
Tree Echo State Autoencoders with Grammars
Benjamin Paassen

School of Computer Science
The University of Sydney

Sydney, Australia
benjamin.paassen@sydney.edu.au

Irena Koprinska
School of Computer Science

The University of Sydney
Sydney, Australia

irena.koprinska@sydney.edu.au

Kalina Yacef
School of Computer Science

The University of Sydney
Sydney, Australia

kalina.yacef@sydney.edu.au

Abstract—Tree data occurs in many forms, such as computer
programs, chemical molecules, or natural language. Unfortu-
nately, the non-vectorial and discrete nature of trees makes
it challenging to construct functions with tree-formed output,
complicating tasks such as optimization or time series prediction.
Autoencoders address this challenge by mapping trees to a
vectorial latent space, where tasks are easier to solve, and then
mapping the solution back to a tree structure. However, existing
autoencoding approaches for tree data fail to take the specific
grammatical structure of tree domains into account and rely
on deep learning, thus requiring large training datasets and
long training times. In this paper, we propose tree echo state
autoencoders (TES-AE), which are guided by a tree grammar and
can be trained within seconds by virtue of reservoir computing.
In our evaluation on three datasets, we demonstrate that our
proposed approach is not only much faster than a state-of-the-
art deep learning autoencoding approach (D-VAE) but also has
less autoencoding error if little data and time is given.

Index Terms—echo state networks, regular tree grammars,
reservoir computing, autoencoders, trees

I. INTRODUCTION

Trees constitute an important data structure in a wide range
of fields, describing diverse data such as computer programs
[1], chemical molecules [2], or natural language [3]. In recent
years, machine learning on these kinds of data has made con-
siderable process, especially for classification and regression
tasks [4]–[6]. In these cases, a machine learning model maps
from trees to a scalar or vectorial output (encoding). The
converse direction, mapping a vector back to a tree (decoding),
however, is less well investigated, although such decoders
would be highly useful for tasks such as generative models
for trees, the optimization of tree structures, or time series
prediction on trees [7]. In particular, a decoder for trees could
help to optimize molecular structures [8], or to provide hints
to students in intelligent tutoring systems [9].

Prior work on decoders for structured data can be roughly
partitioned into two groups. First, decoders for full or acyclic
graphs [10]–[13], which use deep recurrent neural networks
to generate a graph one node or edge at a time until a full
graph is completed. The drawback of these approaches is that
they fail to take the specific structure of trees into account and
thus may generate structures that are not trees. Furthermore,
they do not take grammatical knowledge about the domain

Funding by the German Research Foundation (DFG) under grant number
PA 3460/1-1 is gratefully acknowledged. Online supplement with source code
at https://gitlab.com/bpaassen/tree echo state autoencoders.

into account, which would be available for all aforementioned
examples [1]–[3], and could thus be a useful prior.

The second group are decoders that take grammar informa-
tion into account [8], [14], but are at present limited to string
data instead of trees. Furthermore, both groups rely on deep
neural networks for training which require large datasets and
long training times.

Our key contribution in this paper are tree echo state autoen-
coders (TES-AE), a novel autoencoder architecture specifically
dedicated to tree data, which uses grammatical knowledge and
can be trained within seconds using a standard support vector
machine solver [15], [16]. Our approach is based on tree echo
state networks [4] for encoding and analogous networks for
decoding, where we keep all neural network parameters fixed
except for the final decoding layer. In our proposed model, this
final layer decides which grammar rule to apply in each step
of the decoding process. In our experiments on three datasets
we show that our autoencoding approach can outperform deep
variational autoencoders for acyclic graphs (D-VAE) [13] in
terms of training time and autoencoding error, if little data
and little training time is available. Further, we show that
TES-AEs outperform sequential echo state networks for this
application and that the TES-AE coding space is suitable for
tree optimization, achieving similar results as [8].

In the following, we cover related work in more detail and
recap background knowledge regarding regular tree grammars,
before we describe our proposed architecture in depth, explain
our experiments and results, and conclude with a summary of
our findings.

II. RELATED WORK

A. Tree Encoding

Most prior work on machine learning for trees can be
grouped into neural network approaches (e.g. [4], [17], [18])
and tree kernel approaches (e.g. [19], [20]). In both cases, a
tree x̂ is first mapped to a vectorial representation φ(x̂) = ~x,
which is then used to complete a machine learning task,
such as classification [17], regression [4], or dimensionality
reduction [18]. We call the mapping φ an encoder for trees
and we call ~x the code of x̂ (refer to Figure 1, left). In more
detail, recursive neural networks [4], [17], [18] encode trees by
defining a function f which maps a node label and a (perhaps
ordered) set of child encodings to an encoding for the parent
node. The overall encoding φ is then computed via recursion.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

https://gitlab.com/bpaassen/tree_echo_state_autoencoders

∧

¬

y

x

tree encoder

φ

code

~x

classification
regression

dimensionality reduction

decoder

ψ

∧

x¬

y

tree’

generation
time series prediction

optimization

Fig. 1. An illustration of a tree encoder/decoder architecture and the
applications for the code (classification, regression, dimensionality reduction)
and the decoded tree (generation, optimization, time series prediction).

For example, the tree x̂ = ∧(x,¬(y)) from Figure 1 would
be recursively encoded as φ(x̂) = f(∧, {φ(x), φ(¬(y))}),
where φ(x) = f(x, ∅) and φ(¬(y)) = f(¬, {φ(y)}) =
f(¬, {f(y, ∅)}). We follow this recursive encoding scheme
in our work but adapt it slightly to be better aligned with a
grammar.

