

Many efforts have been made to incorporate computer
vision technologies to assist visually impaired people. Kumar
and Meher [29] presented an object detection system, using a
combination of CNN and RNN (Recurrent Neural Network). It
recognizes common indoor objects and their colors, providing
audio feedback to the user. Saffoury et al. [7] propose a
system with a laser pointer and a smartphone. They used laser
triangulation to build a collision avoidance algorithm. They
also provide audio feedback to the user.

Poggi and Mattoccia [8] built a wearable device, with
glasses with a custom RGBD sensor and FPGA onboard
processing, a glove with micro-motors for tactile feedback, a
pocket battery, a bone-conductive headset, and a smartphone.
They used deep-learning techniques to semantically categorize
detected obstacles. Earlier, Poggi et al. [9] have presented a
similar system for crosswalk recognition.

Tapu et al. [30] presented a real-time obstacle detection and
classification system, using video captured from a smartphone
camera. They built a framework including tracking, motion
estimation, and clustering techniques. Four years later, Tapu
et al. [6] introduced a more complex framework, based on
CNNs to detect, track and recognize objects in an outdoor
environment. However, the system requires a laptop computer,
carried on a backpack, to be used as a processing unit.

Hoang et al. [5] presented a system that uses a Kinect
to capture the environment. It detects obstacles and provides
audio feedback. It also requires a laptop computer to be carried
on a backpack. Rizzo et al. [10] propose a fusion framework
to join merge signals from a stereo camera and an infrared
sensor. The obstacle detection is performed using a CNN.

Lin et al. [11] propose a smartphone-based guiding system.
They also use CNNs for object recognition. However, they
rely on a desktop server with a GPU with Compute Unified
Device Architecture (CUDA) to perform the heavier object
recognition task. The system has an offline mode but it only
provides face and stairs recognition. Jiang et al. [4] propose
a wearable system based on stereo vision. They used a CNN
on the cloud for image recognition.

Islam and Sadi [31] used a CNN for path hole detection.
Though they achieved very good results, it is worth noticing
that they used a dataset for the ‘path hole’ images and another
one for ‘non-path hole’ images. The later consists of road
pictures taken with a wider angle. Therefore, it is likely that
the network also learned these style differences that are not
related to the problem, making its job easier.

B. Transfer Learning

CNNs usually require a large amount of training data
to effectively learn. However, when limited training data is
available, it is possible to efficiently transfer representations
learned by a CNN architecture on other visual recognition
tasks, in which large-scale datasets are available.

Oquab et al. [18] reused layers trained on the ImageNet
dataset to compute mid-level image representation for im-
ages and classify objects in the Pascal VOC dataset [32],
outperforming the previous state-of-the-art results. Gopalakr-
ishnan et al. [21] employed CNNs trained on ImageNet to
detect cracks in surface pavement images. Shin et al. [19]
successfully applied transfer learning from the natural images
of the ImageNet dataset to computed tomography images of
the medical domain.

Saleh et al. [33] used a CNN based on VGG16 to detect
navigational path, through segmentation of images on a pixel-
wise level. They have added some convolutional and de-
convolutional layers which are specific for their segmentation

task. But they also fine-tuned pre-trained weights on the layers
based on VGG16.

Monteiro et al. [34] used a dataset of videos taken from
the point of view of guide-dog to train a CNN to recognize
activities taking place around the user camera. They made
simulations with both fully trained and fine-tuned AlexNet
[15] and GoogLeNet [35] networks pre-trained on the ILSVRC
2012 ImageNet dataset [25].

C. Particle Competition and Cooperation

Particle competition and cooperation (PCC) [27] is a nature-
inspired graph-based semi-supervised learning (SSL) method.
In this model, teams of particles walk through a network,
cooperating among themselves and competing against particles
from other teams, trying to possess as many nodes as possible.
The teams are the classes in the machine learning context.
Therefore, particles representing the same class walk cooper-
atively to spread their label. At the same time, particles from
different classes compete to define the classes’ boundaries.

The network is represented as a graph and is generated
from the input data. Each element becomes a graph node, and
the edges are created between each node and its k-nearest
neighbors, given by some distance measured among them,
usually the Euclidean distance. For each node that corresponds
to a pre-labeled element, a particle is generated, whose initial
position is the same node, known as the “home node” of the
particle. As the particles change position, the distance between
their current node and their home node is registered. Particles
generated by elements of the same class act as a team.

Each graph node has a vector where each element represents
the domination level of a team over that node. The sum
of the vector is always constant. As the system executes,
particles walk through the graph and raise the dominance
level of their team over the node, at the same time that
they lower other team domination levels, always keeping the
constant sum. Moreover, each particle also has a strength level,
which raises when it visits a node dominated by its team and
lowers when it visits a node dominated by another team. This
strength is important because the change a particle causes in
a node is proportional to the strength it has at the time. This
mechanism ensures that a particle is stronger when it is in its
neighborhood, protecting it, and it is weaker when it is trying
to invade another team territory.

Particles choose the next node to be visited based on one
of two rules. At each iteration, they randomly choose one
of the rules with pre-defined probabilities. The two rules are
described as follows:

• Random rule: the particle randomly chooses, with equal
probabilities, any neighbor node to visit.

• Greedy rule: the particle randomly chooses any neighbor
node to visit but with probabilities proportional to the
dominance level its team has on each neighbor and
inversely proportional to the distance of the neighbor to
their home node.

Therefore, the greedy rule is useful to keep the particles
in their own territory, i.e., defensive behavior. On the other

hand, using the random rule the particles are more likely to go
to non-dominated and distant nodes, assuming an explorative
behavior.

Notice that a particle only stays on the chosen node if
it is able to dominate that node, otherwise, it is expelled
and goes back to the previous node until the next iteration.
This rule is used to avoid that a particle leaves its territory
behind and loses all its strength. It also favors smooth borders
on the territories, since a particle cannot dominate a given
node before dominating the nodes on its path. At the end of
the iterations, each node is labeled after the team that has
dominated it.

PCC was already extended to handle fuzzy community
structure [36], to be more robust to label noise [37], to handle
data streams and concept drift [38], to perform active learning
[39] and image segmentation [40], among others. It has been
applied to data from different domains, including software
engineering, bioinformatics, and medical diagnostics.

III. PROPOSED DATASET

The proposed dataset1 consists of 342 images divided into
two classes: 175 of them are “clear-path” and 167 are “non-
clear” path. They were taken using a smartphone camera and
resized to 750 × 1000 pixels. The smartphone was placed in
the user chest height and inclined approximately 30º to 60º
from the ground, so it could capture a few meters of the path
ahead, and beyond the reach of a regular white cane.

Though not large, the dataset covers indoor and outdoor
situations, with different types of floor, including both dry and
wet floor; different amounts of light, including both daylight
and artificial light; and different types of obstacles, like stairs,
trees, holes, animals, traffic cones, among others. Fig. 1 shows
some examples of images from the proposed dataset.

IV. BASELINE CNN

For the first attempt to classify the proposed dataset, we
build a CNN with three convolutional layers. Each layer is
followed by a batch normalization layer, a max-pooling layer,
and a dropout layer. After the third layer, there is a dense
intermediate layer, also followed by batch normalization and
dropout and, finally, a dense classification layer with two
outputs: “clear” and “non-clear”. All activation functions are
ReLU (Rectified Linear Unit), except for the classification
layer, which uses softmax. The input images are resized to
128× 128 pixels, for faster processing. This CNN is used as
a baseline for later computer simulations; its full diagram is
displayed in Fig. 2.

The network is implemented in Python, using the Tensor-
Flow framework. It is trained with three different optimizers:
Adam [41], [42], RMSprop [43], and SGD (Stochastic Gra-
dient Descent). The option earlystop is used in all scenarios,
with the patience parameter set to 10. learning rate reduction
is also used, with reduction on plateau and the following
parameters: patience = 2, factor = 0.5, and min lr = 0.00001.

1The dataset is available at: https://github.com/fbreve/via-dataset

(a) “clear path”

(b) “non-clear path”

Fig. 1: Some images extracted from the proposed dataset: (a)
“clear path” class; and (b) “non-clear path” class.