B. Tree Decoding

While an encoder is sufficient to perform machine learning
tasks with vectorial output, many interesting tasks require a
decoder ψ as well, i.e. a mapping from the vector space back
to the space of trees (refer to Figure 1, right). For example,
we can address time series prediction by encoding a tree x̂ as
a vector φ(x̂), predicting the next state of the vector φ(x̂)+~δ,
and then decoding back to the next state of the tree ψ(φ(x̂)+~δ)
[9]; we can construct new trees by sampling a vector ~x in the
latent space and then mapping back to a tree structure ψ(~x)
[12]; and we can optimize trees by varying the representation
in the latent space ~x such that some objective function `(ψ(~x))
on the decoded tree ψ(~x) is optimized [8].

Training a decoder for trees is considerably harder compared
to an encoder because the dimensionality of the vector space
(and hence the number of neurons in the model) needs to scale
exponentially with the tree depth to distinguish all possible
trees in a domain [21]. Accordingly, only few scholars to date
have attempted to tackle the problem of tree decoding [7].
Most who did are concerned with the more general problem of
graph decoding by generating a graph one node/edge at a time
via a deep recurrent neural network [10]–[13]. In more detail,
these approaches treat a graph as a sequence of node and
edge insertions and attempt to reproduce this sequence with a
recurrent neural network. The most applicable of these works
to our setting are variational autoencoders for directed acyclic
graphs (D-VAE) [13] because trees are a subclass of acyclic
graphs and thus the architectural bias towards acyclicity should
help D-VAEs in reconstructing trees.

Note that our proposed model is similar to these approaches
in that we also equate a tree with a sequence of actions,
namely a sequence of production rules in a regular tree
grammar. However, we do not apply a recurrent neural network
but follow the recursive structure of the tree. Further, by
considering grammar rules instead of general node and edge
insertions, our output trees are guaranteed to be syntactically
correct whereas existing graph decoders may violate syntactic
rules or produce data that is not tree-formed at all.

With respect to the reliance on grammars, our approach
resembles the work of [8] who also suggested to guide a
decoder by a grammar. Also like [8], we train our networks
to achieve autoencoding, i.e. we wish to train a ψ that acts
as an inverse of an encoder φ on the training data. However,
we consider tree data instead of string data and use recursive
networks instead of (time-)convolutional networks.

C. Echo State Networks

A final and crucial difference to all previous work lies
in our choice of training scheme. While all aforementioned
approaches use gradient descent across the entire network, we
base our approach on the reservoir computing literature (e.g.
[22], [23]). More precisely, we use a slightly varied version
of the tree echo state network [4] as encoder and decoder,
where all internal parameters are initialized randomly, then
pre-processed to ensure eventual forgetting of inputs [22], but
kept fixed afterwards. We only train the final layer that decides
which grammar rule to take in each step of the decoding. Be-
cause of this, our training problem becomes convex and easy
to solve. In particular, we can use a straightforward support
vector machine solver [15], [16] to train the output layer. Our
main contribution to the reservoir computing literature is that
we propose not only an encoder, but a decoder model for trees.

D. Regular tree grammars

Our approach strongly relies on regular tree grammars
[24], [25], such that we now take some time to describe
them in more detail, albeit in a simplified notation to ease
understanding.

First, we define a tree x̂ over some finite alphabet Σ as an
expression x(ŷ1, . . . , ŷk), where x ∈ Σ and where ŷ1, . . . , ŷk
are also trees over Σ, which we call the children of x̂. Note
that k may be zero, in which case we call the tree a leaf. For
example, for Σ = {∧,∨,¬, x, y}, x(), ∨(x(), y()), ¬(x()),
and ∧() are all trees over Σ, where x() and ∧() are leaves.
Per convention, we omit the empty brackets for leaves.

Note that our definition of trees is very liberal and includes
many instances that may be nonsensical according to the rules
of the domain. To restrict the space of possible trees to a more
sensible subset, we use regular tree grammars. We define a
regular tree grammar as a 4-tuple G = (Φ,Σ, R, S), where Φ is
a finite set of nonterminal symbols, Σ is a finite set of terminal
symbols, S ∈ Φ is a special nonterminal symbol which we call
the starting symbol, and R is a finite set of production rules
of the form A → x(B1, . . . , Bk) where A,B1, . . . , Bk ∈ Φ
and x ∈ Σ.

We say that a tree ŷ over Φ∪Σ can be derived in one step
via grammar G from another tree x̂ over Φ∪Σ, if there exists
a production rule A→ x(B1, . . . , Bk) and a leaf A in x̂, such
that replacing A with x(B1, . . . , Bk) yields ŷ. Generalizing
this definition, we say that a tree ŷ can be derived in T steps
via grammar G from another tree x̂, if there exists a sequence
of trees ẑ0 → . . . → ẑT such that ẑ0 = x̂, ẑT = ŷ, and
ẑt can be derived in one step via grammar G from ẑt−1 for
all t > 0. Finally, we define the tree language L(G) as the
set of all trees x̂ over Σ which can be derived in T steps
from the starting symbol S for any T ∈ N. As an example,
consider the regular tree grammar in Figure 3, left. The tree
∧(x,¬(y)) can be derived in 4 steps from S via the sequence
S → ∧(S, S)→ ∧(x, S)→ ∧(x,¬(S))→ ∧(x,¬(y)).