In some simulations, we used real-time data augmentation,
i.e., the images are presented more than once per-epoch and
with slightly random transformations to help the network to
learn and to generalize. This is specially useful on small
datasets. The following parameters were used: rotation range
= 15, shear range = 0.1, zoom range = 0.2, horizontal flip =
True, width shift range = 0.1, and height shift range = 0.1.

Table I shows the classification accuracy obtained with the
proposed network, using the different optimizers and with and
without data augmentation. All results were obtained using K-
Fold Cross Validation with k = 10; the process is repeated
10 times, so each value on Table I is the average of 100
executions.

The best accuracy (76.40%) is obtained with data augmen-
tation and the RMSProp optimizer. Based on these results, we
build another set of simulations to explore transfer learning.

V. CNN ARCHITECTURES AND TRANSFER LEARNING

In this section, we explore transfer learning on the proposed
dataset. We propose a simple model where the output of the
last convolutional layer of the original CNN is flattened and
passed to a small intermediate dense layer, followed by a

Input Layer
Input: (128, 128, 3)

Output: (128, 128, 3)

Conv. 2D
filters: 32

kernel size: 3x3

Input: (128, 128, 3)

Output: (128, 128, 32)

Batch
Normalization

Input: (128, 128, 32)

Output: (128, 128, 32)

Max Pooling
2D

pool size = 2x2

Input: (128, 128, 32)

Output: (64, 64, 32)

Dropout
rate: 0.25

Input: (64, 64, 32)

Output: (64, 64, 32)

Conv. 2D
filters: 32

kernel size: 3x3

Input: (64, 64, 32)

Output: (62, 62, 64)

Batch
Normalization

Input: (62, 62, 64)

Output: (62, 62, 64)

Max Pooling
2D

pool size = 2x2

Input: (62, 62, 64)

Output: (31, 31, 64)

Dropout
rate: 0.25

Input: (31, 31, 64)

Output: (31, 31, 64)

Conv. 2D
filters: 32

kernel size: 3x3

Input: (31, 31, 64)

Output: (29, 29, 128)

Batch
Normalization

Input: (29, 29, 128)

Output: (29, 29, 128)

Max Pooling
2D

pool size = 2x2

Input: (29, 29, 128)

Output: (14, 14, 128)

Dropout
rate: 0.25

Input: (14, 14, 128)

Output: (14, 14, 128)

Flatten
Input: (14, 14, 128)

Output: (25088)

Dense
Input: (25088)

Output: (512)

Batch
Normalization

Input: (512)

Output: (512)

Dropout
Rate: 0.5

Input: (512)

Output: (512)

Dense
softmax

Input: (512)

Output: (2)

Fig. 2: Baseline CNN diagram.

TABLE I: Classification accuracy obtained with the Baseline
CNN network, with and without data augmentation, and using
different optimizers. The best result is highlighted in bold.

Data Augmentation Optimizer Accuracy
no Adam 67.97% ±7.33%
no RMSProp 70.35% ±8.67%
no SGD 60.53% ±8.64%
yes Adam 73.51% ±7.98%
yes RMSProp 76.40% ±7.14%
yes SGD 72.19% ±7.57%

classification layer. Alternatively, a global pooling layer may
be used instead of the flatten layer. In the VGG16 case, the
output is a 3D matrix 7×7×512, which becomes a single 512
vector when using global pooling. These models are presented
in Fig. 3, taking VGG16 [22] as example of CNN architecture.
In our experiments, we used no pooling and global average
pooling.

In the first set of transfer learning computer simulations,
we explore 17 different CNN architectures. In all scenarios,
the original networks were pre-trained in the ImageNet dataset
[25], a very large dataset with millions of images and hundreds
of classes. All the pre-trained weights of the networks are
available in Tensorflow. The classification layer of the original
CNN is removed, and the output of its last convolutional layer

VGG16
Input: (224, 224, 3)

Output: (7, 7, 512)

Flatten
Input: (7, 7, 512)

Output: (25088)

Dense
Input: (25088)

Output: (128)

Dense
softmax

Input: (128)

Output: (2)

(a) No Pooling

VGG16
Input: (224, 224, 3)

Output: (7, 7, 512)

Global Pooling
2D

Input: (7, 7, 512)

Output: (512)

Dense
Input: (512)

Output: (128)

Dense
softmax

Input: (128)

Output: (2)

(b) 2D Global Pooling

Fig. 3: Proposed Transfer Learning networks using VGG16 -
Model A: (a) No Pooling; (b) 2D Global Pooling.

is fed to our model. We tested four different scenarios: in the
first two, the weights of the original CNN layers are frozen
and only the layers we add are trained. Therefore, we might
say that the original CNNs work as feature extractors. In the
first scenario, we use no pooling and in the second one, we
use global average pooling. In the third and fourth scenarios,
all the weights are fine-tuned to the proposed dataset. Again,
no pooling is used in the third one and global average pooling
is used in the forth.

Table II shows the classification accuracy achieved using
transfer learning with the 17 different CNN architecture. In
all cases, RMSProp is the chosen optimizer, as it achieved the
best results in the previous simulations. No data augmentation
is used and the other parameters are the same used with the
baseline CNN. All dataset images are resized to the default
input size of each method (either 224 × 224 or 299 × 299
pixels in these CNNs). All the results were obtained using K-
Fold Cross Validation with k = 10, so each value on the table
is the average of 10 executions.

From Table II we observe that, with frozen weights, only
VGG16 and VGG19 architectures were able to outperform
the baseline CNN. The other architectures had bad results,
suggesting that they are not good extractors for this task
without some kind of fine-tuning. When all the weights are
fine-tuned, Xception, InceptionV3, InceptionResNetV2, and
MobileNet were able to learn and outperform the baseline
CNN. VGG16 and VGG19 also had improved results with
fine-tuning. Global average pooling led to better results when
using fine-tuning, while no pooling is better when the weights
are frozen.

Sometimes, freezing the first layers and fine-tuning the last
ones may improve the classification accuracy. Usually, the
first convolutional layers extract low-level features, common
in many kinds of images. Therefore, they may not require
adjustments. On the other hand, the last convolutional layers
extract high-level problem-specific features and are less likely
to be useful without fine-tuning. Thus, it is worth investigating
how some models behave when the initial layers are frozen
and the remaining are fine-tuned.

VGG16 has 5 blocks of convolutional layers. Table III
shows the classification accuracy with different amounts of

frozen blocks of layers, starting with all blocks being fine-
tuned and then increasingly freezing each block from the
network input to the output. All the results were obtained using
K-Fold Cross Validation with k = 10; the whole process is
repeated 10 times, so each value on the table is the average
of 100 executions. The best results were achieved with 3
frozen blocks with no pooling and 2 frozen blocks with global
average pooling.

Xception and MobileNet have 13 and 14 layer blocks,
respectively. Table IV shows the classification accuracy with
different amounts of frozen blocks and global average pooling.
All the results were obtained using K-Fold Cross Validation
with k = 10; the whole process is repeated 2 times, so each
value on the table is the average of 20 executions. Both models
only learn when all layers are fine-tuned.

VI. SEMI-SUPERVISED LEARNING WITH PARTICLE
COMPETITION AND COOPERATION

CNNs inference in smartphones is feasible as long as the
weights are set [22]. However, the training process to set
these weights is computationally intensive and requires more
powerful hardware. Therefore, incorporating new knowledge,
acquired from user feedback, through retraining is not feasible.

To address this issue, we propose an alternative approach
by combining CNNs with PCC. In this scenario, VGG16
and VGG19 architectures are employed as feature extractors.
They are used without their classification layer, with weights
pre-trained on the ImageNet dataset [25]. Those architectures
were chosen among the others because they achieved much
higher accuracy than the others on the proposed dataset in
the scenario where no fine-tuning of the weights is used,
as shown in Table II. The last convolutional layer of both
VGG16 and VGG19 architectures output a 7×7×512 matrix.
Therefore, with no pooling, there is a total of 25, 088 features.
Alternatively, global average pooling or global max pooling
may be used to lower it to 512 features.

Principal Component Analysis (PCA) [28] is used to reduce
the dimensionality. In preliminary experiments, we noticed
that no more than 20 of the principal components are needed
to achieve the best results in most scenarios. The principal
components are used to build an unweighted and undirect
graph, in which each image is a node and edges connect each
image to their k-nearest neighbors, according to the Euclidean
distance between the principal components being used.