An important property of regular tree grammars is that
they can be parsed efficiently using tree automata [24], [25].
This is especially easy to see for a subclass of regular tree
grammars, which we call deterministic. We define a regular
tree grammar as deterministic if no two production rules have
the same right-hand-side. For these grammars, we can parse
a tree x̂ = x(ŷ1, . . . , yk) via the following recursive function:
First, we parse all children of x̂. This will return a nonterminal
symbol Bi for every child ŷi and a sequence of rules deriving
ŷi from Bi. After that, we simply have to check whether a rule
of the form A→ x(B1, . . . , Bk) exists in our grammar. If so,
we return the nonterminal symbol A and the concatenation of
this rule and all rule sequences for the children. If not, the
parse ends because the tree is not part of the tree language.
We utilize this scheme later for encoding in Algorithm 1.

III. METHOD

Our aim in this paper is to construct an autoencoder for
trees that exploits grammatical knowledge for the tree domain.
More precisely, for a given regular tree grammar G we would
like to obtain an encoder φ : L(G) → Rn for some n ∈ N
and a decoder ψ : Rn → L(G), such that for as many trees
x̂ ∈ L(G) as possible, x̂ is close to ψ(φ(x̂)). To achieve this
goal, we introduce two approaches. We start with a sequence-
to-sequence learning approach following the architecture of
[26] and then continue with an approach based on tree echo
state networks [4], which we describe in terms of encoding,
decoding, and training.

A. Sequence-to-sequence learning

Sequence-to-sequence learning is a neural network archi-
tecture introduced by [26], which translates an input sequence
to an output sequence, potentially of different length. The
architecture features two recurrent neural networks, an en-
coding network f : Rl × Rn → Rn, a decoding network
g : Rl × Rn → Rn, and an output function h : Rn → Rl

for some input dimensionality l and encoding dimensionality
n. The encoding network translates the input time series
~y1, . . . , ~yT ∈ Rl into an encoding vector ~xT by means of
the equation ~xt = f(~yt, ~xt−1) where ~x0 = ~0, i.e. a vector of
n zeros. This encoding is then used to generate the output
time series ~z1, . . . , ~zT ′ as follows. We first set the initial

decoding state as x̃1 = ~xT and then generate the first output as
~z1 = h(x̃1). All remaining decoding states are generated via
x̃t = g(~zt−1, x̃t−1) and all remaining outputs via ~zt = h(x̃t)
until ~zt is a special end-of-sequence token, whereupon the
process stops.

To apply the sequence-to-sequence learning framework to
tree data, we first translate an input tree x̂ into a sequence of
production rules, which we represent via one-hot codes, then
encode this sequence via the encoder network, decode it to a
sequence of one-hot codes, translate these back to production
rules, and finally produce the decoded tree using these rules.

Figure 2 illustrates the approach for the example tree
∧(x,¬(y)) and the example grammar from Figure 3. Re-
call that our example tree can be derived from the starting
symbol S via the sequence S →1 ∧(S, S) →4 ∧(x, S) →3

∧(x,¬(S))→5 ∧(x,¬(y)), where we indexed each arrow by
its corresponding production rule according to the numbering
from Figure 3. Accordingly, the tree is equivalent to the
production rule sequence (1,4,3,5), which we represent by
one-hot codes in the second row of Figure 2. We then apply the
encoding network f four times to achieve an overall encoding
~x4 of our input sequence, which we then plug in our decoder
as initial state x̃1. From this initial state, our output function h
predicts the first element ~y1 of our output rule sequence, which
is then fed back into the decoding network g to generate the
second state x̃2, and so on until h predicts the special end-of-
sequence token (0, 0, 0, 0, 0, 1).

In our case, we implement both f and g as recurrent
neural networks with the equations ~xt = f(~yt, ~xt−1) =
tanh

(
U ·~yt +W ·~xt−1

)
and x̃t = g(~zt−1, x̃t−1) = tanh

(
U ·

~zt−1 +W · x̃t−1

)
, and the output function as a linear function

~zt = h(x̃t) = V · x̃t. Note that the matrices U , W , and V are
parameters of our model. Following the reservoir computing
paradigm [22], we do not train the matrices U or W but
initialize them as cycle reservoir with jumps [23] and then keep
them fixed. Note that we use the same matrices U and W for
f and g. Next, we generate for each tree in the training data the
decoding state sequence x̃1, . . . , x̃T+1 via teacher forcing, i.e.
x̃t = tanh

(
U ·~yt−1+W ·x̃t−1

)
, using ~yt−1 as input argument

instead of ~zt−1. Finally, we train the matrix V via linear
regression on the training data

{
(x̃t, ~yt)|t ∈ {1, . . . , T}

}
.

While this approach is already functional in principle, we
expect it to fail for reasonably large input trees. This is
because our network needs to remember rule applications a
long time ago to correctly predict the next production rule.
Echo state networks, however, focus on intense short-term
memory instead of long-term memory [22], [27]. Accordingly,
we now attempt to reduce the number of time steps between
encoding and decoding by working along the tree structure
instead of flattening it to a sequence beforehand.

B. Tree Encoding

To encode a tree, we follow the parsing scheme for (deter-
ministic) regular tree grammars outlined in the background
section. More formally, let G = (Φ,Σ, R, S) be a regular
tree grammar. Then, for each grammar rule r =

(
A →

S → ∧(S, S) S → x S → ¬(S) S → y

(1, 0, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 1, 0)

~x0 = ~0 ~x1 ~x2 ~x3 ~x4 = x̃1 x̃2 x̃3 x̃4 x̃5

(1, 0, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 1)

S → ∧(S, S) S → x S → ¬(S) S → y EOS

f f f f

h h h h h
g g g g

Fig. 2. An illustration of the sequence-to-sequence autoencoding architecture for the example tree ∧(x,¬(y)) and the regular tree grammar from Figure 3.
Top: The rule sequence generating the tree; second row: the translation of the rule sequence into one-hot-coding; third row: the sequence of encoding and
decoding states; last row: the output series of one-hot codings.

x(B1, . . . , Bk)
)
∈ R, we define a function fr : Rn×k → Rn,

such that we can construct the encoding φ(x̂) of a tree
x̂ = x(ŷ1, . . . , ŷk) recursively as

φ(x̂) = fr

(
φ(ŷ1), . . . , φ(ŷk)

)
(1)

The precise algorithm for encoding is outlined in Algorithm 1.
An example is shown in Figure 3. In the example, we start
with the entire tree ∧(x,¬(y)) and pass downward through the
tree until we reach the first leaf, which is x. We parse this leaf
using the fourth grammar rule S → x, such that our encoding
function returns the the nonterminal S, the rule sequence (4),
and the vector encoding φ(x) = f4(). We perform the same
scheme for the leaf y, yielding the nonterminal S, the rule
sequence (5), and the encoding f5(). We then proceed with
the partially parsed subtree ¬(S), which we can parse using
the third rule S → ¬(S), yielding the nonterminal S, the
rule sequence (3,5), and the encoding f3(f5()). This leaves
the tree ∧(S, S), which we can parse using the first rule,
yielding the nonterminal S, the rule sequence (1,4,3,5), and
the overall encoding φ(∧(x,¬(y))) = f1(f4(), f3(f5())).

Algorithm 1 An algorithm to encode and parse trees according
to a deterministic regular tree grammar G = (Φ,Σ, R, S) and
encoding functions fr for each rule r ∈ R. The algorithm
receives a tree as input and returns a nonterminal symbol, a
rule sequence that generates the tree from that nonterminal
symbol, and a vectorial encoding.

function ENCODE(a tree x̂ = x(ŷ1, . . . , ŷk))
for j ∈ {1, . . . , k} do

Bj , (rj,1, . . . , rj,Tj), ~yj ← ENCODE(ŷj).
end for
if ∃A ∈ Φ : A→ x(B1, . . . , Bk) ∈ R then

r ←
(
A→ x(B1, . . . , Bk)

)
.

return A, (r, r1,1, . . . , rk,Tk
), fr(~y1, . . . , ~yk).

else
Error; x̂ is not in L(G).

end if
end function

We implement each of the functions fr as a single-layer
feedforward neural network, i.e.

fr(~y1, . . . , ~yk) = tanh
(
W r

1 · ~y1 + . . .+ W r
k · ~yk +~br

)
(2)

where the n × n matrices W r
1 , . . . ,W

r
k and the bias vector

~br ∈ Rn are parameters of fr. Following the reservoir
computing paradigm, we do not train these parameters but
keep them fixed [22]. In more detail, we initialize a β ∈ (0, 1]
fraction of the entries for each matrix as standard normally
distributed random numbers, and then enforce a spectral radius
of ρ ∈ (0, 1). We fill the bias vectors with normally distributed
random numbers with zero mean and standard deviation ρ.
Note that the coding dimensionality n, as well as the sparsity β
and the spectral radius ρ are hyper-parameters of our approach.

We remark in passing that the reservoir computing paradigm
would suggest that each of the reservoir matrices W r

j is
universal [22], [23]. Accordingly, one could assume that it
suffices to initialize one reservoir matrix and re-use it across
the entire model instead of initializing a separate matrix
for each argument of each rule. However, using the same
reservoir for all input arguments collapses Equation 2 to
tanh

(
W · (~x1 + . . .+ ~xk)

)
, which is now an order-invariant

function with respect to the input and, as such, strictly less
powerful. Still, we will consider this version as a baseline in
our experiments later on.

C. Tree Decoding
For decoding, we emulate the production process of a

regular tree grammar. We begin with the starting symbol S
and the vectorial code ~x for the tree to be decoded. Then, we
let a classifier hS : Rn → R decide which of the possible
rules r = S → x(B1, . . . , Bk) with S on the left-hand-
side we should apply. Next, we decode ~x into vectorial codes
~y1, . . . , ~yk for the children. For this step, we use decoding
functions grj : Rn → Rn that should extract the information for
the jth child from ~x. We then repeat this scheme recursively
until all nonterminal symbols are decoded. We present the
decoding scheme more formally in Algorithm 2.

As an example, consider Figure 4. We start at the top with
the vector code for the entire tree and the starting nonterminal

G =
(

Φ = {S},Σ = {∧,∨,¬, x, y},

R = {S → ∧(S, S)1, S → ∨(S, S)2,

S → ¬(S)3, S → x4, S → y5}, S
)

∧

¬

y

S, (4), f4()

∧

¬

S, (5), f5()

S, (4), f4()

∧

S, (3,5), f3(f5())S, (4), f4()

S, (1,4,3,5), f1(f4(), f3(f5()))

Fig. 3. An illustration of the encoding algorithm 1 for the tree ∧(x,¬(y)). Left: The tree grammar with enumerated rules (number labels in upper index).
From center to right: Each step of the encoding process with the final result highlighted with a box. During encoding, each node is replaced with a triple of
a nonterminal label, a sequence of grammar rules (here as numbers), and a vectorial encoding (here abstracted via function symbols).