The graph is then fed to PCC with a few annotated images
and it performs the classification of the remaining. PCC
computational complexity is only O(n) where n is the amount
of images [27]. Therefore, it is suitable for fast execution on
smartphones. Though the original PCC model is transductive,
it was already extended to perform inductive learning and to
work with data streams [38], as the problem requires.

Fig. 4 illustrates the classification framework using VGG16
as feature extractor and PCC as the semi-supervised classifier.

Fig. 5 shows the accuracy of the PCC framework on the
proposed dataset with VGG16 and VGG19 used as feature
extractors. They were also tested together, by concatenating

TABLE II: Classification accuracy obtained using transfer learning with 17 different CNN architectures. The best results in
each column are in bold.

Architecture Frozen Weights Fine-Tunable Weights
No Pooling Average Pooling No Pooling Average Pooling

Xception [26] 49.43% ±6.82% 51.18% ±8.61% 87.70% ±2.62% 92.11% ±5.01%
VGG16 [22] 83.39% ±13.35% 76.88% ±7.32% 85.76% ±11.97% 85.16% ±12.96%
VGG19 [22] 81.36% ±11.11% 73.97% ±5.53% 83.40% ±11.38% 85.18% ±13.29%

ResNet50 [44] 51.17% ±8.82% 51.18% ±8.61% 49.98% ±9.31% 51.77% ±8.77%
ResNet101 [44] 51.18% ±8.61% 50.87% ±8.08% 66.12% ±19.75% 51.42% ±8.83%
ResNet152 [44] 48.05% ±10.97% 51.17% ±7.88% 54.90% ±12.51% 47.37% ±4.85%

ResNet50V2 [45] 51.19% ±11.08% 51.19% ±11.08% 51.48% ±8.72% 69.71% ±22.50%
ResNet101V2 [45] 51.18% ±8.61% 51.18% ±8.12% 63.49% ±9.02% 51.46% ±9.02%
ResNet152V2 [45] 51.18% ±8.12% 53.25% ±11.63% 54.40% ±7.53% 54.69% ±6.24%
InceptionV3 [23] 51.18% ±8.61% 51.18% ±8.61% 79.94% ±16.02% 88.90% ±3.38%

InceptionResNetV2 [46] 51.18% ±8.12% 51.19% ±11.08% 75.53% ±11.90% 78.37% ±5.08%
MobileNet [17] 51.48% ±8.72% 51.18% ±8.61% 81.43% ±16.66% 90.08% ±5.02%

DenseNet121 [47] 51.18% ±8.61% 51.18% ±8.61% 54.71% ±9.75% 45.03% ±8.62%
DenseNet169 [47] 51.45% ±8.04% 48.24% ±8.73% 64.63% ±12.02% 75.50% ±15.18%
DenseNet201 [47] 48.34% ±10.90% 51.46% ±9.11% 61.80% ±17.82% 59.34% ±8.70%

NASNetMobile [48] 51.78% ±9.43% 49.13% ±12.40% 50.29% ±8.46% 49.13% ±8.80%
MobileNetV2 [49] 50.90% ±8.65% 51.19% ±11.08% 50.90% ±8.65% 51.18% ±8.61%

TABLE III: Classification accuracy obtained using transfer
learning with VGG16 and different amounts of frozen blocks
of layers, from the network input to the output. The best results
in each column are in bold.

Frozen Blocks No Pooling Average Pooling
None 89.19% ±6.46% 86.93% ±6.42%

1 88.56% ±5.84% 88.95% ±6.84%
2 88.96% ±5.99% 89.23% ±7.52%
3 89.40% ±6.50% 88.42% ±6.84%
4 87.10% ±5.84% 87.65% ±7.39%

All 86.36% ±7.09% 74.78% ±7.00%

TABLE IV: Classification accuracy obtained using transfer
learning with Xception and MobileNet and different amounts
of frozen blocks of layers, from the network input to the
output. The best results in each column are in bold.