~x, S S → ∧(S, S)

~y1, S ~y2, SS → x S → ¬(S)

~y2,1, S S → y

hS

hS hS

hS

g11 g12

g31

Fig. 4. An illustration of the decoding algorithm 2 for the tree ∧(x,¬(y))
(from top to bottom).

S. The classifier hS then selects the first rule S → ∧(S, S)
(top right) to apply. Based on this selection, we know that
we need to use the decoding functions g11 and g12 to obtain
vectorial codings ~y1 and ~y2 for the new children. We then
apply the same scheme to the newly created vector codes and
nonterminals until the entire tree is decoded.

Algorithm 2 An algorithm to decode vectors to trees accord-
ing to a regular tree grammar G = (Φ,Σ, R, S), classifiers
hA : Rn → R for each nonterminal A ∈ Φ, and decoding
functions grj for each rule r ∈ R and each of its arguments j.
The function receives a vector and a nonterminal symbol as
input and returns a decoded tree.

function DECODE(a vector ~x ∈ Rn, a nonterminal A ∈ Φ)
r =

(
A→ x(B1, . . . , Bk)

)
← hA(~x).

for j ∈ {1, . . . , k} do
~yj ← grj (~x).
ŷj ← DECODE(~yj , Bj).
~x← ~x− ~yj .

end for
return x(ŷ1, . . . , ŷk).

end function

Just as before, we implement the decoding functions grj :
Rn → Rn using single-layer feedforward neural networks,
i.e.: grj (~x) = tanh(W r

j · ~x+~brj), where the matrices W r
j and

the bias vectors ~brj are parameters of the model. We apply
the same initialization scheme for the matrices W r

j and the
vectors ~brj as during encoding, and keep the parameters fixed
after initialization.

D. Training

In our model, we only need to train the rule classifiers
hA for every nonterminal A. For training these classifiers, we
need to know the encoding vectors ~x for every nonterminal
during the decoding process. Fortunately, we can compute
these vectors for our training data using teacher forcing. In
particular, recall that Algorithm 1 does not only yield the
encoding for the tree, but also a rule sequence that generates
the tree. This sequence contains the desired outputs for all
our classifiers. Furthermore, we can use this sequence to
decide which rules to apply during decoding, such that we
can complete the entire decoding process without relying
on the classifiers’ outputs. We describe the details of this
computation in Algorithm 3. Note that this algorithm executes
Algorithm 1 first and then executes a modified version of
Algorithm 2 where the decision of the rule classifiers hA
is replaced by the ground truth rule sequence. The training
data sets DA can be accumulated across an entire training
set of trees and then be used to train the rule classifiers hA.
In the example from Figure 4, the training data would be
DS = {(~x,1), (~y1,4), (~y2,3), (~y2,1,5)} because we should
execute the first rule when we encounter the encoding ~x, the
fourth rule when we encounter ~y1 = g11 (~x), the third rule
when we encounter ~y1 = g12 (~x− ~y1), and the fifth rule when
we encounter ~y2,1 = g31 (~y2).

As classifiers hA for each nonterminal A ∈ Φ we employ
a standard support vector machine [15].

IV. EXPERIMENTS

In our experimental evaluation we compare four models.
First, a variational autoencoder for directed acyclic graphs (D-
VAE) as proposed by [13]; second, the sequence-to-sequence
autoencoder from Section III-A, which we call echo-state
autoencoder (ES-AE); third, our tree echo state auto-enocoder
with shared reservoir matrix across all rules (S-TES-AE); and
fourth, our tree echo state autoencoder with separate weight
matrices for each rule (TES-AE). Generally, we expect the
D-VAE model to do better than all our reservoir computing
models because it can adjust all weights instead of just the
output weights. However, we expect that training a D-VAE
takes much longer. Between our echo state models, we expect
the TES-AE to do better than the S-TES-AE and the S-
TES-AE to do better than the ES-AE, in alignment with our
arguments in Section III.

Algorithm 3 An algorithm to generate training data for the
rule classifiers hA from a tree x̂ according to a regular tree
grammar G = (Φ,Σ, R, S). The algorithm receives a tree x̂ as
input and returns a set of training data for each nonterminal
symbol A ∈ Φ.

function TRAIN(a tree x̂)
A, (r1, . . . , rT), ~x← ENCODE(x̂).
Initialize a stack S with ~x on top.
Initialize an empty set DA for each A ∈ Φ.
for t← 1, . . . , T do

Let rt = A→ x(B1, . . . , Bk).
Pop ~xt from the top of S.
Add (~xt, rt) to DA.
for j ← k, . . . , 1 do

~yj ← grtj (~xt).
Push ~yj onto S.
~xt ← ~xt − ~yj .

end for
end for
return {DA|A ∈ Φ}.

end function

TABLE I
STATISTICS OF THE THREE DATASETS.

statistic Boolean expressions pysort

no. of trees 500 500 51
no. of nonterminals |Φ| 1 1 12
no. of terminals |Σ| 5 9 54
no. of rules |R| 5 9 54
avg. tree size 5.3 9.06 64.41

We evaluate each model on three datasets. First, a dataset
of Boolean expressions (Boolean), which we generate by
applying random rules of the grammar in Figure 3 until at
most three binary operators (and/or) are present.

Second, a dataset of function expressions (expressions)
as described by [8]. The grammar for this dataset is
G = ({S}, {+, ∗, /, sin, exp, x, 1, 2, 3}, {S → +(S, S), S →
∗(S, S), S → /(S, S), S → sin(S), S → exp(S), S →
x, S → 1, S → 2, S → 3}, S). We sample expressions by
adding one binary operator to one unary operator to one unary
with a binary argument, e.g. 3∗x+ sin(x) + exp(2/x), which
is consistent with the training data generated by [8].

Third, a dataset of 51 python programs (pysort) implement-
ing the insertion sort algorithm or parts of it. The dataset
can be found in the online supplement1. The grammar is the
full python language grammar as documented on https://docs.
python.org/3/library/ast.html. The statistics for all datasets are
listed in Table I.

For the D-VAE model, we used the authors’ reference
implementation2. We implemented all echo state models in
python using scikit-learn [16] as support vector machine

1https://gitlab.com/bpaassen/tree echo state autoencoders
2https://github.com/muhanzhang/D-VAE

solver. All implementations are available in the online sup-
plement1. We ran all experiments on a consumer-grade laptop
with Intel core i7 CPU.

A. Autoencoding

We first evaluate the models in terms of their capacity for
autoencoding. As measure of performance, we consider the
root mean square error (RMSE), in particular the formula√

1
m

∑m
i=1 d(x̂i, ψ[φ(x̂i)])2, where x̂i are the test trees, φ and

ψ are the en- and decoding functions of the respective model,
and d is the tree edit distance [28].

For the D-VAE model we used the same experimental
parameters as in the original paper [13] because the long
training times made hyperparameter optimization prohibitive.
However, we used less epochs (50) and higher learning rate
(10−3) to further limit training time. For the echo state models,
we fixed the number of neurons to 256 to achieve a fair
comparison between the models and optimized all other hyper-
parameters on extra validation data. In particular, for Boolean
and expressions we sampled 100 additional training trees
and 100 additional test trees specifically for hyperparameter
optimization. For pysort we randomly removed 5 training trees
and 5 test trees from the main dataset for hyperparameter
optimization. The optimization itself was a random search with
50 trials for Boolean and expressions and 20 trials for pysort.
The precise ranges for each hyper-parameter can be found in
the online supplement1.

For the evaluation itself, we performed a cross-validation
with 20 folds on Boolean and expressions and 10 folds on
pysort. To keep training times manageable, we evaluated the
D-VAE model only once with a 10% test data split.

We report the RMSEs for all models and all datasets in Ta-
ble II. As expected, the S-TES-AE model clearly outperforms
the ES-AE model on all data sets and the TES-AE model
outperforms the S-TES-AE model on the first two datasets.
These differences are statistically significant in a Wilcoxon
sign-rank test with p < 0.05 after Bonferroni correction. On
the pysort dataset, the performance of TES-AE and S-TES-
AE is statistically indistinguishable. Surprisingly, the D-VAE
model performed worse than both tree echo state models on
all datasets, which is likely caused by the small amount of
training data, the short training time, and, most of all, the
lack of grammatical knowledge encoded in the network. In
particular, we observe that only 34% of the decoded Boolean
formulae, 9% of the decoded mathematical expressions, and
none of the decoded python programs conformed to the
respective grammar. However, the architectural bias of D-VAE
was sufficient to at least achieve a tree structure for 100% of
the Boolean formulae, 95% for the mathematical expressions,
and three of five python programs.

To check how training time influenced the results, we
trained the D-VAE model on the Boolean dataset again with
300 epochs (just above 2.5 hours of training time), resulting
in an RMSE of 3.70 and 42% grammatical correctness, which
is still considerably worse than the TES-AE model.

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://gitlab.com/bpaassen/tree_echo_state_autoencoders
https://github.com/muhanzhang/D-VAE

TABLE II
ACCURACY OF ALL MODELS IN TERMS OF RMSE ON AUTOENCODING

THE TEST DATA (± STANDARD DEVIATION, EXCEPT FOR D-VAE, WHICH
WAS EVALUATED ONLY ONCE)

dataset D-VAE ES-AE S-TES-AE TES-AE

Boolean 4.62 3.64± 0.44 3.25± 0.39 2.84± 0.49
expressions 5.81 3.87± 0.61 2.65± 0.23 1.69± 0.21
pysort 52.07 64.86± 7.00 16.97± 4.30 17.49± 5.04

TABLE III
TRAINING TIME IN SECONDS (± STANDARD DEVIATION, EXCEPT FOR

D-VAE WHICH IT WAS EVALUATED ONLY ONCE).

dataset D-VAE ES-AE S-TES-AE TES-AE

Boolean 757.1 1.26± 0.04 2.44± 0.07 3.29± 0.22
expressions 1201.76 0.85± 0.01 3.37± 0.10 5.06± 0.06
pysort 13991.5 0.47± 0.02 0.63± 0.11 10.83± 0.76

Regarding runtimes (refer to Table III), we observe that
ES-AE and S-TES-AE are comparably fast on the Boolean
and pysort datasets but the latter is factor 3 slower on the
expressions dataset. Furthermore, TES-AE is considerably
slower on all datasets than S-TES-AE (factors 1.5 on the
first two datasets and factor 15 on the pysort dataset). This
is to be expected as setting up more parameters including
a matrix decomposition for the spectral radius computation
for each parameter matrix is expensive. Further, the parameter
matrices for cycle reservoir with jumps [23] are sparser than
our Gaussian random number initialization, making ES-AE
and S-TES-AE even faster. In all cases, however, the overall
runtime remains within a few seconds time. This is in stark
contrast to the D-VAE model, which took over 10 minutes
to train on the Boolean dataset, over 20 minutes for the
expressions dataset, and over 3 hours for the pysort dataset.