Frozen Blocks Xception MobileNet
None 91.68% ±3.58% 88.89% ±3.36%

1 48.26% ±8.27% 51.17% ±7.48%
2 49.55% ±8.82% 52.03% ±9.70%
3 48.95% ±7.91% 50.74% ±10.39%
4 48.80% ±7.35% 49.85% ±10.05%
5 51.18% ±11.15% 45.13% ±10.43%

their output, generating 50, 176 features. In these simulations,
we used the output of their last convolutional layer, with
no pooling. 10% and 20% of the images are presented with
their respective labels; so the remaining are labeled by PCC.
The optimal amount of k-nearest neighbors and p principal
components to build the graph are found by using grid-
search in the interval k, p = {1, . . . , 20}. The PCA MATLAB
implementation is used with its default parameters. PCC is
implemented in MATLAB and all its parameters are left at
their default values2. Table V shows the best combination of
k and p for each scenario and the accuracy they achieved. All
combinations are repeated 100 times with different randomly
chosen labeled nodes, so the values on the Fig. 5 and Table
V are the average of 100 executions.

2PCC MATLAB implementation is available at https://github.com/fbreve/
Particle-Competition-and-Cooperation

224 x 224 x 3
Images

Principal Component AnalysisVGG16

4

Undirected Unweighed Graph

0

0,5

1

0

0,5

1

Particle Competition and
Cooperation

Classified
Images

Fig. 4: The proposed framework using Particle Competi-
tion and Cooperation for semi-supervised classification with
VGG16 as feature extractor.

TABLE V: Classification accuracy achieved by the proposed
PCC framework with VGG16 and VGG19 as feature extrac-
tors, with the best combination of p principal components and
k-nearest neighbors to build the graph. No pooling is applied
to the last convolutional layers output.

Labeled Architecture p k Accuracy
10% VGG16 10 7 77.01% ±3.55%
10% VGG19 10 8 76.99% ±3.60%
10% VGG16+VGG19 10 8 76.99% ±3.68%
20% VGG16 10 7 79.53% ±2.40%
20% VGG19 10 8 79.35% ±2.65%
20% VGG16+VGG19 14 4 79.43% ±2.65%

By analyzing Fig. 5 and Table V, we notice that 10 principal
components is the optimal amount in five of the tested scenar-
ios, which is considerably lesser than the original thousands
of features. We then repeated the tests with 20% labeled items
but now using global average pooling and global max pooling,
to lower the initial amount of features to 512, before applying

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.55

0.6

0.65

0.7

0.75

(a) VGG16 - 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.55

0.6

0.65

0.7

0.75

(b) VGG16 - 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.5

0.55

0.6

0.65

0.7

0.75

(c) VGG19 - 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.55

0.6

0.65

0.7

0.75

(d) VGG19 - 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.55

0.6

0.65

0.7

0.75

(e) VGG16+VGG19 - 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

p

0.55

0.6

0.65

0.7

0.75

(f) VGG16+VGG19 - 20%

Fig. 5: PCC framework accuracy varying the amount of k-
nearest neighbors and p principal components: (a) VGG16
and 10% labeled nodes; (b) VGG16 and 20% labeled nodes;
(c) VGG19 and 10% labeled nodes; (d) VGG19 and 20%
labeled nodes; (e) VGG16+VGG19 and 10% labeled nodes;
(f) VGG16+VGG19 and 20% labeled nodes.

TABLE VI: Classification accuracy achieved by the proposed
PCC framework with VGG16 and VGG19 as feature extrac-
tors, with global pooling applied to their last convolutional
layer output. The best combination of p principal components
and k-nearest neighbors are used. 20% of the data items are
randomly labeled. All values are the average of 100 executions.

Global Pooling Architecture p k Accuracy
Average VGG16 7 6 72.51% ±3.04%
Average VGG19 15 3 71.52% ±3.28%
Average VGG16+VGG19 10 6 73.43% ±3.10%

Max VGG16 7 7 74.30% ±2.80%
Max VGG19 20 8 72.28% ±3.87%
Max VGG16+VGG19 20 4 73.19% ±3.35%

PCA. However, in these scenarios, the accuracy lowered,
as shown in Table VI, indicating that useful discriminative
information is lost when pooling is used.

The results obtained with SSL are impressive considering
that the CNNs were not fine-tuned and that only 10% to 20%
of the images on the dataset were presented with the corre-
sponding labels. In real-world scenarios, we could certainly
use some images to fine-tune the networks before using them

as feature extractors, increasing the extraction quality and,
consequently, the classification accuracy.