B. Optimization

Next, we evaluated the capacity for tree optimization in
the coding space. For the Boolean dataset, we considered the
logical evaluation of the formula, assuming that x is true and
y is false. We assign a score of 0 if the formula evaluates to
false and otherwise as the number of fulfilled ∧ terms in the
formula. For example, ∧(x,¬(y)) would evaluate to 1 because
there is one fulfilled ’and’ but ∧(y,∧(x, x)) would evaluate
to 0 because the entire formula evaluates to false.

For the expressions dataset, we used the performance mea-
sure of [8], i.e. we evaluated the arithmetic expressions for
1000 linearly spaced values of x between −10 and +10 and
computed the logarithm of one plus the mean square error to
the ground truth function 1/3 + x+ sin(x · x).

Because our coding space was quite high-dimensional (n =
256), we did not perform Bayesian optimization as suggested
by [8] but used a Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) instead, namely the reference implemen-

TABLE IV
THE OPTIMIZED TREE AND ITS SCORE FOR ALL MODELS FOR THE

BOOLEAN AND EXPRESSIONS DATASETS. FOR BOOLEAN, HIGHER SCORES
ARE BETTER AND FOR EXPRESSIONS, LOWER SCORES ARE BETTER.

model optimal expression score

Boolean

ES-AE ∧(∧(∨(∧(x, x), x), x),∧(x,∧(x,∧(x, x)))) 6
s-TES-AE ∧(∧(∨(y, x), x),∧(x, x)) 3
TES-AE ∨(¬(∨(y,∧(∧(x, x), x))),∧(∧(∧(y, x)), x)) 3

expressions

ES-AE +(x, /(1, *(1, 3))) 0.391
s-TES-AE +(/(1, 3), +(x, sin(*(x, x)))) 0
TES-AE +(x, +(sin(3), sin(*(x, x)))) 0.036

∨

∧
y

x

¬
∧

∨

x

y

Fig. 5. Left: A t-SNE visualization of the coding space of the TES-AE model
on the Boolean dataset. Each cluster in the visualization is labelled with the
root symbol of all trees in the cluster. Right: A t-SNE visualization of only
trees with ¬ at the root; clusters are labelled with the symbol below the root.

tation of the python cma package3. To be comparable with
[8], we limited the computational budget to the same value,
namely 750 overall function evaluations, which we distributed
onto 15 iterations with 50 evaluations each.

The results are shown in Table IV. Note that the results
for D-VAE are missing because CMA-ES failed to gener-
ate any grammatical tree which could have been evaluated.
Regarding the results of the echo state models, we note that
the sequential echo state autoencoder (ES-AE) performed best
on the Boolean dataset by extrapolating beyond the training
data and using seven binary operators instead of the three
that were present in the training data. The TES-AE model
also extrapolated, but with less success. Only the S-TES-AE
model remained within the boundaries of the training data and
achieved the best possible value within it.

Regarding the expression dataset, both TES-AE variations
found a solution at least as good as the grammar variational
autoencoder of [8] and the s-TES-AE model even found the
ground truth. Overall, the s-TES-AE model appears to be best
suited for optimization on these tasks.

C. Coding Spaces

If we inspect the encoding spaces of the TES-AE model in
more detail, we observe clusters dependent on root symbol
of the tree. For example, Figure 5 (left) shows a t-SNE
dimensionality reduction of the Boolean dataset as encoded
by the TES-AE model with each cluster labelled with the root
symbol. In Figure 5 (right), we observe that the ¬ cluster

3https://github.com/CMA-ES/pycma

https://github.com/CMA-ES/pycma

further spreads into clusters according to the symbol just below
the root. This fractal coding is consistent with prior work on
recurrent networks with small weights, which have been shown
to code fractally based on the most recent symbol [29].

V. CONCLUSION

In this paper, we introduced tree echo state autoencoders
(TES-AE), a novel neural network architecture to implement
autoencoding for trees without the need for deep learning.
In particular, we used regular tree grammars to express our
trees as sequences of grammar rules and then employed echo
state networks and tree echo state networks for encoding and
decoding. In our experiments on three datasets, we found that
a TES-AE outperformed a variational auto-encoder for acyclic
graphs (D-VAE) in terms of autoencoding error on small
datasets with limited training time. Further, we showed that
TES-AE significantly outperform a sequential version of the
model (ES-AE) and that separate parameters for each grammar
rule outperform shared parameters. Our results also showed
that a few seconds sufficed to train our model even for a large
grammar and large trees, whereas D-VAE training, even with
a small number of epochs, took ten minutes to several hours.
Finally, we observed that optimization in the TES-AE coding
space performed similarly compared to past reference results
[8].

Future research could investigate how well our autoencoders
are suitable to time series prediction, how memory capacity
results translate to the tree domain, how to apply our architec-
ture to trees with real-valued nodes, and whether our proposed
echo state sequence-to-sequence learning model using echo
state networks is suitable to solve sequence tasks that currently
require deep learning.

REFERENCES

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Boston, MA, USA: Addison Wesley,
2006.

[2] D. Weininger, “Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules,” Journal of Chemical
Information and Computer Sciences, vol. 28, no. 1, pp. 31–36, 1988.

[3] K. Knight and J. Graehl, “An overview of probabilistic tree transducers
for natural language processing,” in Computational Linguistics and
Intelligent Text Processing, A. Gelbukh, Ed. Springer Berlin Heidelberg,
2005, pp. 1–24.

[4] C. Gallicchio and A. Micheli, “Tree echo state networks,” Neurocom-
puting, vol. 101, pp. 319 – 337, 2013.

[5] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017. [Online]. Available:
https://openreview.net/forum?id=SJU4ayYgl

[6] B. Paaßen, C. Gallicchio, A. Micheli, and B. Hammer, “Tree
edit distance learning via adaptive symbol embeddings,” in Proc.
ICML, vol. 80, 2018, pp. 3973–3982. [Online]. Available: http:
//proceedings.mlr.press/v80/paassen18a.html

[7] B. Paaßen, C. Gallicchio, A. Micheli, and A. Sperduti, “Embeddings
and representation learning for structured data,” in Proc. ESANN, 2019,
pp. 85–94. [Online]. Available: https://arxiv.org/abs/1905.06147

[8] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
variational autoencoder,” in Proc. ICML, 2017, pp. 1945–1954.
[Online]. Available: http://proceedings.mlr.press/v70/kusner17a.html

[9] B. Paaßen, B. Hammer, T. Price, T. Barnes, S. Gross, and
N. Pinkwart, “The continuous hint factory - providing hints in vast
and sparsely populated edit distance spaces,” Journal of Educational
Datamining, vol. 10, no. 1, pp. 1–35, 2018. [Online]. Available: https:
//jedm.educationaldatamining.org/index.php/JEDM/article/view/158

[10] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained
graph variational autoencoders for molecule design,” in Proc. NeurIPS,
2018, pp. 7795–7804. [Online]. Available: http://papers.nips.cc/paper/
8005-constrained-graph-variational-autoencoders-for-molecule-design.
pdf

[11] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec,
“GraphRNN: Generating realistic graphs with deep auto-regressive
models,” in Proc. ICML, 2018, pp. 5708–5717. [Online]. Available:
http://proceedings.mlr.press/v80/you18a.html

[12] D. Bacciu, A. Micheli, and M. Podda, “Graph generation by
sequential edge prediction,” in Proc. ESANN, 2019. [Online]. Available:
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-107.pdf

[13] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A
variational autoencoder for directed acyclic graphs,” in Proc. NeurIPS,
2019, pp. 1586–1598. [Online]. Available: http://papers.nips.cc/paper/
8437-d-vae-a-variational-autoencoder-for-directed-acyclic-graphs.pdf

[14] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed
variational autoencoder for structured data,” in Proc. ICLR, 2018.
[Online]. Available: https://openreview.net/forum?id=SyqShMZRb

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep 1995.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] A. Sperduti and A. Starita, “Supervised neural networks for the classi-
fication of structures,” IEEE Transactions on Neural Networks, vol. 8,
no. 3, pp. 714–735, 1997.

[18] B. Hammer, A. Micheli, A. Sperduti, and M. Strickert, “Recursive self-
organizing network models,” Neural Networks, vol. 17, no. 8, pp. 1061
– 1085, 2004.

[19] M. Collins and N. Duffy, “New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted
perceptron,” in Proc. ACL, 2002, pp. 263–270. [Online]. Available:
http://www.aclweb.org/anthology/P02-1034.pdf

[20] F. Aiolli, G. Da San Martino, and A. Sperduti, “An efficient topological
distance-based tree kernel,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 5, pp. 1115–1120, 2015.

[21] B. Hammer, “Recurrent networks for structured data - A unifying
approach and its properties,” Cognitive Systems Research, vol. 3, no. 2,
pp. 145 – 165, 2002.

[22] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[23] A. Rodan and P. Tiňo, “Simple deterministically constructed cycle
reservoirs with regular jumps,” Neural Computation, vol. 24, no. 7, pp.
1822–1852, 2012.

[24] W. S. Brainerd, “Tree generating regular systems,” Information and
Control, vol. 14, no. 2, pp. 217 – 231, 1969.

[25] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi, Tree Automata Techniques
and Applications. inria gforge, 2008. [Online]. Available: http:
//tata.gforge.inria.fr/

[26] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Proc. NIPS, 2014,
pp. 3104–3112. [Online]. Available: http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural

[27] I. Farkaš, R. Bosák, and P. Gergeľ, “Computational analysis of memory
capacity in echo state networks,” Neural Networks, vol. 83, pp. 109 –
120, 2016.

[28] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM Journal on Computing,
vol. 18, no. 6, pp. 1245–1262, 1989.

[29] P. Tiňo and B. Hammer, “Architectural bias in recurrent neural networks:
Fractal analysis,” Neural Computation, vol. 15, no. 8, pp. 1931–1957,
2003.

https://openreview.net/forum?id=SJU4ayYgl
http://proceedings.mlr.press/v80/paassen18a.html
http://proceedings.mlr.press/v80/paassen18a.html
https://arxiv.org/abs/1905.06147
http://proceedings.mlr.press/v70/kusner17a.html
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/158
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/158
http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf
http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf
http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf
http://proceedings.mlr.press/v80/you18a.html
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-107.pdf
http://papers.nips.cc/paper/8437-d-vae-a-variational-autoencoder-for-directed-acyclic-graphs.pdf
http://papers.nips.cc/paper/8437-d-vae-a-variational-autoencoder-for-directed-acyclic-graphs.pdf
https://openreview.net/forum?id=SyqShMZRb
http://www.aclweb.org/anthology/P02-1034.pdf
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