VII. CONCLUSIONS

In this paper, we propose methods to help in identify-
ing obstacles in the path of visually impaired people. After
properly trained, these methods have low computational costs
in the inference step, executing in milliseconds in current
smartphones [24]. Therefore, it can be implemented without
relying on other equipment or remote servers. We also propose
a dataset to help in the training of these methods. Our first
identification approach uses CNNs and transfer learning. We
compared many consolidated CNN architectures pre-trained
on large datasets and fine-tuned them to the proposed task.
The second approach uses the pre-trained CNN architectures
as feature extractors and semi-supervised learning for classifi-
cation, using the particle competition and cooperation method.

Computer simulations showed promising results with some
of the CNN architectures, while the SSL also achieved rela-
tively high accuracy, considering that it is using only up to
20% of the dataset for training and no fine-tuning in CNN
networks. As future work, we intend to acquire more images
to the proposed dataset and search for other approaches and
tweaks in the current framework to further improve the clas-
sification accuracy. Then, a smartphone prototype application
may be implemented to test some real-world scenarios.

REFERENCES

[1] World Health Organization, “Vision impairment and blindness,” Oct
2019, accessed: 2019-01-14. [Online]. Available: https://www.who.int/
news-room/fact-sheets/detail/blindness-and-visual-impairment

[2] R. R. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das,
J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg et al.,
“Magnitude, temporal trends, and projections of the global prevalence of
blindness and distance and near vision impairment: a systematic review
and meta-analysis,” The Lancet Global Health, vol. 5, no. 9, pp. e888–
e897, 2017.

[3] C. K. Lakde and P. S. Prasad, “Review paper on navigation system for
visually impaired people,” International Journal of Advanced Research
in Computer and Communication Engineering, vol. 4, no. 1, 2015.

[4] B. Jiang, J. Yang, Z. Lv, and H. Song, “Wearable vision assistance
system based on binocular sensors for visually impaired users,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1375–1383, April 2019.

[5] V.-N. Hoang, T.-H. Nguyen, T.-L. Le, T.-H. Tran, T.-P. Vuong, and
N. Vuillerme, “Obstacle detection and warning system for visually
impaired people based on electrode matrix and mobile kinect,” Vietnam
Journal of Computer Science, vol. 4, no. 2, pp. 71–83, May 2017.
[Online]. Available: https://doi.org/10.1007/s40595-016-0075-z

[6] R. Tapu, B. Mocanu, and T. Zaharia, “Deep-see: Joint object detection,
tracking and recognition with application to visually impaired naviga-
tional assistance,” Sensors, vol. 17, no. 11, p. 2473, 2017.

[7] R. Saffoury, P. Blank, J. Sessner, B. H. Groh, C. F. Martindale,
E. Dorschky, J. Franke, and B. M. Eskofier, “Blind path obstacle
detector using smartphone camera and line laser emitter,” in 2016
1st International Conference on Technology and Innovation in Sports,
Health and Wellbeing (TISHW). IEEE, 2016, pp. 1–7.

[8] M. Poggi and S. Mattoccia, “A wearable mobility aid for the visually
impaired based on embedded 3d vision and deep learning,” in 2016
IEEE Symposium on Computers and Communication (ISCC). IEEE,
2016, pp. 208–213.

[9] M. Poggi, L. Nanni, and S. Mattoccia, “Crosswalk recognition through
point-cloud processing and deep-learning suited to a wearable mobility
aid for the visually impaired,” in International Conference on Image
Analysis and Processing. Springer, 2015, pp. 282–289.

[10] J.-R. Rizzo, Y. Pan, T. Hudson, E. K. Wong, and Y. Fang, “Sensor fusion
for ecologically valid obstacle identification: Building a comprehensive
assistive technology platform for the visually impaired,” in 2017 7th
International Conference on Modeling, Simulation, and Applied Opti-
mization (ICMSAO). IEEE, 2017, pp. 1–5.

[11] B.-S. Lin, C.-C. Lee, and P.-Y. Chiang, “Simple smartphone-based
guiding system for visually impaired people,” Sensors, vol. 17, no. 6, p.
1371, 2017.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[16] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale
deep convolutional neural network for fast object detection,” in european
conference on computer vision. Springer, 2016, pp. 354–370.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[18] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

[19] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE Transactions on Medical Imaging, vol. 35,
no. 5, pp. 1285–1298, May 2016.

[20] B. Q. Huynh, H. Li, and M. L. Giger, “Digital mammographic tumor
classification using transfer learning from deep convolutional neural
networks,” Journal of Medical Imaging, vol. 3, no. 3, pp. 1 – 5, 2016.
[Online]. Available: https://doi.org/10.1117/1.JMI.3.3.034501

[21] K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and A. Agrawal,
“Deep convolutional neural networks with transfer learning for computer
vision-based data-driven pavement distress detection,” Construction and
Building Materials, vol. 157, pp. 322 – 330, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950061817319335

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition.” Computational and Biological Learning
Society, 2015, pp. 1–14.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
2818–2826.

[24] A. Ignatov and R. Timofte, “Ai benchmark: All about deep learning on
smartphones in 2019,” in IEEE International Conference on Computer
Vision (ICCV) Workshops, 2019.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[26] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, pp. 1800–1807.

[27] F. Breve, L. Zhao, M. Quiles, W. Pedrycz, and J. Liu, “Particle
competition and cooperation in networks for semi-supervised learning,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 9,
pp. 1686–1698, Sep. 2012.

[28] I. Jolliffe and Springer-Verlag, Principal Component Analysis, ser.
Springer Series in Statistics. Springer, 2002.

[29] R. Kumar and S. Meher, “A novel method for visually impaired using
object recognition,” in 2015 International Conference on Communica-
tions and Signal Processing (ICCSP), April 2015, pp. 0772–0776.

[30] R. Tapu, B. Mocanu, A. Bursuc, and T. Zaharia, “A smartphone-
based obstacle detection and classification system for assisting visually
impaired people,” in The IEEE International Conference on Computer
Vision (ICCV) Workshops, June 2013.

[31] M. M. Islam and M. S. Sadi, “Path hole detection to assist the visually
impaired people in navigation,” in 2018 4th International Conference
on Electrical Engineering and Information Communication Technology
(iCEEiCT), Sep. 2018, pp. 268–273.

[32] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp.
303–338, Jun 2010. [Online]. Available: https://doi.org/10.1007/
s11263-009-0275-4

[33] K. Saleh, R. A. Zeineldin, M. Hossny, S. Nahavandi, and N. A. El-
Fishawy, “Navigational path detection for the visually impaired using
fully convolutional networks,” in 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Oct 2017, pp. 1399–1404.

[34] J. Monteiro, J. P. Aires, R. Granada, R. C. Barros, and F. Meneguzzi,
“Virtual guide dog: An application to support visually-impaired people
through deep convolutional neural networks,” in 2017 International Joint
Conference on Neural Networks (IJCNN), May 2017, pp. 2267–2274.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[36] F. Breve and L. Zhao, “Fuzzy community structure detection by
particle competition and cooperation,” Soft Computing, vol. 17, no. 4,
pp. 659–673, Apr 2013. [Online]. Available: https://doi.org/10.1007/
s00500-012-0924-3

[37] F. A. Breve, L. Zhao, and M. G. Quiles, “Particle competition
and cooperation for semi-supervised learning with label noise,”
Neurocomputing, vol. 160, pp. 63 – 72, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231215001277

[38] F. Breve and L. Zhao, “Particle competition and cooperation in networks
for semi-supervised learning with concept drift,” in The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN), June 2012, pp.
1–6.

[39] F. Breve, “Active semi-supervised learning using particle competition
and cooperation in networks,” in The 2013 International Joint Confer-
ence on Neural Networks (IJCNN), Aug 2013, pp. 1–6.

[40] F. Breve, M. G. Quiles, and L. Zhao, “Interactive image segmentation
using particle competition and cooperation,” in 2015 International Joint
Conference on Neural Networks (IJCNN), July 2015, pp. 1–8.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[42] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=ryQu7f-RZ

[43] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[45] ——, “Identity mappings in deep residual networks,” in Computer Vision
– ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham:
Springer International Publishing, 2016, pp. 630–645.

[46] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[47] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017, pp. 4700–
4708.

[48] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018, pp.
8697–8710.

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018, pp. 4510–4520.

